/* * dlls/rsaenh/implglue.c * Glueing the RSAENH specific code to the crypto library * * Copyright (c) 2004 Michael Jung * * based on code by Mike McCormack and David Hammerton * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include "wine/port.h" #include "wine/library.h" #include "wine/debug.h" #include "windef.h" #include "wincrypt.h" #include "implglue.h" #include WINE_DEFAULT_DEBUG_CHANNEL(crypt); /* Function prototypes copied from dlls/advapi32/crypt_md4.c */ VOID WINAPI MD4Init( MD4_CTX *ctx ); VOID WINAPI MD4Update( MD4_CTX *ctx, const unsigned char *buf, unsigned int len ); VOID WINAPI MD4Final( MD4_CTX *ctx ); /* Function prototypes copied from dlls/advapi32/crypt_md5.c */ VOID WINAPI MD5Init( MD5_CTX *ctx ); VOID WINAPI MD5Update( MD5_CTX *ctx, const unsigned char *buf, unsigned int len ); VOID WINAPI MD5Final( MD5_CTX *ctx ); /* Function prototypes copied from dlls/advapi32/crypt_sha.c */ VOID WINAPI A_SHAInit(PSHA_CTX Context); VOID WINAPI A_SHAUpdate(PSHA_CTX Context, PCHAR Buffer, UINT BufferSize); VOID WINAPI A_SHAFinal(PSHA_CTX Context, PULONG Result); BOOL init_hash_impl(ALG_ID aiAlgid, HASH_CONTEXT *pHashContext) { switch (aiAlgid) { case CALG_MD2: md2_init(&pHashContext->md2); break; case CALG_MD4: MD4Init(&pHashContext->md4); break; case CALG_MD5: MD5Init(&pHashContext->md5); break; case CALG_SHA: A_SHAInit(&pHashContext->sha); break; default: SetLastError(NTE_BAD_ALGID); return FALSE; } return TRUE; } BOOL update_hash_impl(ALG_ID aiAlgid, HASH_CONTEXT *pHashContext, CONST BYTE *pbData, DWORD dwDataLen) { switch (aiAlgid) { case CALG_MD2: md2_process(&pHashContext->md2, pbData, dwDataLen); break; case CALG_MD4: MD4Update(&pHashContext->md4, pbData, dwDataLen); break; case CALG_MD5: MD5Update(&pHashContext->md5, pbData, dwDataLen); break; case CALG_SHA: A_SHAUpdate(&pHashContext->sha, (PCHAR)pbData, dwDataLen); break; default: SetLastError(NTE_BAD_ALGID); return FALSE; } return TRUE; } BOOL finalize_hash_impl(ALG_ID aiAlgid, HASH_CONTEXT *pHashContext, BYTE *pbHashValue) { switch (aiAlgid) { case CALG_MD2: md2_done(&pHashContext->md2, pbHashValue); break; case CALG_MD4: MD4Final(&pHashContext->md4); memcpy(pbHashValue, pHashContext->md4.digest, 16); break; case CALG_MD5: MD5Final(&pHashContext->md5); memcpy(pbHashValue, pHashContext->md5.digest, 16); break; case CALG_SHA: A_SHAFinal(&pHashContext->sha, (PULONG)pbHashValue); break; default: SetLastError(NTE_BAD_ALGID); return FALSE; } return TRUE; } BOOL duplicate_hash_impl(ALG_ID aiAlgid, CONST HASH_CONTEXT *pSrcHashContext, HASH_CONTEXT *pDestHashContext) { memcpy(pDestHashContext, pSrcHashContext, sizeof(HASH_CONTEXT)); return TRUE; } BOOL new_key_impl(ALG_ID aiAlgid, KEY_CONTEXT *pKeyContext, DWORD dwKeyLen) { switch (aiAlgid) { case CALG_RSA_KEYX: case CALG_RSA_SIGN: if (rsa_make_key((int)dwKeyLen, 65537, &pKeyContext->rsa) != CRYPT_OK) { SetLastError(NTE_FAIL); return FALSE; } return TRUE; } return TRUE; } BOOL free_key_impl(ALG_ID aiAlgid, KEY_CONTEXT *pKeyContext) { switch (aiAlgid) { case CALG_RSA_KEYX: case CALG_RSA_SIGN: rsa_free(&pKeyContext->rsa); } return TRUE; } BOOL setup_key_impl(ALG_ID aiAlgid, KEY_CONTEXT *pKeyContext, DWORD dwKeyLen, DWORD dwSaltLen, BYTE *abKeyValue) { switch (aiAlgid) { case CALG_RC4: rc4_start(&pKeyContext->rc4); rc4_add_entropy(abKeyValue, dwKeyLen + dwSaltLen, &pKeyContext->rc4); rc4_ready(&pKeyContext->rc4); break; case CALG_RC2: rc2_setup(abKeyValue, dwKeyLen + dwSaltLen, dwKeyLen << 3, 0, &pKeyContext->rc2); break; case CALG_3DES: des3_setup(abKeyValue, 24, 0, &pKeyContext->des3); break; case CALG_3DES_112: memcpy(abKeyValue+16, abKeyValue, 8); des3_setup(abKeyValue, 24, 0, &pKeyContext->des3); break; case CALG_DES: des_setup(abKeyValue, 8, 0, &pKeyContext->des); break; } return TRUE; } BOOL duplicate_key_impl(ALG_ID aiAlgid, CONST KEY_CONTEXT *pSrcKeyContext, KEY_CONTEXT *pDestKeyContext) { switch (aiAlgid) { case CALG_RC4: case CALG_RC2: case CALG_3DES: case CALG_3DES_112: case CALG_DES: memcpy(pDestKeyContext, pSrcKeyContext, sizeof(KEY_CONTEXT)); break; case CALG_RSA_KEYX: case CALG_RSA_SIGN: pDestKeyContext->rsa.type = pSrcKeyContext->rsa.type; mp_init_copy(&pDestKeyContext->rsa.e, &pSrcKeyContext->rsa.e); mp_init_copy(&pDestKeyContext->rsa.d, &pSrcKeyContext->rsa.d); mp_init_copy(&pDestKeyContext->rsa.N, &pSrcKeyContext->rsa.N); mp_init_copy(&pDestKeyContext->rsa.p, &pSrcKeyContext->rsa.p); mp_init_copy(&pDestKeyContext->rsa.q, &pSrcKeyContext->rsa.q); mp_init_copy(&pDestKeyContext->rsa.qP, &pSrcKeyContext->rsa.qP); mp_init_copy(&pDestKeyContext->rsa.dP, &pSrcKeyContext->rsa.dP); mp_init_copy(&pDestKeyContext->rsa.dQ, &pSrcKeyContext->rsa.dQ); break; default: SetLastError(NTE_BAD_ALGID); return FALSE; } return TRUE; } static inline void reverse_bytes(BYTE *pbData, DWORD dwLen) { BYTE swap; DWORD i; for (i=0; irc2); } else { rc2_ecb_decrypt(in, out, &pKeyContext->rc2); } break; case CALG_3DES: case CALG_3DES_112: if (enc) { des3_ecb_encrypt(in, out, &pKeyContext->des3); } else { des3_ecb_decrypt(in, out, &pKeyContext->des3); } break; case CALG_DES: if (enc) { des_ecb_encrypt(in, out, &pKeyContext->des); } else { des_ecb_decrypt(in, out, &pKeyContext->des); } break; case CALG_RSA_KEYX: case CALG_RSA_SIGN: outlen = inlen = (mp_count_bits(&pKeyContext->rsa.N)+7)/8; if (enc) { if (aiAlgid == CALG_RSA_SIGN) { key = PK_PRIVATE; } else { key = PK_PUBLIC; } if (rsa_exptmod(in, inlen, out, &outlen, key, &pKeyContext->rsa) != CRYPT_OK) { SetLastError(NTE_FAIL); return FALSE; } reverse_bytes(out, outlen); } else { if (aiAlgid == CALG_RSA_SIGN) { key = PK_PUBLIC; } else { key = PK_PRIVATE; } in_reversed = HeapAlloc(GetProcessHeap(), 0, inlen); if (!in_reversed) { SetLastError(NTE_NO_MEMORY); return FALSE; } memcpy(in_reversed, in, inlen); reverse_bytes(in_reversed, inlen); if (rsa_exptmod(in_reversed, inlen, out, &outlen, key, &pKeyContext->rsa) != CRYPT_OK) { HeapFree(GetProcessHeap(), 0, in_reversed); SetLastError(NTE_FAIL); return FALSE; } HeapFree(GetProcessHeap(), 0, in_reversed); } break; default: SetLastError(NTE_BAD_ALGID); return FALSE; } return TRUE; } BOOL encrypt_stream_impl(ALG_ID aiAlgid, KEY_CONTEXT *pKeyContext, BYTE *stream, DWORD dwLen) { switch (aiAlgid) { case CALG_RC4: rc4_read(stream, dwLen, &pKeyContext->rc4); break; default: SetLastError(NTE_BAD_ALGID); return FALSE; } return TRUE; } BOOL gen_rand_impl(BYTE *pbBuffer, DWORD dwLen) { int dev_random; /* FIXME: /dev/urandom does not provide random numbers of a sufficient * quality for cryptographic applications. /dev/random is much better, * but it blocks if the kernel has not yet collected enough entropy for * the request, which will suspend the calling thread for an indefinite * amount of time. */ dev_random = open("/dev/urandom", O_RDONLY); if (dev_random != -1) { if (read(dev_random, pbBuffer, dwLen) == (ssize_t)dwLen) { close(dev_random); return TRUE; } close(dev_random); } SetLastError(NTE_FAIL); return FALSE; } BOOL export_public_key_impl(BYTE *pbDest, KEY_CONTEXT *pKeyContext, DWORD dwKeyLen,DWORD *pdwPubExp) { mp_to_unsigned_bin(&pKeyContext->rsa.N, pbDest); reverse_bytes(pbDest, dwKeyLen); *pdwPubExp = (DWORD)mp_get_int(&pKeyContext->rsa.e); return TRUE; } BOOL import_public_key_impl(CONST BYTE *pbSrc, KEY_CONTEXT *pKeyContext, DWORD dwKeyLen, DWORD dwPubExp) { BYTE *pbTemp; if (mp_init_multi(&pKeyContext->rsa.e, &pKeyContext->rsa.d, &pKeyContext->rsa.N, &pKeyContext->rsa.dQ,&pKeyContext->rsa.dP,&pKeyContext->rsa.qP, &pKeyContext->rsa.p, &pKeyContext->rsa.q, NULL) != MP_OKAY) { SetLastError(NTE_FAIL); return FALSE; } pbTemp = (BYTE*)HeapAlloc(GetProcessHeap(), 0, dwKeyLen); if (!pbTemp) return FALSE; memcpy(pbTemp, pbSrc, dwKeyLen); pKeyContext->rsa.type = PK_PUBLIC; reverse_bytes(pbTemp, dwKeyLen); mp_read_unsigned_bin(&pKeyContext->rsa.N, pbTemp, dwKeyLen); HeapFree(GetProcessHeap(), 0, pbTemp); mp_set_int(&pKeyContext->rsa.e, dwPubExp); return TRUE; } BOOL export_private_key_impl(BYTE *pbDest, KEY_CONTEXT *pKeyContext, DWORD dwKeyLen, DWORD *pdwPubExp) { mp_to_unsigned_bin(&pKeyContext->rsa.N, pbDest); reverse_bytes(pbDest, dwKeyLen); pbDest += dwKeyLen; mp_to_unsigned_bin(&pKeyContext->rsa.p, pbDest); reverse_bytes(pbDest, (dwKeyLen+1)>>1); pbDest += (dwKeyLen+1)>>1; mp_to_unsigned_bin(&pKeyContext->rsa.q, pbDest); reverse_bytes(pbDest, (dwKeyLen+1)>>1); pbDest += (dwKeyLen+1)>>1; mp_to_unsigned_bin(&pKeyContext->rsa.dP, pbDest); reverse_bytes(pbDest, (dwKeyLen+1)>>1); pbDest += (dwKeyLen+1)>>1; mp_to_unsigned_bin(&pKeyContext->rsa.dQ, pbDest); reverse_bytes(pbDest, (dwKeyLen+1)>>1); pbDest += (dwKeyLen+1)>>1; mp_to_unsigned_bin(&pKeyContext->rsa.qP, pbDest); reverse_bytes(pbDest, (dwKeyLen+1)>>1); pbDest += (dwKeyLen+1)>>1; mp_to_unsigned_bin(&pKeyContext->rsa.d, pbDest); reverse_bytes(pbDest, dwKeyLen); *pdwPubExp = (DWORD)mp_get_int(&pKeyContext->rsa.e); return TRUE; } BOOL import_private_key_impl(CONST BYTE *pbSrc, KEY_CONTEXT *pKeyContext, DWORD dwKeyLen, DWORD dwPubExp) { BYTE *pbTemp, *pbBigNum; if (mp_init_multi(&pKeyContext->rsa.e, &pKeyContext->rsa.d, &pKeyContext->rsa.N, &pKeyContext->rsa.dQ,&pKeyContext->rsa.dP,&pKeyContext->rsa.qP, &pKeyContext->rsa.p, &pKeyContext->rsa.q, NULL) != MP_OKAY) { SetLastError(NTE_FAIL); return FALSE; } pbTemp = HeapAlloc(GetProcessHeap(), 0, 2*dwKeyLen+5*((dwKeyLen+1)>>1)); if (!pbTemp) return FALSE; memcpy(pbTemp, pbSrc, 2*dwKeyLen+5*((dwKeyLen+1)>>1)); pbBigNum = pbTemp; pKeyContext->rsa.type = PK_PRIVATE; reverse_bytes(pbBigNum, dwKeyLen); mp_read_unsigned_bin(&pKeyContext->rsa.N, pbBigNum, dwKeyLen); pbBigNum += dwKeyLen; reverse_bytes(pbBigNum, (dwKeyLen+1)>>1); mp_read_unsigned_bin(&pKeyContext->rsa.p, pbBigNum, (dwKeyLen+1)>>1); pbBigNum += (dwKeyLen+1)>>1; reverse_bytes(pbBigNum, (dwKeyLen+1)>>1); mp_read_unsigned_bin(&pKeyContext->rsa.q, pbBigNum, (dwKeyLen+1)>>1); pbBigNum += (dwKeyLen+1)>>1; reverse_bytes(pbBigNum, (dwKeyLen+1)>>1); mp_read_unsigned_bin(&pKeyContext->rsa.dP, pbBigNum, (dwKeyLen+1)>>1); pbBigNum += (dwKeyLen+1)>>1; reverse_bytes(pbBigNum, (dwKeyLen+1)>>1); mp_read_unsigned_bin(&pKeyContext->rsa.dQ, pbBigNum, (dwKeyLen+1)>>1); pbBigNum += (dwKeyLen+1)>>1; reverse_bytes(pbBigNum, (dwKeyLen+1)>>1); mp_read_unsigned_bin(&pKeyContext->rsa.qP, pbBigNum, (dwKeyLen+1)>>1); pbBigNum += (dwKeyLen+1)>>1; reverse_bytes(pbBigNum, dwKeyLen); mp_read_unsigned_bin(&pKeyContext->rsa.d, pbBigNum, dwKeyLen); mp_set_int(&pKeyContext->rsa.e, dwPubExp); HeapFree(GetProcessHeap(), 0, pbTemp); return TRUE; }