/* * File elf.c - processing of ELF files * * Copyright (C) 1996, Eric Youngdale. * 1999-2004 Eric Pouech * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include #include #include #include #include #ifdef HAVE_SYS_MMAN_H #include #endif #ifdef HAVE_UNISTD_H # include #endif #ifndef PATH_MAX #define PATH_MAX MAX_PATH #endif #include "dbghelp_private.h" #if defined(__svr4__) || defined(__sun) #define __ELF__ #endif #ifdef HAVE_ELF_H # include #endif #ifdef HAVE_SYS_ELF32_H # include #endif #ifdef HAVE_SYS_EXEC_ELF_H # include #endif #if !defined(DT_NUM) # if defined(DT_COUNT) # define DT_NUM DT_COUNT # else /* this seems to be a satisfactory value on Solaris, which doesn't support this AFAICT */ # define DT_NUM 24 # endif #endif #ifdef HAVE_LINK_H # include #endif #ifdef HAVE_SYS_LINK_H # include #endif #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(dbghelp); struct elf_module_info { unsigned long elf_addr; unsigned short elf_mark : 1, elf_loader : 1; }; #ifdef __ELF__ #define ELF_INFO_DEBUG_HEADER 0x0001 #define ELF_INFO_MODULE 0x0002 struct elf_info { unsigned flags; /* IN one (or several) of the ELF_INFO constants */ unsigned long dbg_hdr_addr; /* OUT address of debug header (if ELF_INFO_DEBUG_HEADER is set) */ struct module* module; /* OUT loaded module (if ELF_INFO_MODULE is set) */ }; struct symtab_elt { struct hash_table_elt ht_elt; const Elf32_Sym* symp; const char* filename; unsigned used; }; struct thunk_area { const char* symname; THUNK_ORDINAL ordinal; unsigned long rva_start; unsigned long rva_end; }; /****************************************************************** * elf_hash_symtab * * creating an internal hash table to ease use ELF symtab information lookup */ static void elf_hash_symtab(const struct module* module, struct pool* pool, struct hash_table* ht_symtab, const char* map_addr, const Elf32_Shdr* symtab, const Elf32_Shdr* strtab, unsigned num_areas, struct thunk_area* thunks) { int i, j, nsym; const char* strp; const char* symname; const char* filename = NULL; const char* ptr; const Elf32_Sym* symp; struct symtab_elt* ste; symp = (const Elf32_Sym*)(map_addr + symtab->sh_offset); nsym = symtab->sh_size / sizeof(*symp); strp = (const char*)(map_addr + strtab->sh_offset); for (j = 0; j < num_areas; j++) thunks[j].rva_start = thunks[j].rva_end = 0; for (i = 0; i < nsym; i++, symp++) { /* Ignore certain types of entries which really aren't of that much * interest. */ if (ELF32_ST_TYPE(symp->st_info) == STT_SECTION || symp->st_shndx == SHN_UNDEF) { continue; } symname = strp + symp->st_name; if (ELF32_ST_TYPE(symp->st_info) == STT_FILE) { filename = symname; continue; } for (j = 0; j < num_areas; j++) { if (!strcmp(symname, thunks[j].symname)) { thunks[j].rva_start = symp->st_value; thunks[j].rva_end = symp->st_value + symp->st_size; break; } } if (j < num_areas) continue; ste = pool_alloc(pool, sizeof(*ste)); /* GCC seems to emit, in some cases, a .+ suffix. * This is used for static variable inside functions, so * that we can have several such variables with same name in * the same compilation unit * We simply ignore that suffix when present (we also get rid * of it in stabs parsing) */ ptr = symname + strlen(symname) - 1; ste->ht_elt.name = symname; if (isdigit(*ptr)) { while (*ptr >= '0' && *ptr <= '9' && ptr >= symname) ptr--; if (ptr > symname && *ptr == '.') { char* n = pool_alloc(pool, ptr - symname + 1); memcpy(n, symname, ptr - symname + 1); n[ptr - symname] = '\0'; ste->ht_elt.name = n; } } ste->symp = symp; ste->filename = filename; ste->used = 0; hash_table_add(ht_symtab, &ste->ht_elt); } } /****************************************************************** * elf_lookup_symtab * * lookup a symbol by name in our internal hash table for the symtab */ static const Elf32_Sym* elf_lookup_symtab(const struct module* module, const struct hash_table* ht_symtab, const char* name, struct symt* compiland) { struct symtab_elt* weak_result = NULL; /* without compiland name */ struct symtab_elt* result = NULL; struct hash_table_iter hti; struct symtab_elt* ste; const char* compiland_name; const char* compiland_basename; const char* base; /* we need weak match up (at least) when symbols of same name, * defined several times in different compilation units, * are merged in a single one (hence a different filename for c.u.) */ if (compiland) { compiland_name = source_get(module, ((struct symt_compiland*)compiland)->source); compiland_basename = strrchr(compiland_name, '/'); if (!compiland_basename++) compiland_basename = compiland_name; } else compiland_name = compiland_basename = NULL; hash_table_iter_init(ht_symtab, &hti, name); while ((ste = hash_table_iter_up(&hti))) { if (ste->used || strcmp(ste->ht_elt.name, name)) continue; weak_result = ste; if ((ste->filename && !compiland_name) || (!ste->filename && compiland_name)) continue; if (ste->filename && compiland_name) { if (strcmp(ste->filename, compiland_name)) { base = strrchr(ste->filename, '/'); if (!base++) base = ste->filename; if (strcmp(base, compiland_basename)) continue; } } if (result) { FIXME("Already found symbol %s (%s) in symtab %s @%08x and %s @%08x\n", name, compiland_name, result->filename, result->symp->st_value, ste->filename, ste->symp->st_value); } else { result = ste; ste->used = 1; } } if (!result && !(result = weak_result)) { FIXME("Couldn't find symbol %s.%s in symtab\n", module->module.ModuleName, name); return NULL; } return result->symp; } /****************************************************************** * elf_finish_stabs_info * * - get any relevant information (address & size) from the bits we got from the * stabs debugging information */ static void elf_finish_stabs_info(struct module* module, struct hash_table* symtab) { struct hash_table_iter hti; void* ptr; struct symt_ht* sym; const Elf32_Sym* symp; hash_table_iter_init(&module->ht_symbols, &hti, NULL); while ((ptr = hash_table_iter_up(&hti))) { sym = GET_ENTRY(ptr, struct symt_ht, hash_elt); switch (sym->symt.tag) { case SymTagFunction: if (((struct symt_function*)sym)->address != module->elf_info->elf_addr && ((struct symt_function*)sym)->size) { break; } symp = elf_lookup_symtab(module, symtab, sym->hash_elt.name, ((struct symt_function*)sym)->container); if (symp) { ((struct symt_function*)sym)->address = module->elf_info->elf_addr + symp->st_value; ((struct symt_function*)sym)->size = symp->st_size; } break; case SymTagData: switch (((struct symt_data*)sym)->kind) { case DataIsGlobal: case DataIsFileStatic: if (((struct symt_data*)sym)->u.address != module->elf_info->elf_addr) break; symp = elf_lookup_symtab(module, symtab, sym->hash_elt.name, ((struct symt_data*)sym)->container); if (symp) { ((struct symt_data*)sym)->u.address = module->elf_info->elf_addr + symp->st_value; ((struct symt_data*)sym)->kind = (ELF32_ST_BIND(symp->st_info) == STB_LOCAL) ? DataIsFileStatic : DataIsGlobal; } break; default:; } break; default: FIXME("Unsupported tag %u\n", sym->symt.tag); break; } } /* since we may have changed some addresses & sizes, mark the module to be resorted */ module->sortlist_valid = FALSE; } /****************************************************************** * elf_load_wine_thunks * * creating the thunk objects for a wine native DLL */ static int elf_new_wine_thunks(struct module* module, struct hash_table* ht_symtab, unsigned num_areas, struct thunk_area* thunks) { int j; struct symt_compiland* compiland = NULL; const char* compiland_name = NULL; struct hash_table_iter hti; struct symtab_elt* ste; DWORD addr; int idx; hash_table_iter_init(ht_symtab, &hti, NULL); while ((ste = hash_table_iter_up(&hti))) { if (ste->used) continue; /* FIXME: this is not a good idea anyway... we are creating several * compiland objects for a same compilation unit * We try to cache the last compiland used, but it's not enough * (we should here only create compilands if they are not yet * defined) */ if (!compiland_name || compiland_name != ste->filename) compiland = symt_new_compiland(module, compiland_name = ste->filename); addr = module->elf_info->elf_addr + ste->symp->st_value; for (j = 0; j < num_areas; j++) { if (ste->symp->st_value >= thunks[j].rva_start && ste->symp->st_value < thunks[j].rva_end) break; } if (j < num_areas) /* thunk found */ { symt_new_thunk(module, compiland, ste->ht_elt.name, thunks[j].ordinal, addr, ste->symp->st_size); } else { DWORD ref_addr; idx = symt_find_nearest(module, addr); if (idx != -1) symt_get_info(&module->addr_sorttab[idx]->symt, TI_GET_ADDRESS, &ref_addr); if (idx == -1 || addr != ref_addr) { /* creating public symbols for all the ELF symbols which haven't been * used yet (ie we have no debug information on them) * That's the case, for example, of the .spec.c files */ if (ELF32_ST_TYPE(ste->symp->st_info) == STT_FUNC) { symt_new_function(module, compiland, ste->ht_elt.name, addr, ste->symp->st_size, NULL); } else { symt_new_global_variable(module, compiland, ste->ht_elt.name, ELF32_ST_BIND(ste->symp->st_info) == STB_LOCAL, addr, ste->symp->st_size, NULL); } /* FIXME: this is a hack !!! * we are adding new symbols, but as we're parsing a symbol table * (hopefully without duplicate symbols) we delay rebuilding the sorted * module table until we're done with the symbol table * Otherwise, as we intertwine symbols's add and lookup, performance * is rather bad */ module->sortlist_valid = TRUE; } else if (strcmp(ste->ht_elt.name, module->addr_sorttab[idx]->hash_elt.name)) { DWORD xaddr = 0, xsize = 0, kind = -1; symt_get_info(&module->addr_sorttab[idx]->symt, TI_GET_ADDRESS, &xaddr); symt_get_info(&module->addr_sorttab[idx]->symt, TI_GET_LENGTH, &xsize); symt_get_info(&module->addr_sorttab[idx]->symt, TI_GET_DATAKIND, &kind); /* If none of symbols has a correct size, we consider they are both markers * Hence, we can silence this warning * Also, we check that we don't have two symbols, one local, the other * global which is legal */ if ((xsize || ste->symp->st_size) && (kind == (ELF32_ST_BIND(ste->symp->st_info) == STB_LOCAL) ? DataIsFileStatic : DataIsGlobal)) FIXME("Duplicate in %s: %s<%08lx-%08x> %s<%08lx-%08lx>\n", module->module.ModuleName, ste->ht_elt.name, addr, ste->symp->st_size, module->addr_sorttab[idx]->hash_elt.name, xaddr, xsize); } } } /* see comment above */ module->sortlist_valid = FALSE; return TRUE; } /****************************************************************** * elf_new_public_symbols * * Creates a set of public symbols from an ELF symtab */ static int elf_new_public_symbols(struct module* module, struct hash_table* symtab) { struct symt_compiland* compiland = NULL; const char* compiland_name = NULL; struct hash_table_iter hti; struct symtab_elt* ste; if (dbghelp_options & SYMOPT_NO_PUBLICS) return TRUE; /* FIXME: we're missing the ELF entry point here */ hash_table_iter_init(symtab, &hti, NULL); while ((ste = hash_table_iter_up(&hti))) { /* FIXME: this is not a good idea anyway... we are creating several * compiland objects for a same compilation unit * We try to cache the last compiland used, but it's not enough * (we should here only create compilands if they are not yet * defined) */ if (!compiland_name || compiland_name != ste->filename) compiland = symt_new_compiland(module, compiland_name = ste->filename); symt_new_public(module, compiland, ste->ht_elt.name, module->elf_info->elf_addr + ste->symp->st_value, ste->symp->st_size, TRUE /* FIXME */, ELF32_ST_TYPE(ste->symp->st_info) == STT_FUNC); } return TRUE; } /* Copyright (C) 1986 Gary S. Brown. Modified by Robert Shearman. You may use the following calc_crc32 code or tables extracted from it, as desired without restriction. */ /**********************************************************************\ |* Demonstration program to compute the 32-bit CRC used as the frame *| |* check sequence in ADCCP (ANSI X3.66, also known as FIPS PUB 71 *| |* and FED-STD-1003, the U.S. versions of CCITT's X.25 link-level *| |* protocol). The 32-bit FCS was added via the Federal Register, *| |* 1 June 1982, p.23798. I presume but don't know for certain that *| |* this polynomial is or will be included in CCITT V.41, which *| |* defines the 16-bit CRC (often called CRC-CCITT) polynomial. FIPS *| |* PUB 78 says that the 32-bit FCS reduces otherwise undetected *| |* errors by a factor of 10^-5 over 16-bit FCS. *| \**********************************************************************/ /* First, the polynomial itself and its table of feedback terms. The */ /* polynomial is */ /* X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0 */ /* Note that we take it "backwards" and put the highest-order term in */ /* the lowest-order bit. The X^32 term is "implied"; the LSB is the */ /* X^31 term, etc. The X^0 term (usually shown as "+1") results in */ /* the MSB being 1. */ /* Note that the usual hardware shift register implementation, which */ /* is what we're using (we're merely optimizing it by doing eight-bit */ /* chunks at a time) shifts bits into the lowest-order term. In our */ /* implementation, that means shifting towards the right. Why do we */ /* do it this way? Because the calculated CRC must be transmitted in */ /* order from highest-order term to lowest-order term. UARTs transmit */ /* characters in order from LSB to MSB. By storing the CRC this way, */ /* we hand it to the UART in the order low-byte to high-byte; the UART */ /* sends each low-bit to hight-bit; and the result is transmission bit */ /* by bit from highest- to lowest-order term without requiring any bit */ /* shuffling on our part. Reception works similarly. */ /* The feedback terms table consists of 256, 32-bit entries. Notes: */ /* */ /* 1. The table can be generated at runtime if desired; code to do so */ /* is shown later. It might not be obvious, but the feedback */ /* terms simply represent the results of eight shift/xor opera- */ /* tions for all combinations of data and CRC register values. */ /* */ /* 2. The CRC accumulation logic is the same for all CRC polynomials, */ /* be they sixteen or thirty-two bits wide. You simply choose the */ /* appropriate table. Alternatively, because the table can be */ /* generated at runtime, you can start by generating the table for */ /* the polynomial in question and use exactly the same "updcrc", */ /* if your application needn't simultaneously handle two CRC */ /* polynomials. (Note, however, that XMODEM is strange.) */ /* */ /* 3. For 16-bit CRCs, the table entries need be only 16 bits wide; */ /* of course, 32-bit entries work OK if the high 16 bits are zero. */ /* */ /* 4. The values must be right-shifted by eight bits by the "updcrc" */ /* logic; the shift must be unsigned (bring in zeroes). On some */ /* hardware you could probably optimize the shift in assembler by */ /* using byte-swap instructions. */ static DWORD calc_crc32(const unsigned char *buf, size_t len) { #define UPDC32(octet,crc) (crc_32_tab[((crc) ^ (octet)) & 0xff] ^ ((crc) >> 8)) static const DWORD crc_32_tab[] = { /* CRC polynomial 0xedb88320 */ 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d }; size_t i; DWORD crc = ~0; for(i = 0; i < len; i++) crc = UPDC32(buf[i], crc); return ~crc; #undef UPDC32 } /****************************************************************** * elf_load_debug_info_from_file * * Loads the symbolic information from ELF module stored in 'file' * the module has been loaded at 'load_offset' address, so symbols' address * relocation is performed. crc optionally points to the CRC of the debug file * to load. * returns * 0 if the file doesn't contain symbolic info (or this info cannot be * read or parsed) * 1 on success */ static BOOL elf_load_debug_info_from_file( struct module* module, const char* file, struct pool* pool, struct hash_table* ht_symtab, const DWORD *crc) { BOOL ret = FALSE; char* addr = (char*)0xffffffff; int fd = -1; struct stat statbuf; const Elf32_Ehdr* ehptr; const Elf32_Shdr* spnt; const char* shstrtab; int i; int symtab_sect, dynsym_sect, stab_sect, stabstr_sect, debug_sect, debuglink_sect; struct thunk_area thunks[] = { {"__wine_spec_import_thunks", THUNK_ORDINAL_NOTYPE, 0, 0}, /* inter DLL calls */ {"__wine_spec_delayed_import_loaders", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */ {"__wine_spec_delayed_import_thunks", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */ {"__wine_delay_load", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */ {"__wine_spec_thunk_text_16", -16, 0, 0}, /* 16 => 32 thunks */ {"__wine_spec_thunk_data_16", -16, 0, 0}, /* 16 => 32 thunks */ {"__wine_spec_thunk_text_32", -32, 0, 0}, /* 32 => 16 thunks */ {"__wine_spec_thunk_data_32", -32, 0, 0}, /* 32 => 16 thunks */ }; if (module->type != DMT_ELF || !module->elf_info) { ERR("Bad elf module '%s'\n", module->module.LoadedImageName); return FALSE; } TRACE("%s\n", file); /* check that the file exists, and that the module hasn't been loaded yet */ if (stat(file, &statbuf) == -1) goto leave; if (S_ISDIR(statbuf.st_mode)) goto leave; /* * Now open the file, so that we can mmap() it. */ if ((fd = open(file, O_RDONLY)) == -1) goto leave; /* * Now mmap() the file. */ addr = mmap(0, statbuf.st_size, PROT_READ, MAP_PRIVATE, fd, 0); if (addr == (char*)0xffffffff) goto leave; if (crc && (*crc != calc_crc32(addr, statbuf.st_size))) { ERR("Bad CRC for file %s\n", file); /* we don't tolerate mis-matched files */ goto leave; } /* * Next, we need to find a few of the internal ELF headers within * this thing. We need the main executable header, and the section * table. */ ehptr = (Elf32_Ehdr*)addr; spnt = (Elf32_Shdr*)(addr + ehptr->e_shoff); shstrtab = (addr + spnt[ehptr->e_shstrndx].sh_offset); symtab_sect = dynsym_sect = stab_sect = stabstr_sect = debug_sect = debuglink_sect = -1; for (i = 0; i < ehptr->e_shnum; i++) { if (strcmp(shstrtab + spnt[i].sh_name, ".stab") == 0) stab_sect = i; if (strcmp(shstrtab + spnt[i].sh_name, ".stabstr") == 0) stabstr_sect = i; if (strcmp(shstrtab + spnt[i].sh_name, ".debug_info") == 0) debug_sect = i; if (strcmp(shstrtab + spnt[i].sh_name, ".gnu_debuglink") == 0) debuglink_sect = i; if ((strcmp(shstrtab + spnt[i].sh_name, ".symtab") == 0) && (spnt[i].sh_type == SHT_SYMTAB)) symtab_sect = i; if ((strcmp(shstrtab + spnt[i].sh_name, ".dynsym") == 0) && (spnt[i].sh_type == SHT_DYNSYM)) dynsym_sect = i; } if (symtab_sect == -1) { /* if we don't have a symtab but a dynsym, process the dynsym * section instead. It'll contain less (relevant) information, * but it'll be better than nothing */ if (dynsym_sect == -1) goto leave; symtab_sect = dynsym_sect; } module->module.SymType = SymExport; /* create a hash table for the symtab */ elf_hash_symtab(module, pool, ht_symtab, addr, spnt + symtab_sect, spnt + spnt[symtab_sect].sh_link, sizeof(thunks) / sizeof(thunks[0]), thunks); if (!(dbghelp_options & SYMOPT_PUBLICS_ONLY)) { if (stab_sect != -1 && stabstr_sect != -1) { /* OK, now just parse all of the stabs. */ ret = stabs_parse(module, addr, module->elf_info->elf_addr, spnt[stab_sect].sh_offset, spnt[stab_sect].sh_size, spnt[stabstr_sect].sh_offset, spnt[stabstr_sect].sh_size); if (!ret) { WARN("Couldn't read correctly read stabs\n"); goto leave; } /* and fill in the missing information for stabs */ elf_finish_stabs_info(module, ht_symtab); } else if (debug_sect != -1) { /* Dwarf 2 debug information */ FIXME("Unsupported Dwarf2 information for %s\n", module->module.ModuleName); } else if (debuglink_sect != -1) { DWORD crc; const char * file = (const char *)(addr + spnt[debuglink_sect].sh_offset); /* crc is stored after the null terminated file string rounded * up to the next 4 byte boundary */ crc = *(const DWORD *)(file + ((DWORD_PTR)(strlen(file) + 4) & ~3)); ret = elf_load_debug_info_from_file(module, file, pool, ht_symtab, &crc); if (!ret) WARN("Couldn't load linked debug file %s\n", file); } } if (strstr(module->module.ModuleName, "") || !strcmp(module->module.ModuleName, "")) { /* add the thunks for native libraries */ if (!(dbghelp_options & SYMOPT_PUBLICS_ONLY)) elf_new_wine_thunks(module, ht_symtab, sizeof(thunks) / sizeof(thunks[0]), thunks); } /* add all the public symbols from symtab */ if (elf_new_public_symbols(module, ht_symtab) && !ret) ret = TRUE; leave: if (addr != (char*)0xffffffff) munmap(addr, statbuf.st_size); if (fd != -1) close(fd); return ret; } /****************************************************************** * elf_load_debug_info * * Loads ELF debugging information from the module image file. */ BOOL elf_load_debug_info(struct module* module) { BOOL ret; struct pool pool; struct hash_table ht_symtab; pool_init(&pool, 65536); hash_table_init(&pool, &ht_symtab, 256); ret = elf_load_debug_info_from_file(module, module->module.LoadedImageName, &pool, &ht_symtab, NULL); pool_destroy(&pool); return ret; } /****************************************************************** * is_dt_flag_valid * returns true iff the section tag is valid */ static unsigned is_dt_flag_valid(unsigned d_tag) { #ifndef DT_PROCNUM #define DT_PROCNUM 0 #endif #ifndef DT_EXTRANUM #define DT_EXTRANUM 0 #endif return (d_tag >= 0 && d_tag < DT_NUM + DT_PROCNUM + DT_EXTRANUM) #if defined(DT_LOOS) && defined(DT_HIOS) || (d_tag >= DT_LOOS && d_tag < DT_HIOS) #endif #if defined(DT_LOPROC) && defined(DT_HIPROC) || (d_tag >= DT_LOPROC && d_tag < DT_HIPROC) #endif ; } /****************************************************************** * elf_load_file * * Loads the information for ELF module stored in 'filename' * the module has been loaded at 'load_offset' address * returns * -1 if the file cannot be found/opened * 0 if the file doesn't contain symbolic info (or this info cannot be * read or parsed) * 1 on success */ static BOOL elf_load_file(struct process* pcs, const char* filename, unsigned long load_offset, struct elf_info* elf_info) { static const BYTE elf_signature[4] = { ELFMAG0, ELFMAG1, ELFMAG2, ELFMAG3 }; BOOL ret = FALSE; const char* addr = (char*)0xffffffff; int fd = -1; struct stat statbuf; const Elf32_Ehdr* ehptr; const Elf32_Shdr* spnt; const Elf32_Phdr* ppnt; const char* shstrtab; int i; DWORD size, start; unsigned tmp, page_mask = getpagesize() - 1; TRACE("Processing elf file '%s' at %08lx\n", filename, load_offset); /* check that the file exists, and that the module hasn't been loaded yet */ if (stat(filename, &statbuf) == -1) goto leave; /* Now open the file, so that we can mmap() it. */ if ((fd = open(filename, O_RDONLY)) == -1) goto leave; /* Now mmap() the file. */ addr = mmap(0, statbuf.st_size, PROT_READ, MAP_PRIVATE, fd, 0); if (addr == (char*)-1) goto leave; /* Next, we need to find a few of the internal ELF headers within * this thing. We need the main executable header, and the section * table. */ ehptr = (const Elf32_Ehdr*)addr; if (memcmp(ehptr->e_ident, elf_signature, sizeof(elf_signature))) goto leave; spnt = (const Elf32_Shdr*)(addr + ehptr->e_shoff); shstrtab = (addr + spnt[ehptr->e_shstrndx].sh_offset); /* grab size of module once loaded in memory */ ppnt = (const Elf32_Phdr*)(addr + ehptr->e_phoff); size = 0; start = ~0L; for (i = 0; i < ehptr->e_phnum; i++) { if (ppnt[i].p_type == PT_LOAD) { tmp = (ppnt[i].p_vaddr + ppnt[i].p_memsz + page_mask) & ~page_mask; if (size < tmp) size = tmp; if (ppnt[i].p_vaddr < start) start = ppnt[i].p_vaddr; } } /* if non relocatable ELF, then remove fixed address from computation * otherwise, all addresses are zero based and start has no effect */ size -= start; if (!start && !load_offset) ERR("Relocatable ELF %s, but no load address. Loading at 0x0000000\n", filename); if (start && load_offset) { WARN("Non-relocatable ELF %s, but load address of 0x%08lx supplied. " "Assuming load address is corrupt\n", filename, load_offset); load_offset = 0; } if (elf_info->flags & ELF_INFO_DEBUG_HEADER) { for (i = 0; i < ehptr->e_shnum; i++) { if (strcmp(shstrtab + spnt[i].sh_name, ".dynamic") == 0 && spnt[i].sh_type == SHT_DYNAMIC) { Elf32_Dyn dyn; char* ptr = (char*)spnt[i].sh_addr; unsigned long len; do { if (!ReadProcessMemory(pcs->handle, ptr, &dyn, sizeof(dyn), &len) || len != sizeof(dyn) || !is_dt_flag_valid(dyn.d_tag)) dyn.d_tag = DT_NULL; ptr += sizeof(dyn); } while (dyn.d_tag != DT_DEBUG && dyn.d_tag != DT_NULL); if (dyn.d_tag == DT_NULL) goto leave; elf_info->dbg_hdr_addr = dyn.d_un.d_ptr; } } } if (elf_info->flags & ELF_INFO_MODULE) { struct elf_module_info *elf_module_info = HeapAlloc(GetProcessHeap(), 0, sizeof(struct elf_module_info)); if (!elf_module_info) goto leave; elf_info->module = module_new(pcs, filename, DMT_ELF, (load_offset) ? load_offset : start, size, 0, 0); if (!elf_info->module) { HeapFree(GetProcessHeap(), 0, elf_module_info); goto leave; } elf_info->module->elf_info = elf_module_info; elf_info->module->elf_info->elf_addr = load_offset; if (dbghelp_options & SYMOPT_DEFERRED_LOADS) { elf_info->module->module.SymType = SymDeferred; ret = TRUE; } else ret = elf_load_debug_info(elf_info->module); elf_info->module->elf_info->elf_mark = 1; elf_info->module->elf_info->elf_loader = 0; } else ret = TRUE; leave: if (addr != (char*)0xffffffff) munmap((void*)addr, statbuf.st_size); if (fd != -1) close(fd); return ret; } /****************************************************************** * elf_load_file_from_path * tries to load an ELF file from a set of paths (separated by ':') */ static BOOL elf_load_file_from_path(HANDLE hProcess, const char* filename, unsigned long load_offset, const char* path, struct elf_info* elf_info) { BOOL ret = FALSE; char *s, *t, *fn; char* paths = NULL; if (!path) return FALSE; paths = strcpy(HeapAlloc(GetProcessHeap(), 0, strlen(path) + 1), path); for (s = paths; s && *s; s = (t) ? (t+1) : NULL) { t = strchr(s, ':'); if (t) *t = '\0'; fn = HeapAlloc(GetProcessHeap(), 0, strlen(filename) + 1 + strlen(s) + 1); if (!fn) break; strcpy(fn, s); strcat(fn, "/"); strcat(fn, filename); ret = elf_load_file(hProcess, fn, load_offset, elf_info); HeapFree(GetProcessHeap(), 0, fn); if (ret) break; s = (t) ? (t+1) : NULL; } HeapFree(GetProcessHeap(), 0, paths); return ret; } /****************************************************************** * elf_search_and_load_file * * lookup a file in standard ELF locations, and if found, load it */ static BOOL elf_search_and_load_file(struct process* pcs, const char* filename, unsigned long load_offset, struct elf_info* elf_info) { BOOL ret = FALSE; struct module* module; if (filename == NULL || *filename == '\0') return FALSE; if ((module = module_find_by_name(pcs, filename, DMT_ELF))) { elf_info->module = module; module->elf_info->elf_mark = 1; return module->module.SymType; } if (strstr(filename, "libstdc++")) return FALSE; /* We know we can't do it */ ret = elf_load_file(pcs, filename, load_offset, elf_info); /* if relative pathname, try some absolute base dirs */ if (!ret && !strchr(filename, '/')) { ret = elf_load_file_from_path(pcs, filename, load_offset, getenv("PATH"), elf_info) || elf_load_file_from_path(pcs, filename, load_offset, getenv("LD_LIBRARY_PATH"), elf_info) || elf_load_file_from_path(pcs, filename, load_offset, getenv("WINEDLLPATH"), elf_info); } return ret; } /****************************************************************** * elf_synchronize_module_list * * this functions rescans the debuggee module's list and synchronizes it with * the one from 'pcs', ie: * - if a module is in debuggee and not in pcs, it's loaded into pcs * - if a module is in pcs and not in debuggee, it's unloaded from pcs */ BOOL elf_synchronize_module_list(struct process* pcs) { struct r_debug dbg_hdr; void* lm_addr; struct link_map lm; char bufstr[256]; struct elf_info elf_info; struct module* module; if (!pcs->dbg_hdr_addr) return FALSE; if (!read_mem(pcs->handle, pcs->dbg_hdr_addr, &dbg_hdr, sizeof(dbg_hdr))) return FALSE; for (module = pcs->lmodules; module; module = module->next) { if (module->type == DMT_ELF) module->elf_info->elf_mark = 0; } elf_info.flags = ELF_INFO_MODULE; /* Now walk the linked list. In all known ELF implementations, * the dynamic loader maintains this linked list for us. In some * cases the first entry doesn't appear with a name, in other cases it * does. */ for (lm_addr = (void*)dbg_hdr.r_map; lm_addr; lm_addr = (void*)lm.l_next) { if (!read_mem(pcs->handle, (ULONG)lm_addr, &lm, sizeof(lm))) return FALSE; if (lm.l_prev != NULL && /* skip first entry, normally debuggee itself */ lm.l_name != NULL && read_mem(pcs->handle, (ULONG)lm.l_name, bufstr, sizeof(bufstr))) { bufstr[sizeof(bufstr) - 1] = '\0'; elf_search_and_load_file(pcs, bufstr, (unsigned long)lm.l_addr, &elf_info); } } for (module = pcs->lmodules; module; module = module->next) { if (module->type == DMT_ELF && !module->elf_info->elf_mark && !module->elf_info->elf_loader) { module_remove(pcs, module); /* restart all over */ module = pcs->lmodules; } } return TRUE; } /****************************************************************** * elf_read_wine_loader_dbg_info * * Try to find a decent wine executable which could have loaded the debuggee */ BOOL elf_read_wine_loader_dbg_info(struct process* pcs) { const char* ptr; struct elf_info elf_info; BOOL ret; elf_info.flags = ELF_INFO_DEBUG_HEADER | ELF_INFO_MODULE; /* All binaries are loaded with WINELOADER (if run from tree) or by the * main executable (either wine-kthread or wine-pthread) * Note: the heuristic use to know whether we need to load wine-pthread or * wine-kthread is not 100% safe */ if ((ptr = getenv("WINELOADER"))) ret = elf_search_and_load_file(pcs, ptr, 0, &elf_info); else { ret = elf_search_and_load_file(pcs, "wine-kthread", 0, &elf_info) || elf_search_and_load_file(pcs, "wine-pthread", 0, &elf_info); } if (!ret) return FALSE; elf_info.module->elf_info->elf_loader = 1; strcpy(elf_info.module->module.ModuleName, ""); return (pcs->dbg_hdr_addr = elf_info.dbg_hdr_addr) != 0; } /****************************************************************** * elf_load_module * * loads an ELF module and stores it in process' module list * if 'sync' is TRUE, let's find module real name and load address from * the real loaded modules list in pcs address space */ struct module* elf_load_module(struct process* pcs, const char* name) { struct elf_info elf_info; BOOL ret = FALSE; const char* p; const char* xname; struct r_debug dbg_hdr; void* lm_addr; struct link_map lm; char bufstr[256]; TRACE("(%p %s)\n", pcs, name); elf_info.flags = ELF_INFO_MODULE; /* do only the lookup from the filename, not the path (as we lookup module name * in the process' loaded module list) */ xname = strrchr(name, '/'); if (!xname++) xname = name; if (!read_mem(pcs->handle, pcs->dbg_hdr_addr, &dbg_hdr, sizeof(dbg_hdr))) return NULL; for (lm_addr = (void*)dbg_hdr.r_map; lm_addr; lm_addr = (void*)lm.l_next) { if (!read_mem(pcs->handle, (ULONG)lm_addr, &lm, sizeof(lm))) return NULL; if (lm.l_prev != NULL && /* skip first entry, normally debuggee itself */ lm.l_name != NULL && read_mem(pcs->handle, (ULONG)lm.l_name, bufstr, sizeof(bufstr))) { bufstr[sizeof(bufstr) - 1] = '\0'; /* memcmp is needed for matches when bufstr contains also version information * name: libc.so, bufstr: libc.so.6.0 */ p = strrchr(bufstr, '/'); if (!p++) p = bufstr; if (!memcmp(p, xname, strlen(xname))) { ret = elf_search_and_load_file(pcs, bufstr, (unsigned long)lm.l_addr, &elf_info); break; } } } if (!lm_addr || !ret) return NULL; assert(elf_info.module); return elf_info.module; } #else /* !__ELF__ */ BOOL elf_synchronize_module_list(struct process* pcs) { return FALSE; } BOOL elf_read_wine_loader_dbg_info(struct process* pcs) { return FALSE; } struct module* elf_load_module(struct process* pcs, const char* name) { return NULL; } BOOL elf_load_debug_info(struct module* module) { return FALSE; } #endif /* __ELF__ */