/* * Server-side thread management * * Copyright (C) 1998 Alexandre Julliard */ #include "config.h" #include #include #include #include #include #include #ifdef HAVE_SYS_MMAN_H #include #endif #include #ifdef HAVE_SYS_SOCKET_H # include #endif #include #include #include #include "winbase.h" #include "handle.h" #include "process.h" #include "thread.h" #include "request.h" /* thread queues */ struct wait_queue_entry { struct wait_queue_entry *next; struct wait_queue_entry *prev; struct object *obj; struct thread *thread; }; struct thread_wait { int count; /* count of objects */ int flags; struct timeval timeout; struct timeout_user *user; sleep_reply reply; /* function to build the reply */ struct wait_queue_entry queues[1]; }; /* asynchronous procedure calls */ struct thread_apc { void *func; /* function to call in client */ void *param; /* function param */ }; #define MAX_THREAD_APC 16 /* Max outstanding APCs for a thread */ /* thread operations */ static void dump_thread( struct object *obj, int verbose ); static int thread_signaled( struct object *obj, struct thread *thread ); extern void thread_poll_event( struct object *obj, int event ); static void destroy_thread( struct object *obj ); static const struct object_ops thread_ops = { sizeof(struct thread), /* size */ dump_thread, /* dump */ add_queue, /* add_queue */ remove_queue, /* remove_queue */ thread_signaled, /* signaled */ no_satisfied, /* satisfied */ NULL, /* get_poll_events */ thread_poll_event, /* poll_event */ no_read_fd, /* get_read_fd */ no_write_fd, /* get_write_fd */ no_flush, /* flush */ no_get_file_info, /* get_file_info */ destroy_thread /* destroy */ }; static struct thread *first_thread; static struct thread *booting_thread; /* allocate the buffer for the communication with the client */ static int alloc_client_buffer( struct thread *thread ) { struct get_thread_buffer_request *req; int fd; if ((fd = create_anonymous_file()) == -1) return -1; if (ftruncate( fd, MAX_REQUEST_LENGTH ) == -1) goto error; if ((thread->buffer = mmap( 0, MAX_REQUEST_LENGTH, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0 )) == (void*)-1) goto error; /* build the first request into the buffer and send it */ req = thread->buffer; req->pid = get_process_id( thread->process ); req->tid = get_thread_id( thread ); req->boot = (thread == booting_thread); set_reply_fd( thread, fd ); send_reply( thread ); return 1; error: file_set_error(); if (fd != -1) close( fd ); return 0; } /* create a new thread */ struct thread *create_thread( int fd, struct process *process, int suspend ) { struct thread *thread; int flags = fcntl( fd, F_GETFL, 0 ); fcntl( fd, F_SETFL, flags | O_NONBLOCK ); if (!(thread = alloc_object( &thread_ops, fd ))) return NULL; thread->unix_pid = 0; /* not known yet */ thread->teb = NULL; thread->mutex = NULL; thread->debug_ctx = NULL; thread->wait = NULL; thread->apc = NULL; thread->apc_count = 0; thread->error = 0; thread->pass_fd = -1; thread->state = RUNNING; thread->attached = 0; thread->exit_code = STILL_ACTIVE; thread->next = NULL; thread->prev = NULL; thread->priority = THREAD_PRIORITY_NORMAL; thread->affinity = 1; thread->suspend = (suspend != 0); thread->buffer = (void *)-1; thread->last_req = REQ_GET_THREAD_BUFFER; thread->process = (struct process *)grab_object( process ); if (!current) current = thread; if (!booting_thread) /* first thread ever */ { booting_thread = thread; lock_master_socket(1); } if ((thread->next = first_thread) != NULL) thread->next->prev = thread; first_thread = thread; add_process_thread( process, thread ); set_select_events( &thread->obj, POLLIN ); /* start listening to events */ if (!alloc_client_buffer( thread )) goto error; return thread; error: remove_process_thread( process, thread ); release_object( thread ); return NULL; } /* handle a client event */ void thread_poll_event( struct object *obj, int event ) { struct thread *thread = (struct thread *)obj; assert( obj->ops == &thread_ops ); if (event & (POLLERR | POLLHUP)) kill_thread( thread, BROKEN_PIPE ); else { if (event & POLLOUT) write_request( thread ); if (event & POLLIN) read_request( thread ); } } /* destroy a thread when its refcount is 0 */ static void destroy_thread( struct object *obj ) { struct thread *thread = (struct thread *)obj; assert( obj->ops == &thread_ops ); assert( !thread->debug_ctx ); /* cannot still be debugging something */ release_object( thread->process ); if (thread->next) thread->next->prev = thread->prev; if (thread->prev) thread->prev->next = thread->next; else first_thread = thread->next; if (thread->apc) free( thread->apc ); if (thread->buffer != (void *)-1) munmap( thread->buffer, MAX_REQUEST_LENGTH ); if (thread->pass_fd != -1) close( thread->pass_fd ); } /* dump a thread on stdout for debugging purposes */ static void dump_thread( struct object *obj, int verbose ) { struct thread *thread = (struct thread *)obj; assert( obj->ops == &thread_ops ); fprintf( stderr, "Thread pid=%d teb=%p state=%d\n", thread->unix_pid, thread->teb, thread->state ); } static int thread_signaled( struct object *obj, struct thread *thread ) { struct thread *mythread = (struct thread *)obj; return (mythread->state == TERMINATED); } /* get a thread pointer from a thread id (and increment the refcount) */ struct thread *get_thread_from_id( void *id ) { struct thread *t = first_thread; while (t && (t != id)) t = t->next; if (t) grab_object( t ); return t; } /* get a thread from a handle (and increment the refcount) */ struct thread *get_thread_from_handle( int handle, unsigned int access ) { return (struct thread *)get_handle_obj( current->process, handle, access, &thread_ops ); } /* find a thread from a Unix pid */ struct thread *get_thread_from_pid( int pid ) { struct thread *t = first_thread; while (t && (t->unix_pid != pid)) t = t->next; return t; } /* set all information about a thread */ static void set_thread_info( struct thread *thread, struct set_thread_info_request *req ) { if (req->mask & SET_THREAD_INFO_PRIORITY) thread->priority = req->priority; if (req->mask & SET_THREAD_INFO_AFFINITY) { if (req->affinity != 1) set_error( STATUS_INVALID_PARAMETER ); else thread->affinity = req->affinity; } } /* suspend a thread */ int suspend_thread( struct thread *thread, int check_limit ) { int old_count = thread->suspend; if (thread->suspend < MAXIMUM_SUSPEND_COUNT || !check_limit) { if (!(thread->process->suspend + thread->suspend++)) stop_thread( thread ); } else set_error( STATUS_SUSPEND_COUNT_EXCEEDED ); return old_count; } /* resume a thread */ int resume_thread( struct thread *thread ) { int old_count = thread->suspend; if (thread->suspend > 0) { if (!(--thread->suspend + thread->process->suspend)) continue_thread( thread ); } return old_count; } /* suspend all threads but the current */ void suspend_all_threads( void ) { struct thread *thread; for ( thread = first_thread; thread; thread = thread->next ) if ( thread != current ) suspend_thread( thread, 0 ); } /* resume all threads but the current */ void resume_all_threads( void ) { struct thread *thread; for ( thread = first_thread; thread; thread = thread->next ) if ( thread != current ) resume_thread( thread ); } /* add a thread to an object wait queue; return 1 if OK, 0 on error */ int add_queue( struct object *obj, struct wait_queue_entry *entry ) { grab_object( obj ); entry->obj = obj; entry->prev = obj->tail; entry->next = NULL; if (obj->tail) obj->tail->next = entry; else obj->head = entry; obj->tail = entry; return 1; } /* remove a thread from an object wait queue */ void remove_queue( struct object *obj, struct wait_queue_entry *entry ) { if (entry->next) entry->next->prev = entry->prev; else obj->tail = entry->prev; if (entry->prev) entry->prev->next = entry->next; else obj->head = entry->next; release_object( obj ); } /* finish waiting */ static void end_wait( struct thread *thread ) { struct thread_wait *wait = thread->wait; struct wait_queue_entry *entry; int i; assert( wait ); for (i = 0, entry = wait->queues; i < wait->count; i++, entry++) entry->obj->ops->remove_queue( entry->obj, entry ); if (wait->user) remove_timeout_user( wait->user ); free( wait ); thread->wait = NULL; } /* build the thread wait structure */ static int wait_on( int count, struct object *objects[], int flags, int timeout, sleep_reply func ) { struct thread_wait *wait; struct wait_queue_entry *entry; int i; if (!(wait = mem_alloc( sizeof(*wait) + (count-1) * sizeof(*entry) ))) return 0; current->wait = wait; wait->count = count; wait->flags = flags; wait->user = NULL; wait->reply = func; if (flags & SELECT_TIMEOUT) { gettimeofday( &wait->timeout, 0 ); add_timeout( &wait->timeout, timeout ); } for (i = 0, entry = wait->queues; i < count; i++, entry++) { struct object *obj = objects[i]; entry->thread = current; if (!obj->ops->add_queue( obj, entry )) { wait->count = i; end_wait( current ); return 0; } } return 1; } /* check if the thread waiting condition is satisfied */ static int check_wait( struct thread *thread, struct object **object ) { int i, signaled; struct thread_wait *wait = thread->wait; struct wait_queue_entry *entry = wait->queues; assert( wait ); *object = NULL; if (wait->flags & SELECT_ALL) { int not_ok = 0; /* Note: we must check them all anyway, as some objects may * want to do something when signaled, even if others are not */ for (i = 0, entry = wait->queues; i < wait->count; i++, entry++) not_ok |= !entry->obj->ops->signaled( entry->obj, thread ); if (not_ok) goto other_checks; /* Wait satisfied: tell it to all objects */ signaled = 0; for (i = 0, entry = wait->queues; i < wait->count; i++, entry++) if (entry->obj->ops->satisfied( entry->obj, thread )) signaled = STATUS_ABANDONED_WAIT_0; return signaled; } else { for (i = 0, entry = wait->queues; i < wait->count; i++, entry++) { if (!entry->obj->ops->signaled( entry->obj, thread )) continue; /* Wait satisfied: tell it to the object */ signaled = i; *object = entry->obj; if (entry->obj->ops->satisfied( entry->obj, thread )) signaled = i + STATUS_ABANDONED_WAIT_0; return signaled; } } other_checks: if ((wait->flags & SELECT_ALERTABLE) && thread->apc) return STATUS_USER_APC; if (wait->flags & SELECT_TIMEOUT) { struct timeval now; gettimeofday( &now, NULL ); if (!time_before( &now, &wait->timeout )) return STATUS_TIMEOUT; } return -1; } /* build a reply to the select request */ static void build_select_reply( struct thread *thread, struct object *obj, int signaled ) { struct select_request *req = get_req_ptr( thread ); req->signaled = signaled; } /* attempt to wake up a thread */ /* return 1 if OK, 0 if the wait condition is still not satisfied */ static int wake_thread( struct thread *thread ) { int signaled; struct object *object; if ((signaled = check_wait( thread, &object )) == -1) return 0; thread->error = 0; thread->wait->reply( thread, object, signaled ); end_wait( thread ); return 1; } /* thread wait timeout */ static void thread_timeout( void *ptr ) { struct thread *thread = ptr; if (debug_level) fprintf( stderr, "%08x: *timeout*\n", (unsigned int)thread ); assert( thread->wait ); thread->error = 0; thread->wait->user = NULL; thread->wait->reply( thread, NULL, STATUS_TIMEOUT ); end_wait( thread ); send_reply( thread ); } /* sleep on a list of objects */ int sleep_on( int count, struct object *objects[], int flags, int timeout, sleep_reply func ) { assert( !current->wait ); if (!wait_on( count, objects, flags, timeout, func )) return 0; if (wake_thread( current )) return 1; /* now we need to wait */ if (flags & SELECT_TIMEOUT) { if (!(current->wait->user = add_timeout_user( ¤t->wait->timeout, thread_timeout, current ))) { end_wait( current ); return 0; } } return 1; } /* select on a list of handles */ static int select_on( int count, int *handles, int flags, int timeout ) { int ret = 0; int i; struct object *objects[MAXIMUM_WAIT_OBJECTS]; if ((count < 0) || (count > MAXIMUM_WAIT_OBJECTS)) { set_error( STATUS_INVALID_PARAMETER ); return 0; } for (i = 0; i < count; i++) { if (!(objects[i] = get_handle_obj( current->process, handles[i], SYNCHRONIZE, NULL ))) break; } if (i == count) ret = sleep_on( count, objects, flags, timeout, build_select_reply ); while (--i >= 0) release_object( objects[i] ); return ret; } /* attempt to wake threads sleeping on the object wait queue */ void wake_up( struct object *obj, int max ) { struct wait_queue_entry *entry = obj->head; while (entry) { struct thread *thread = entry->thread; entry = entry->next; if (wake_thread( thread )) { send_reply( thread ); if (max && !--max) break; } } } /* queue an async procedure call */ static int thread_queue_apc( struct thread *thread, void *func, void *param ) { struct thread_apc *apc; if (!thread->apc) { if (!(thread->apc = mem_alloc( MAX_THREAD_APC * sizeof(*apc) ))) return 0; thread->apc_count = 0; } else if (thread->apc_count >= MAX_THREAD_APC) return 0; thread->apc[thread->apc_count].func = func; thread->apc[thread->apc_count].param = param; thread->apc_count++; if (thread->wait) { if (wake_thread( thread )) send_reply( thread ); } return 1; } /* retrieve an LDT selector entry */ static void get_selector_entry( struct thread *thread, int entry, unsigned int *base, unsigned int *limit, unsigned char *flags ) { if (!thread->process->ldt_copy || !thread->process->ldt_flags) { set_error( STATUS_ACCESS_DENIED ); return; } if (entry >= 8192) { set_error( STATUS_INVALID_PARAMETER ); /* FIXME */ return; } suspend_thread( thread, 0 ); if (thread->attached) { unsigned char flags_buf[4]; int *addr = (int *)thread->process->ldt_copy + 2 * entry; if (read_thread_int( thread, addr, base ) == -1) goto done; if (read_thread_int( thread, addr + 1, limit ) == -1) goto done; addr = (int *)thread->process->ldt_flags + (entry >> 2); if (read_thread_int( thread, addr, (int *)flags_buf ) == -1) goto done; *flags = flags_buf[entry & 3]; } else set_error( STATUS_ACCESS_DENIED ); done: resume_thread( thread ); } /* kill a thread on the spot */ void kill_thread( struct thread *thread, int exit_code ) { if (thread->state == TERMINATED) return; /* already killed */ thread->state = TERMINATED; thread->exit_code = exit_code; if (current == thread) current = NULL; if (debug_level) trace_kill( thread ); if (thread->wait) end_wait( thread ); generate_debug_event( thread, (thread->process->running_threads == 1) ? EXIT_PROCESS_DEBUG_EVENT : EXIT_THREAD_DEBUG_EVENT ); debug_exit_thread( thread ); abandon_mutexes( thread ); remove_process_thread( thread->process, thread ); wake_up( &thread->obj, 0 ); detach_thread( thread ); remove_select_user( &thread->obj ); release_object( thread ); } /* signal that we are finished booting on the client side */ DECL_HANDLER(boot_done) { debug_level = req->debug_level; /* Make sure last_req is initialized */ current->last_req = REQ_BOOT_DONE; if (current == booting_thread) { booting_thread = (struct thread *)~0UL; /* make sure it doesn't match other threads */ lock_master_socket(0); /* allow other clients now */ } } /* create a new thread */ DECL_HANDLER(new_thread) { struct thread *thread; int sock[2]; if (socketpair( AF_UNIX, SOCK_STREAM, 0, sock ) != -1) { if ((thread = create_thread( sock[0], current->process, req->suspend ))) { req->tid = thread; if ((req->handle = alloc_handle( current->process, thread, THREAD_ALL_ACCESS, req->inherit )) != -1) { set_reply_fd( current, sock[1] ); /* thread object will be released when the thread gets killed */ return; } release_object( thread ); } close( sock[1] ); } else file_set_error(); } /* retrieve the thread buffer file descriptor */ DECL_HANDLER(get_thread_buffer) { fatal_protocol_error( current, "get_thread_buffer: should never get called directly\n" ); } /* initialize a new thread */ DECL_HANDLER(init_thread) { if (current->unix_pid) { fatal_protocol_error( current, "init_thread: already running\n" ); return; } current->unix_pid = req->unix_pid; current->teb = req->teb; current->entry = req->entry; if (current->suspend + current->process->suspend > 0) stop_thread( current ); if (current->process->running_threads > 1) generate_debug_event( current, CREATE_THREAD_DEBUG_EVENT ); } /* terminate a thread */ DECL_HANDLER(terminate_thread) { struct thread *thread; if ((thread = get_thread_from_handle( req->handle, THREAD_TERMINATE ))) { kill_thread( thread, req->exit_code ); release_object( thread ); } } /* fetch information about a thread */ DECL_HANDLER(get_thread_info) { struct thread *thread; if ((thread = get_thread_from_handle( req->handle, THREAD_QUERY_INFORMATION ))) { req->tid = thread; req->exit_code = thread->exit_code; req->priority = thread->priority; release_object( thread ); } } /* set information about a thread */ DECL_HANDLER(set_thread_info) { struct thread *thread; if ((thread = get_thread_from_handle( req->handle, THREAD_SET_INFORMATION ))) { set_thread_info( thread, req ); release_object( thread ); } } /* suspend a thread */ DECL_HANDLER(suspend_thread) { struct thread *thread; if ((thread = get_thread_from_handle( req->handle, THREAD_SUSPEND_RESUME ))) { req->count = suspend_thread( thread, 1 ); release_object( thread ); } } /* resume a thread */ DECL_HANDLER(resume_thread) { struct thread *thread; if ((thread = get_thread_from_handle( req->handle, THREAD_SUSPEND_RESUME ))) { req->count = resume_thread( thread ); release_object( thread ); } } /* select on a handle list */ DECL_HANDLER(select) { if (!select_on( req->count, req->handles, req->flags, req->timeout )) req->signaled = -1; } /* queue an APC for a thread */ DECL_HANDLER(queue_apc) { struct thread *thread; if ((thread = get_thread_from_handle( req->handle, THREAD_SET_CONTEXT ))) { thread_queue_apc( thread, req->func, req->param ); release_object( thread ); } } /* get list of APC to call */ DECL_HANDLER(get_apcs) { if ((req->count = current->apc_count)) { memcpy( req->apcs, current->apc, current->apc_count * sizeof(*current->apc) ); free( current->apc ); current->apc = NULL; current->apc_count = 0; } } /* fetch a selector entry for a thread */ DECL_HANDLER(get_selector_entry) { struct thread *thread; if ((thread = get_thread_from_handle( req->handle, THREAD_QUERY_INFORMATION ))) { get_selector_entry( thread, req->entry, &req->base, &req->limit, &req->flags ); release_object( thread ); } }