//--------------------------------------------------------------------------------- // // Little Color Management System // Copyright (c) 1998-2020 Marti Maria Saguer // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // //--------------------------------------------------------------------------------- // #include "lcms2_internal.h" // inter PCS conversions XYZ <-> CIE L* a* b* /* CIE 15:2004 CIELab is defined as: L* = 116*f(Y/Yn) - 16 0 <= L* <= 100 a* = 500*[f(X/Xn) - f(Y/Yn)] b* = 200*[f(Y/Yn) - f(Z/Zn)] and f(t) = t^(1/3) 1 >= t > (24/116)^3 (841/108)*t + (16/116) 0 <= t <= (24/116)^3 Reverse transform is: X = Xn*[a* / 500 + (L* + 16) / 116] ^ 3 if (X/Xn) > (24/116) = Xn*(a* / 500 + L* / 116) / 7.787 if (X/Xn) <= (24/116) PCS in Lab2 is encoded as: 8 bit Lab PCS: L* 0..100 into a 0..ff byte. a* t + 128 range is -128.0 +127.0 b* 16 bit Lab PCS: L* 0..100 into a 0..ff00 word. a* t + 128 range is -128.0 +127.9961 b* Interchange Space Component Actual Range Encoded Range CIE XYZ X 0 -> 1.99997 0x0000 -> 0xffff CIE XYZ Y 0 -> 1.99997 0x0000 -> 0xffff CIE XYZ Z 0 -> 1.99997 0x0000 -> 0xffff Version 2,3 ----------- CIELAB (16 bit) L* 0 -> 100.0 0x0000 -> 0xff00 CIELAB (16 bit) a* -128.0 -> +127.996 0x0000 -> 0x8000 -> 0xffff CIELAB (16 bit) b* -128.0 -> +127.996 0x0000 -> 0x8000 -> 0xffff Version 4 --------- CIELAB (16 bit) L* 0 -> 100.0 0x0000 -> 0xffff CIELAB (16 bit) a* -128.0 -> +127 0x0000 -> 0x8080 -> 0xffff CIELAB (16 bit) b* -128.0 -> +127 0x0000 -> 0x8080 -> 0xffff */ // Conversions void CMSEXPORT cmsXYZ2xyY(cmsCIExyY* Dest, const cmsCIEXYZ* Source) { cmsFloat64Number ISum; ISum = 1./(Source -> X + Source -> Y + Source -> Z); Dest -> x = (Source -> X) * ISum; Dest -> y = (Source -> Y) * ISum; Dest -> Y = Source -> Y; } void CMSEXPORT cmsxyY2XYZ(cmsCIEXYZ* Dest, const cmsCIExyY* Source) { Dest -> X = (Source -> x / Source -> y) * Source -> Y; Dest -> Y = Source -> Y; Dest -> Z = ((1 - Source -> x - Source -> y) / Source -> y) * Source -> Y; } /* The break point (24/116)^3 = (6/29)^3 is a very small amount of tristimulus primary (0.008856). Generally, this only happens for nearly ideal blacks and for some orange / amber colors in transmission mode. For example, the Z value of the orange turn indicator lamp lens on an automobile will often be below this value. But the Z does not contribute to the perceived color directly. */ static cmsFloat64Number f(cmsFloat64Number t) { const cmsFloat64Number Limit = (24.0/116.0) * (24.0/116.0) * (24.0/116.0); if (t <= Limit) return (841.0/108.0) * t + (16.0/116.0); else return pow(t, 1.0/3.0); } static cmsFloat64Number f_1(cmsFloat64Number t) { const cmsFloat64Number Limit = (24.0/116.0); if (t <= Limit) { return (108.0/841.0) * (t - (16.0/116.0)); } return t * t * t; } // Standard XYZ to Lab. it can handle negative XZY numbers in some cases void CMSEXPORT cmsXYZ2Lab(const cmsCIEXYZ* WhitePoint, cmsCIELab* Lab, const cmsCIEXYZ* xyz) { cmsFloat64Number fx, fy, fz; if (WhitePoint == NULL) WhitePoint = cmsD50_XYZ(); fx = f(xyz->X / WhitePoint->X); fy = f(xyz->Y / WhitePoint->Y); fz = f(xyz->Z / WhitePoint->Z); Lab->L = 116.0*fy - 16.0; Lab->a = 500.0*(fx - fy); Lab->b = 200.0*(fy - fz); } // Standard XYZ to Lab. It can return negative XYZ in some cases void CMSEXPORT cmsLab2XYZ(const cmsCIEXYZ* WhitePoint, cmsCIEXYZ* xyz, const cmsCIELab* Lab) { cmsFloat64Number x, y, z; if (WhitePoint == NULL) WhitePoint = cmsD50_XYZ(); y = (Lab-> L + 16.0) / 116.0; x = y + 0.002 * Lab -> a; z = y - 0.005 * Lab -> b; xyz -> X = f_1(x) * WhitePoint -> X; xyz -> Y = f_1(y) * WhitePoint -> Y; xyz -> Z = f_1(z) * WhitePoint -> Z; } static cmsFloat64Number L2float2(cmsUInt16Number v) { return (cmsFloat64Number) v / 652.800; } // the a/b part static cmsFloat64Number ab2float2(cmsUInt16Number v) { return ((cmsFloat64Number) v / 256.0) - 128.0; } static cmsUInt16Number L2Fix2(cmsFloat64Number L) { return _cmsQuickSaturateWord(L * 652.8); } static cmsUInt16Number ab2Fix2(cmsFloat64Number ab) { return _cmsQuickSaturateWord((ab + 128.0) * 256.0); } static cmsFloat64Number L2float4(cmsUInt16Number v) { return (cmsFloat64Number) v / 655.35; } // the a/b part static cmsFloat64Number ab2float4(cmsUInt16Number v) { return ((cmsFloat64Number) v / 257.0) - 128.0; } void CMSEXPORT cmsLabEncoded2FloatV2(cmsCIELab* Lab, const cmsUInt16Number wLab[3]) { Lab->L = L2float2(wLab[0]); Lab->a = ab2float2(wLab[1]); Lab->b = ab2float2(wLab[2]); } void CMSEXPORT cmsLabEncoded2Float(cmsCIELab* Lab, const cmsUInt16Number wLab[3]) { Lab->L = L2float4(wLab[0]); Lab->a = ab2float4(wLab[1]); Lab->b = ab2float4(wLab[2]); } static cmsFloat64Number Clamp_L_doubleV2(cmsFloat64Number L) { const cmsFloat64Number L_max = (cmsFloat64Number) (0xFFFF * 100.0) / 0xFF00; if (L < 0) L = 0; if (L > L_max) L = L_max; return L; } static cmsFloat64Number Clamp_ab_doubleV2(cmsFloat64Number ab) { if (ab < MIN_ENCODEABLE_ab2) ab = MIN_ENCODEABLE_ab2; if (ab > MAX_ENCODEABLE_ab2) ab = MAX_ENCODEABLE_ab2; return ab; } void CMSEXPORT cmsFloat2LabEncodedV2(cmsUInt16Number wLab[3], const cmsCIELab* fLab) { cmsCIELab Lab; Lab.L = Clamp_L_doubleV2(fLab ->L); Lab.a = Clamp_ab_doubleV2(fLab ->a); Lab.b = Clamp_ab_doubleV2(fLab ->b); wLab[0] = L2Fix2(Lab.L); wLab[1] = ab2Fix2(Lab.a); wLab[2] = ab2Fix2(Lab.b); } static cmsFloat64Number Clamp_L_doubleV4(cmsFloat64Number L) { if (L < 0) L = 0; if (L > 100.0) L = 100.0; return L; } static cmsFloat64Number Clamp_ab_doubleV4(cmsFloat64Number ab) { if (ab < MIN_ENCODEABLE_ab4) ab = MIN_ENCODEABLE_ab4; if (ab > MAX_ENCODEABLE_ab4) ab = MAX_ENCODEABLE_ab4; return ab; } static cmsUInt16Number L2Fix4(cmsFloat64Number L) { return _cmsQuickSaturateWord(L * 655.35); } static cmsUInt16Number ab2Fix4(cmsFloat64Number ab) { return _cmsQuickSaturateWord((ab + 128.0) * 257.0); } void CMSEXPORT cmsFloat2LabEncoded(cmsUInt16Number wLab[3], const cmsCIELab* fLab) { cmsCIELab Lab; Lab.L = Clamp_L_doubleV4(fLab ->L); Lab.a = Clamp_ab_doubleV4(fLab ->a); Lab.b = Clamp_ab_doubleV4(fLab ->b); wLab[0] = L2Fix4(Lab.L); wLab[1] = ab2Fix4(Lab.a); wLab[2] = ab2Fix4(Lab.b); } // Auxiliary: convert to Radians static cmsFloat64Number RADIANS(cmsFloat64Number deg) { return (deg * M_PI) / 180.; } // Auxiliary: atan2 but operating in degrees and returning 0 if a==b==0 static cmsFloat64Number atan2deg(cmsFloat64Number a, cmsFloat64Number b) { cmsFloat64Number h; if (a == 0 && b == 0) h = 0; else h = atan2(a, b); h *= (180. / M_PI); while (h > 360.) h -= 360.; while ( h < 0) h += 360.; return h; } // Auxiliary: Square static cmsFloat64Number Sqr(cmsFloat64Number v) { return v * v; } // From cylindrical coordinates. No check is performed, then negative values are allowed void CMSEXPORT cmsLab2LCh(cmsCIELCh* LCh, const cmsCIELab* Lab) { LCh -> L = Lab -> L; LCh -> C = pow(Sqr(Lab ->a) + Sqr(Lab ->b), 0.5); LCh -> h = atan2deg(Lab ->b, Lab ->a); } // To cylindrical coordinates. No check is performed, then negative values are allowed void CMSEXPORT cmsLCh2Lab(cmsCIELab* Lab, const cmsCIELCh* LCh) { cmsFloat64Number h = (LCh -> h * M_PI) / 180.0; Lab -> L = LCh -> L; Lab -> a = LCh -> C * cos(h); Lab -> b = LCh -> C * sin(h); } // In XYZ All 3 components are encoded using 1.15 fixed point static cmsUInt16Number XYZ2Fix(cmsFloat64Number d) { return _cmsQuickSaturateWord(d * 32768.0); } void CMSEXPORT cmsFloat2XYZEncoded(cmsUInt16Number XYZ[3], const cmsCIEXYZ* fXYZ) { cmsCIEXYZ xyz; xyz.X = fXYZ -> X; xyz.Y = fXYZ -> Y; xyz.Z = fXYZ -> Z; // Clamp to encodeable values. if (xyz.Y <= 0) { xyz.X = 0; xyz.Y = 0; xyz.Z = 0; } if (xyz.X > MAX_ENCODEABLE_XYZ) xyz.X = MAX_ENCODEABLE_XYZ; if (xyz.X < 0) xyz.X = 0; if (xyz.Y > MAX_ENCODEABLE_XYZ) xyz.Y = MAX_ENCODEABLE_XYZ; if (xyz.Y < 0) xyz.Y = 0; if (xyz.Z > MAX_ENCODEABLE_XYZ) xyz.Z = MAX_ENCODEABLE_XYZ; if (xyz.Z < 0) xyz.Z = 0; XYZ[0] = XYZ2Fix(xyz.X); XYZ[1] = XYZ2Fix(xyz.Y); XYZ[2] = XYZ2Fix(xyz.Z); } // To convert from Fixed 1.15 point to cmsFloat64Number static cmsFloat64Number XYZ2float(cmsUInt16Number v) { cmsS15Fixed16Number fix32; // From 1.15 to 15.16 fix32 = v << 1; // From fixed 15.16 to cmsFloat64Number return _cms15Fixed16toDouble(fix32); } void CMSEXPORT cmsXYZEncoded2Float(cmsCIEXYZ* fXYZ, const cmsUInt16Number XYZ[3]) { fXYZ -> X = XYZ2float(XYZ[0]); fXYZ -> Y = XYZ2float(XYZ[1]); fXYZ -> Z = XYZ2float(XYZ[2]); } // Returns dE on two Lab values cmsFloat64Number CMSEXPORT cmsDeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2) { cmsFloat64Number dL, da, db; dL = fabs(Lab1 -> L - Lab2 -> L); da = fabs(Lab1 -> a - Lab2 -> a); db = fabs(Lab1 -> b - Lab2 -> b); return pow(Sqr(dL) + Sqr(da) + Sqr(db), 0.5); } // Return the CIE94 Delta E cmsFloat64Number CMSEXPORT cmsCIE94DeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2) { cmsCIELCh LCh1, LCh2; cmsFloat64Number dE, dL, dC, dh, dhsq; cmsFloat64Number c12, sc, sh; dL = fabs(Lab1 ->L - Lab2 ->L); cmsLab2LCh(&LCh1, Lab1); cmsLab2LCh(&LCh2, Lab2); dC = fabs(LCh1.C - LCh2.C); dE = cmsDeltaE(Lab1, Lab2); dhsq = Sqr(dE) - Sqr(dL) - Sqr(dC); if (dhsq < 0) dh = 0; else dh = pow(dhsq, 0.5); c12 = sqrt(LCh1.C * LCh2.C); sc = 1.0 + (0.048 * c12); sh = 1.0 + (0.014 * c12); return sqrt(Sqr(dL) + Sqr(dC) / Sqr(sc) + Sqr(dh) / Sqr(sh)); } // Auxiliary static cmsFloat64Number ComputeLBFD(const cmsCIELab* Lab) { cmsFloat64Number yt; if (Lab->L > 7.996969) yt = (Sqr((Lab->L+16)/116)*((Lab->L+16)/116))*100; else yt = 100 * (Lab->L / 903.3); return (54.6 * (M_LOG10E * (log(yt + 1.5))) - 9.6); } // bfd - gets BFD(1:1) difference between Lab1, Lab2 cmsFloat64Number CMSEXPORT cmsBFDdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2) { cmsFloat64Number lbfd1,lbfd2,AveC,Aveh,dE,deltaL, deltaC,deltah,dc,t,g,dh,rh,rc,rt,bfd; cmsCIELCh LCh1, LCh2; lbfd1 = ComputeLBFD(Lab1); lbfd2 = ComputeLBFD(Lab2); deltaL = lbfd2 - lbfd1; cmsLab2LCh(&LCh1, Lab1); cmsLab2LCh(&LCh2, Lab2); deltaC = LCh2.C - LCh1.C; AveC = (LCh1.C+LCh2.C)/2; Aveh = (LCh1.h+LCh2.h)/2; dE = cmsDeltaE(Lab1, Lab2); if (Sqr(dE)>(Sqr(Lab2->L-Lab1->L)+Sqr(deltaC))) deltah = sqrt(Sqr(dE)-Sqr(Lab2->L-Lab1->L)-Sqr(deltaC)); else deltah =0; dc = 0.035 * AveC / (1 + 0.00365 * AveC)+0.521; g = sqrt(Sqr(Sqr(AveC))/(Sqr(Sqr(AveC))+14000)); t = 0.627+(0.055*cos((Aveh-254)/(180/M_PI))- 0.040*cos((2*Aveh-136)/(180/M_PI))+ 0.070*cos((3*Aveh-31)/(180/M_PI))+ 0.049*cos((4*Aveh+114)/(180/M_PI))- 0.015*cos((5*Aveh-103)/(180/M_PI))); dh = dc*(g*t+1-g); rh = -0.260*cos((Aveh-308)/(180/M_PI))- 0.379*cos((2*Aveh-160)/(180/M_PI))- 0.636*cos((3*Aveh+254)/(180/M_PI))+ 0.226*cos((4*Aveh+140)/(180/M_PI))- 0.194*cos((5*Aveh+280)/(180/M_PI)); rc = sqrt((AveC*AveC*AveC*AveC*AveC*AveC)/((AveC*AveC*AveC*AveC*AveC*AveC)+70000000)); rt = rh*rc; bfd = sqrt(Sqr(deltaL)+Sqr(deltaC/dc)+Sqr(deltah/dh)+(rt*(deltaC/dc)*(deltah/dh))); return bfd; } // cmc - CMC(l:c) difference between Lab1, Lab2 cmsFloat64Number CMSEXPORT cmsCMCdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2, cmsFloat64Number l, cmsFloat64Number c) { cmsFloat64Number dE,dL,dC,dh,sl,sc,sh,t,f,cmc; cmsCIELCh LCh1, LCh2; if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0; cmsLab2LCh(&LCh1, Lab1); cmsLab2LCh(&LCh2, Lab2); dL = Lab2->L-Lab1->L; dC = LCh2.C-LCh1.C; dE = cmsDeltaE(Lab1, Lab2); if (Sqr(dE)>(Sqr(dL)+Sqr(dC))) dh = sqrt(Sqr(dE)-Sqr(dL)-Sqr(dC)); else dh =0; if ((LCh1.h > 164) && (LCh1.h < 345)) t = 0.56 + fabs(0.2 * cos(((LCh1.h + 168)/(180/M_PI)))); else t = 0.36 + fabs(0.4 * cos(((LCh1.h + 35 )/(180/M_PI)))); sc = 0.0638 * LCh1.C / (1 + 0.0131 * LCh1.C) + 0.638; sl = 0.040975 * Lab1->L /(1 + 0.01765 * Lab1->L); if (Lab1->L<16) sl = 0.511; f = sqrt((LCh1.C * LCh1.C * LCh1.C * LCh1.C)/((LCh1.C * LCh1.C * LCh1.C * LCh1.C)+1900)); sh = sc*(t*f+1-f); cmc = sqrt(Sqr(dL/(l*sl))+Sqr(dC/(c*sc))+Sqr(dh/sh)); return cmc; } // dE2000 The weightings KL, KC and KH can be modified to reflect the relative // importance of lightness, chroma and hue in different industrial applications cmsFloat64Number CMSEXPORT cmsCIE2000DeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2, cmsFloat64Number Kl, cmsFloat64Number Kc, cmsFloat64Number Kh) { cmsFloat64Number L1 = Lab1->L; cmsFloat64Number a1 = Lab1->a; cmsFloat64Number b1 = Lab1->b; cmsFloat64Number C = sqrt( Sqr(a1) + Sqr(b1) ); cmsFloat64Number Ls = Lab2 ->L; cmsFloat64Number as = Lab2 ->a; cmsFloat64Number bs = Lab2 ->b; cmsFloat64Number Cs = sqrt( Sqr(as) + Sqr(bs) ); cmsFloat64Number G = 0.5 * ( 1 - sqrt(pow((C + Cs) / 2 , 7.0) / (pow((C + Cs) / 2, 7.0) + pow(25.0, 7.0) ) )); cmsFloat64Number a_p = (1 + G ) * a1; cmsFloat64Number b_p = b1; cmsFloat64Number C_p = sqrt( Sqr(a_p) + Sqr(b_p)); cmsFloat64Number h_p = atan2deg(b_p, a_p); cmsFloat64Number a_ps = (1 + G) * as; cmsFloat64Number b_ps = bs; cmsFloat64Number C_ps = sqrt(Sqr(a_ps) + Sqr(b_ps)); cmsFloat64Number h_ps = atan2deg(b_ps, a_ps); cmsFloat64Number meanC_p =(C_p + C_ps) / 2; cmsFloat64Number hps_plus_hp = h_ps + h_p; cmsFloat64Number hps_minus_hp = h_ps - h_p; cmsFloat64Number meanh_p = fabs(hps_minus_hp) <= 180.000001 ? (hps_plus_hp)/2 : (hps_plus_hp) < 360 ? (hps_plus_hp + 360)/2 : (hps_plus_hp - 360)/2; cmsFloat64Number delta_h = (hps_minus_hp) <= -180.000001 ? (hps_minus_hp + 360) : (hps_minus_hp) > 180 ? (hps_minus_hp - 360) : (hps_minus_hp); cmsFloat64Number delta_L = (Ls - L1); cmsFloat64Number delta_C = (C_ps - C_p ); cmsFloat64Number delta_H =2 * sqrt(C_ps*C_p) * sin(RADIANS(delta_h) / 2); cmsFloat64Number T = 1 - 0.17 * cos(RADIANS(meanh_p-30)) + 0.24 * cos(RADIANS(2*meanh_p)) + 0.32 * cos(RADIANS(3*meanh_p + 6)) - 0.2 * cos(RADIANS(4*meanh_p - 63)); cmsFloat64Number Sl = 1 + (0.015 * Sqr((Ls + L1) /2- 50) )/ sqrt(20 + Sqr( (Ls+L1)/2 - 50) ); cmsFloat64Number Sc = 1 + 0.045 * (C_p + C_ps)/2; cmsFloat64Number Sh = 1 + 0.015 * ((C_ps + C_p)/2) * T; cmsFloat64Number delta_ro = 30 * exp( -Sqr(((meanh_p - 275 ) / 25))); cmsFloat64Number Rc = 2 * sqrt(( pow(meanC_p, 7.0) )/( pow(meanC_p, 7.0) + pow(25.0, 7.0))); cmsFloat64Number Rt = -sin(2 * RADIANS(delta_ro)) * Rc; cmsFloat64Number deltaE00 = sqrt( Sqr(delta_L /(Sl * Kl)) + Sqr(delta_C/(Sc * Kc)) + Sqr(delta_H/(Sh * Kh)) + Rt*(delta_C/(Sc * Kc)) * (delta_H / (Sh * Kh))); return deltaE00; } // This function returns a number of gridpoints to be used as LUT table. It assumes same number // of gripdpoints in all dimensions. Flags may override the choice. cmsUInt32Number CMSEXPORT _cmsReasonableGridpointsByColorspace(cmsColorSpaceSignature Colorspace, cmsUInt32Number dwFlags) { cmsUInt32Number nChannels; // Already specified? if (dwFlags & 0x00FF0000) { // Yes, grab'em return (dwFlags >> 16) & 0xFF; } nChannels = cmsChannelsOf(Colorspace); // HighResPrecalc is maximum resolution if (dwFlags & cmsFLAGS_HIGHRESPRECALC) { if (nChannels > 4) return 7; // 7 for Hifi if (nChannels == 4) // 23 for CMYK return 23; return 49; // 49 for RGB and others } // LowResPrecal is lower resolution if (dwFlags & cmsFLAGS_LOWRESPRECALC) { if (nChannels > 4) return 6; // 6 for more than 4 channels if (nChannels == 1) return 33; // For monochrome return 17; // 17 for remaining } // Default values if (nChannels > 4) return 7; // 7 for Hifi if (nChannels == 4) return 17; // 17 for CMYK return 33; // 33 for RGB } cmsBool _cmsEndPointsBySpace(cmsColorSpaceSignature Space, cmsUInt16Number **White, cmsUInt16Number **Black, cmsUInt32Number *nOutputs) { // Only most common spaces static cmsUInt16Number RGBblack[4] = { 0, 0, 0 }; static cmsUInt16Number RGBwhite[4] = { 0xffff, 0xffff, 0xffff }; static cmsUInt16Number CMYKblack[4] = { 0xffff, 0xffff, 0xffff, 0xffff }; // 400% of ink static cmsUInt16Number CMYKwhite[4] = { 0, 0, 0, 0 }; static cmsUInt16Number LABblack[4] = { 0, 0x8080, 0x8080 }; // V4 Lab encoding static cmsUInt16Number LABwhite[4] = { 0xFFFF, 0x8080, 0x8080 }; static cmsUInt16Number CMYblack[4] = { 0xffff, 0xffff, 0xffff }; static cmsUInt16Number CMYwhite[4] = { 0, 0, 0 }; static cmsUInt16Number Grayblack[4] = { 0 }; static cmsUInt16Number GrayWhite[4] = { 0xffff }; switch (Space) { case cmsSigGrayData: if (White) *White = GrayWhite; if (Black) *Black = Grayblack; if (nOutputs) *nOutputs = 1; return TRUE; case cmsSigRgbData: if (White) *White = RGBwhite; if (Black) *Black = RGBblack; if (nOutputs) *nOutputs = 3; return TRUE; case cmsSigLabData: if (White) *White = LABwhite; if (Black) *Black = LABblack; if (nOutputs) *nOutputs = 3; return TRUE; case cmsSigCmykData: if (White) *White = CMYKwhite; if (Black) *Black = CMYKblack; if (nOutputs) *nOutputs = 4; return TRUE; case cmsSigCmyData: if (White) *White = CMYwhite; if (Black) *Black = CMYblack; if (nOutputs) *nOutputs = 3; return TRUE; default:; } return FALSE; } // Several utilities ------------------------------------------------------- // Translate from our colorspace to ICC representation cmsColorSpaceSignature CMSEXPORT _cmsICCcolorSpace(int OurNotation) { switch (OurNotation) { case 1: case PT_GRAY: return cmsSigGrayData; case 2: case PT_RGB: return cmsSigRgbData; case PT_CMY: return cmsSigCmyData; case PT_CMYK: return cmsSigCmykData; case PT_YCbCr:return cmsSigYCbCrData; case PT_YUV: return cmsSigLuvData; case PT_XYZ: return cmsSigXYZData; case PT_LabV2: case PT_Lab: return cmsSigLabData; case PT_YUVK: return cmsSigLuvKData; case PT_HSV: return cmsSigHsvData; case PT_HLS: return cmsSigHlsData; case PT_Yxy: return cmsSigYxyData; case PT_MCH1: return cmsSigMCH1Data; case PT_MCH2: return cmsSigMCH2Data; case PT_MCH3: return cmsSigMCH3Data; case PT_MCH4: return cmsSigMCH4Data; case PT_MCH5: return cmsSigMCH5Data; case PT_MCH6: return cmsSigMCH6Data; case PT_MCH7: return cmsSigMCH7Data; case PT_MCH8: return cmsSigMCH8Data; case PT_MCH9: return cmsSigMCH9Data; case PT_MCH10: return cmsSigMCHAData; case PT_MCH11: return cmsSigMCHBData; case PT_MCH12: return cmsSigMCHCData; case PT_MCH13: return cmsSigMCHDData; case PT_MCH14: return cmsSigMCHEData; case PT_MCH15: return cmsSigMCHFData; default: return (cmsColorSpaceSignature) 0; } } int CMSEXPORT _cmsLCMScolorSpace(cmsColorSpaceSignature ProfileSpace) { switch (ProfileSpace) { case cmsSigGrayData: return PT_GRAY; case cmsSigRgbData: return PT_RGB; case cmsSigCmyData: return PT_CMY; case cmsSigCmykData: return PT_CMYK; case cmsSigYCbCrData:return PT_YCbCr; case cmsSigLuvData: return PT_YUV; case cmsSigXYZData: return PT_XYZ; case cmsSigLabData: return PT_Lab; case cmsSigLuvKData: return PT_YUVK; case cmsSigHsvData: return PT_HSV; case cmsSigHlsData: return PT_HLS; case cmsSigYxyData: return PT_Yxy; case cmsSig1colorData: case cmsSigMCH1Data: return PT_MCH1; case cmsSig2colorData: case cmsSigMCH2Data: return PT_MCH2; case cmsSig3colorData: case cmsSigMCH3Data: return PT_MCH3; case cmsSig4colorData: case cmsSigMCH4Data: return PT_MCH4; case cmsSig5colorData: case cmsSigMCH5Data: return PT_MCH5; case cmsSig6colorData: case cmsSigMCH6Data: return PT_MCH6; case cmsSigMCH7Data: case cmsSig7colorData:return PT_MCH7; case cmsSigMCH8Data: case cmsSig8colorData:return PT_MCH8; case cmsSigMCH9Data: case cmsSig9colorData:return PT_MCH9; case cmsSigMCHAData: case cmsSig10colorData:return PT_MCH10; case cmsSigMCHBData: case cmsSig11colorData:return PT_MCH11; case cmsSigMCHCData: case cmsSig12colorData:return PT_MCH12; case cmsSigMCHDData: case cmsSig13colorData:return PT_MCH13; case cmsSigMCHEData: case cmsSig14colorData:return PT_MCH14; case cmsSigMCHFData: case cmsSig15colorData:return PT_MCH15; default: return (cmsColorSpaceSignature) 0; } } cmsUInt32Number CMSEXPORT cmsChannelsOf(cmsColorSpaceSignature ColorSpace) { switch (ColorSpace) { case cmsSigMCH1Data: case cmsSig1colorData: case cmsSigGrayData: return 1; case cmsSigMCH2Data: case cmsSig2colorData: return 2; case cmsSigXYZData: case cmsSigLabData: case cmsSigLuvData: case cmsSigYCbCrData: case cmsSigYxyData: case cmsSigRgbData: case cmsSigHsvData: case cmsSigHlsData: case cmsSigCmyData: case cmsSigMCH3Data: case cmsSig3colorData: return 3; case cmsSigLuvKData: case cmsSigCmykData: case cmsSigMCH4Data: case cmsSig4colorData: return 4; case cmsSigMCH5Data: case cmsSig5colorData: return 5; case cmsSigMCH6Data: case cmsSig6colorData: return 6; case cmsSigMCH7Data: case cmsSig7colorData: return 7; case cmsSigMCH8Data: case cmsSig8colorData: return 8; case cmsSigMCH9Data: case cmsSig9colorData: return 9; case cmsSigMCHAData: case cmsSig10colorData: return 10; case cmsSigMCHBData: case cmsSig11colorData: return 11; case cmsSigMCHCData: case cmsSig12colorData: return 12; case cmsSigMCHDData: case cmsSig13colorData: return 13; case cmsSigMCHEData: case cmsSig14colorData: return 14; case cmsSigMCHFData: case cmsSig15colorData: return 15; default: return 3; } }