/* * Debugger memory handling * * Copyright 1993 Eric Youngdale * Copyright 1995 Alexandre Julliard * Copyright 2000-2005 Eric Pouech * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include "debugger.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(winedbg); void* be_cpu_linearize(HANDLE hThread, const ADDRESS64* addr) { assert(addr->Mode == AddrModeFlat); return (void*)(DWORD_PTR)addr->Offset; } BOOL be_cpu_build_addr(HANDLE hThread, const dbg_ctx_t *ctx, ADDRESS64* addr, unsigned seg, DWORD64 offset) { addr->Mode = AddrModeFlat; addr->Segment = 0; /* don't need segment */ addr->Offset = offset; return TRUE; } void* memory_to_linear_addr(const ADDRESS64* addr) { return dbg_curr_process->be_cpu->linearize(dbg_curr_thread->handle, addr); } BOOL memory_get_current_pc(ADDRESS64* addr) { assert(dbg_curr_process->be_cpu->get_addr); return dbg_curr_process->be_cpu->get_addr(dbg_curr_thread->handle, &dbg_context, be_cpu_addr_pc, addr); } BOOL memory_get_current_stack(ADDRESS64* addr) { assert(dbg_curr_process->be_cpu->get_addr); return dbg_curr_process->be_cpu->get_addr(dbg_curr_thread->handle, &dbg_context, be_cpu_addr_stack, addr); } static void memory_report_invalid_addr(const void* addr) { ADDRESS64 address; address.Mode = AddrModeFlat; address.Segment = 0; address.Offset = (ULONG_PTR)addr; dbg_printf("*** Invalid address "); print_address(&address, FALSE); dbg_printf(" ***\n"); } /*********************************************************************** * memory_read_value * * Read a memory value. */ BOOL memory_read_value(const struct dbg_lvalue* lvalue, DWORD size, void* result) { BOOL ret = FALSE; if (lvalue->in_debuggee) { void* linear = memory_to_linear_addr(&lvalue->addr); if (!(ret = dbg_read_memory(linear, result, size))) memory_report_invalid_addr(linear); } else { if (lvalue->addr.Offset) { memcpy(result, (void*)(DWORD_PTR)lvalue->addr.Offset, size); ret = TRUE; } } return ret; } /*********************************************************************** * memory_write_value * * Store a value in memory. */ BOOL memory_write_value(const struct dbg_lvalue* lvalue, DWORD size, void* value) { BOOL ret = TRUE; DWORD64 os; if (!types_get_info(&lvalue->type, TI_GET_LENGTH, &os)) return FALSE; if (size != os) { dbg_printf("Size mismatch in memory_write_value, got %lu from type while expecting %lu\n", (DWORD)os, size); return FALSE; } /* FIXME: only works on little endian systems */ if (lvalue->in_debuggee) { void* linear = memory_to_linear_addr(&lvalue->addr); if (!(ret = dbg_write_memory(linear, value, size))) memory_report_invalid_addr(linear); } else { memcpy((void*)(DWORD_PTR)lvalue->addr.Offset, value, size); } return ret; } /* transfer a block of memory * the two lvalue:s are expected to be of same size */ BOOL memory_transfer_value(const struct dbg_lvalue* to, const struct dbg_lvalue* from) { DWORD64 size_to, size_from; BYTE tmp[256]; BYTE* ptr = tmp; BOOL ret; if (to->bitlen || from->bitlen) return FALSE; if (!types_get_info(&to->type, TI_GET_LENGTH, &size_to) || !types_get_info(&from->type, TI_GET_LENGTH, &size_from) || size_from != size_to) return FALSE; /* optimize debugger to debugger transfer */ if (!to->in_debuggee && !from->in_debuggee) { memcpy(memory_to_linear_addr(&to->addr), memory_to_linear_addr(&from->addr), size_from); return TRUE; } if (size_to > sizeof(tmp)) { ptr = malloc(size_from); if (!ptr) return FALSE; } ret = memory_read_value(from, size_from, ptr) && memory_write_value(to, size_from, ptr); if (size_to > sizeof(tmp)) free(ptr); return ret; } /*********************************************************************** * memory_examine * * Implementation of the 'x' command. */ void memory_examine(const struct dbg_lvalue *lvalue, int count, char format) { int i; char buffer[256]; ADDRESS64 addr; void *linear; types_extract_as_address(lvalue, &addr); linear = memory_to_linear_addr(&addr); if (format != 'i' && count > 1) { print_address(&addr, FALSE); dbg_printf(": "); } switch (format) { case 'u': if (count == 1) count = 256; memory_get_string(dbg_curr_process, linear, TRUE, TRUE, buffer, min(count, sizeof(buffer))); dbg_printf("%s\n", buffer); return; case 's': if (count == 1) count = 256; memory_get_string(dbg_curr_process, linear, TRUE, FALSE, buffer, min(count, sizeof(buffer))); dbg_printf("%s\n", buffer); return; case 'i': while (count-- && memory_disasm_one_insn(&addr)); return; case 'g': while (count--) { GUID guid; if (!dbg_read_memory(linear, &guid, sizeof(guid))) { memory_report_invalid_addr(linear); break; } dbg_printf("{%08lx-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x}\n", guid.Data1, guid.Data2, guid.Data3, guid.Data4[0], guid.Data4[1], guid.Data4[2], guid.Data4[3], guid.Data4[4], guid.Data4[5], guid.Data4[6], guid.Data4[7]); linear = (char*)linear + sizeof(guid); addr.Offset += sizeof(guid); if (count) { print_address(&addr, FALSE); dbg_printf(": "); } } return; #define DO_DUMP2(_t,_l,_f,_vv) { \ _t _v; \ for (i = 0; i < count; i++) { \ if (!dbg_read_memory(linear, &_v, sizeof(_t))) \ { memory_report_invalid_addr(linear); break; } \ dbg_printf(_f, (_vv)); \ addr.Offset += sizeof(_t); \ linear = (char*)linear + sizeof(_t); \ if ((i % (_l)) == (_l) - 1 && i != count - 1) \ { \ dbg_printf("\n"); \ print_address(&addr, FALSE); \ dbg_printf(": "); \ } \ } \ dbg_printf("\n"); \ } #define DO_DUMP(_t,_l,_f) DO_DUMP2(_t,_l,_f,_v) case 'x': DO_DUMP(int, 4, " %8.8x"); break; case 'd': DO_DUMP(unsigned int, 4, " %4.4d"); break; case 'w': DO_DUMP(unsigned short, 8, " %04x"); break; case 'a': if (sizeof(DWORD_PTR) == 4) { DO_DUMP(DWORD_PTR, 4, " %8.8Ix"); } else { DO_DUMP(DWORD_PTR, 2, " %16.16Ix"); } break; case 'c': DO_DUMP2(char, 32, " %c", (_v < 0x20) ? ' ' : _v); break; case 'b': DO_DUMP2(char, 16, " %02x", (_v) & 0xff); break; } } BOOL memory_fetch_integer(const struct dbg_lvalue* lvalue, unsigned size, BOOL is_signed, dbg_lgint_t* ret) { /* size must fit in ret and be a power of two */ if (size > sizeof(*ret) || (size & (size - 1))) return FALSE; if (lvalue->bitlen) { struct dbg_lvalue alt_lvalue = *lvalue; dbg_lguint_t mask; DWORD bt; /* FIXME: this test isn't sufficient, depending on start of bitfield * (ie a 64 bit field can spread across 9 bytes) */ if (lvalue->bitlen > 8 * sizeof(dbg_lgint_t)) return FALSE; alt_lvalue.addr.Offset += lvalue->bitstart >> 3; /* * Bitfield operation. We have to extract the field. */ if (!memory_read_value(&alt_lvalue, sizeof(*ret), ret)) return FALSE; mask = ~(dbg_lguint_t)0 << lvalue->bitlen; *ret >>= lvalue->bitstart & 7; *ret &= ~mask; /* * OK, now we have the correct part of the number. * Check to see whether the basic type is signed or not, and if so, * we need to sign extend the number. */ if (types_get_info(&lvalue->type, TI_GET_BASETYPE, &bt) && (bt == btInt || bt == btLong) && (*ret & (1 << (lvalue->bitlen - 1)))) { *ret |= mask; } } else { /* we are on little endian CPU */ memset(ret, 0, sizeof(*ret)); /* clear unread bytes */ if (!memory_read_value(lvalue, size, ret)) return FALSE; /* propagate sign information */ if (is_signed && size < 8 && (*ret >> (size * 8 - 1)) != 0) { dbg_lguint_t neg = -1; *ret |= neg << (size * 8); } } return TRUE; } BOOL memory_store_integer(const struct dbg_lvalue* lvalue, dbg_lgint_t val) { DWORD64 size; if (!types_get_info(&lvalue->type, TI_GET_LENGTH, &size)) return FALSE; if (lvalue->bitlen) { struct dbg_lvalue alt_lvalue = *lvalue; dbg_lguint_t mask, dst; /* FIXME: this test isn't sufficient, depending on start of bitfield * (ie a 64 bit field can spread across 9 bytes) */ if (lvalue->bitlen > 8 * sizeof(dbg_lgint_t)) return FALSE; /* mask is 1 where bitfield is present, 0 outside */ mask = (~(dbg_lguint_t)0 >> (sizeof(val) * 8 - lvalue->bitlen)) << (lvalue->bitstart & 7); alt_lvalue.addr.Offset += lvalue->bitstart >> 3; val <<= lvalue->bitstart & 7; if (!memory_read_value(&alt_lvalue, (unsigned)size, &dst)) return FALSE; val = (dst & ~mask) | (val & mask); return memory_write_value(&alt_lvalue, (unsigned)size, &val); } /* this is simple if we're on a little endian CPU */ return memory_write_value(lvalue, (unsigned)size, &val); } BOOL memory_fetch_float(const struct dbg_lvalue* lvalue, double *ret) { DWORD64 size; if (!types_get_info(&lvalue->type, TI_GET_LENGTH, &size)) return FALSE; /* FIXME: this assumes that debuggee and debugger use the same * representation for reals */ if (size > sizeof(*ret)) return FALSE; if (!memory_read_value(lvalue, size, ret)) return FALSE; if (size == sizeof(float)) *ret = *(float*)ret; else if (size != sizeof(double)) return FALSE; return TRUE; } BOOL memory_store_float(const struct dbg_lvalue* lvalue, double *ret) { DWORD64 size; if (!types_get_info(&lvalue->type, TI_GET_LENGTH, &size)) return FALSE; /* FIXME: this assumes that debuggee and debugger use the same * representation for reals */ if (size > sizeof(*ret)) return FALSE; if (size == sizeof(float)) { float f = *ret; return memory_write_value(lvalue, size, &f); } if (size != sizeof(double)) return FALSE; return memory_write_value(lvalue, size, ret); } BOOL memory_get_string(struct dbg_process* pcs, void* addr, BOOL in_debuggee, BOOL unicode, char* buffer, int size) { SIZE_T sz; WCHAR* buffW; buffer[0] = 0; if (!addr) return FALSE; if (in_debuggee) { BOOL ret; if (!unicode) ret = pcs->process_io->read(pcs->handle, addr, buffer, size, &sz); else { buffW = HeapAlloc(GetProcessHeap(), 0, size * sizeof(WCHAR)); ret = pcs->process_io->read(pcs->handle, addr, buffW, size * sizeof(WCHAR), &sz); WideCharToMultiByte(CP_ACP, 0, buffW, sz / sizeof(WCHAR), buffer, size, NULL, NULL); HeapFree(GetProcessHeap(), 0, buffW); } if (size) buffer[size-1] = 0; return ret; } else { lstrcpynA(buffer, addr, size); } return TRUE; } BOOL memory_get_string_indirect(struct dbg_process* pcs, void* addr, BOOL unicode, WCHAR* buffer, int size) { void* ad = 0; SIZE_T sz; buffer[0] = 0; if (addr && pcs->process_io->read(pcs->handle, addr, &ad, pcs->be_cpu->pointer_size, &sz) && sz == pcs->be_cpu->pointer_size && ad) { LPSTR buff; BOOL ret; if (unicode) ret = pcs->process_io->read(pcs->handle, ad, buffer, size * sizeof(WCHAR), &sz) && sz != 0; else { if ((buff = HeapAlloc(GetProcessHeap(), 0, size))) { ret = pcs->process_io->read(pcs->handle, ad, buff, size, &sz) && sz != 0; MultiByteToWideChar(CP_ACP, 0, buff, sz, buffer, size); HeapFree(GetProcessHeap(), 0, buff); } else ret = FALSE; } if (size) buffer[size-1] = 0; return ret; } return FALSE; } /* * Convert an address offset to hex string. If mode == 32, treat offset as * 32 bits (discard upper 32 bits), if mode == 64 use all 64 bits, if mode == 0 * treat as either 32 or 64 bits, depending on whether we're running as * Wine32 or Wine64. */ char* memory_offset_to_string(char *str, DWORD64 offset, unsigned mode) { if (mode != 32 && mode != 64) { #ifdef _WIN64 mode = 64; #else mode = 32; #endif } if (mode == 32) sprintf(str, "0x%08x", (unsigned int) offset); else sprintf(str, "0x%08x%08x", (unsigned int)(offset >> 32), (unsigned int)offset); return str; } static void dbg_print_sdecimal(dbg_lgint_t sv) { dbg_printf("%I64d", sv); } static void dbg_print_hex(DWORD size, dbg_lgint_t sv) { if (!sv) dbg_printf("0"); else /* clear unneeded high bits, esp. sign extension */ dbg_printf("%#I64x", sv & (~(dbg_lguint_t)0 >> (8 * (sizeof(dbg_lgint_t) - size)))); } static void print_typed_basic(const struct dbg_lvalue* lvalue) { dbg_lgint_t val_int; void* val_ptr; double val_real; DWORD64 size64; DWORD tag, size, count, bt; struct dbg_type type = lvalue->type; struct dbg_type sub_type; struct dbg_lvalue sub_lvalue; if (!types_get_real_type(&type, &tag)) return; switch (tag) { case SymTagBaseType: if (!types_get_info(&type, TI_GET_LENGTH, &size64) || !types_get_info(&type, TI_GET_BASETYPE, &bt)) { WINE_ERR("Couldn't get information\n"); RaiseException(DEBUG_STATUS_INTERNAL_ERROR, 0, 0, NULL); return; } size = (DWORD)size64; switch (bt) { case btInt: case btLong: if (!memory_fetch_integer(lvalue, size, TRUE, &val_int)) return; if (size == 1) goto print_char; dbg_print_hex(size, val_int); break; case btUInt: case btULong: if (!memory_fetch_integer(lvalue, size, FALSE, &val_int)) return; dbg_print_hex(size, val_int); break; case btFloat: if (!memory_fetch_float(lvalue, &val_real)) return; dbg_printf("%f", val_real); break; case btChar: case btWChar: /* sometimes WCHAR is defined as btChar with size = 2, so discrimate * Ansi/Unicode based on size, not on basetype */ if (!memory_fetch_integer(lvalue, size, TRUE, &val_int)) return; print_char: if ((size == 1 && isprint((char)val_int)) || (size == 2 && val_int < 127 && isprint((char)val_int))) dbg_printf("'%c'", (char)val_int); else dbg_printf("%d", (int)val_int); break; case btBool: if (!memory_fetch_integer(lvalue, size, TRUE, &val_int)) return; dbg_printf("%s", val_int ? "true" : "false"); break; default: WINE_FIXME("Unsupported basetype %lu\n", bt); break; } break; case SymTagPointerType: if (!types_array_index(lvalue, 0, &sub_lvalue)) { dbg_printf("Internal symbol error: unable to access memory location %p", memory_to_linear_addr(&lvalue->addr)); break; } val_ptr = memory_to_linear_addr(&sub_lvalue.addr); if (types_get_real_type(&sub_lvalue.type, &tag) && tag == SymTagBaseType && types_get_info(&sub_lvalue.type, TI_GET_BASETYPE, &bt) && types_get_info(&sub_lvalue.type, TI_GET_LENGTH, &size64)) { char buffer[1024]; if (!val_ptr) dbg_printf("0x0"); else if (((bt == btChar || bt == btInt) && size64 == 1) || (bt == btUInt && size64 == 2)) { if (memory_get_string(dbg_curr_process, val_ptr, sub_lvalue.in_debuggee, size64 == 2, buffer, sizeof(buffer))) dbg_printf("\"%s\"", buffer); else dbg_printf("*** invalid address %p ***", val_ptr); break; } } dbg_printf("%p", val_ptr); break; case SymTagArrayType: case SymTagUDT: if (!memory_read_value(lvalue, sizeof(val_ptr), &val_ptr)) return; dbg_printf("%p", val_ptr); break; case SymTagEnum: { BOOL ok = FALSE; if (!types_get_info(&type, TI_GET_LENGTH, &size64) || !memory_fetch_integer(lvalue, size64, TRUE, &val_int)) return; if (types_get_info(&type, TI_GET_CHILDRENCOUNT, &count)) { char buffer[sizeof(TI_FINDCHILDREN_PARAMS) + 256 * sizeof(DWORD)]; TI_FINDCHILDREN_PARAMS* fcp = (TI_FINDCHILDREN_PARAMS*)buffer; WCHAR* ptr; VARIANT variant; int i; fcp->Start = 0; while (count) { fcp->Count = min(count, 256); if (types_get_info(&type, TI_FINDCHILDREN, fcp)) { sub_type.module = type.module; for (i = 0; i < min(fcp->Count, count); i++) { sub_type.id = fcp->ChildId[i]; if (!types_get_info(&sub_type, TI_GET_VALUE, &variant)) continue; switch (V_VT(&variant)) { case VT_I1: ok = (val_int == V_I1(&variant)); break; case VT_I2: ok = (val_int == V_I2(&variant)); break; case VT_I4: ok = (val_int == V_I4(&variant)); break; case VT_I8: ok = (val_int == V_I8(&variant)); break; default: WINE_FIXME("Unsupported variant type (%u)\n", V_VT(&variant)); } if (ok && types_get_info(&sub_type, TI_GET_SYMNAME, &ptr) && ptr) { dbg_printf("%ls", ptr); HeapFree(GetProcessHeap(), 0, ptr); count = 0; /* so that we'll get away from outer loop */ break; } } } count -= min(count, 256); fcp->Start += 256; } } if (!ok) dbg_print_sdecimal(val_int); } break; default: WINE_FIXME("Unsupported tag %lu\n", tag); break; } } /*********************************************************************** * print_basic * * Implementation of the 'print' command. */ void print_basic(const struct dbg_lvalue* lvalue, char format) { if (lvalue->type.id == dbg_itype_none) { dbg_printf("Unable to evaluate expression\n"); return; } if (format != 0) { unsigned size; dbg_lgint_t res = types_extract_as_lgint(lvalue, &size, NULL); switch (format) { case 'x': dbg_print_hex(size, res); return; case 'd': dbg_print_sdecimal(res); return; case 'c': dbg_printf("%d = '%c'", (char)(res & 0xff), (char)(res & 0xff)); return; case 'u': dbg_printf("%d = '%lc'", (WCHAR)(res & 0xFFFF), (WCHAR)(res & 0xFFFF)); return; case 'i': case 's': case 'w': case 'b': dbg_printf("Format specifier '%c' is meaningless in 'print' command\n", format); } } if (lvalue->type.id == dbg_itype_segptr) { dbg_print_sdecimal(types_extract_as_lgint(lvalue, NULL, NULL)); } else print_typed_basic(lvalue); } void print_bare_address(const ADDRESS64* addr) { char hexbuf[MAX_OFFSET_TO_STR_LEN]; switch (addr->Mode) { case AddrModeFlat: dbg_printf("%s", memory_offset_to_string(hexbuf, addr->Offset, 0)); break; case AddrModeReal: case AddrMode1616: dbg_printf("0x%04x:0x%04x", addr->Segment, (unsigned) addr->Offset); break; case AddrMode1632: dbg_printf("0x%04x:%s", addr->Segment, memory_offset_to_string(hexbuf, addr->Offset, 32)); break; default: dbg_printf("Unknown mode %x", addr->Mode); break; } } /*********************************************************************** * print_address * * Print an 16- or 32-bit address, with the nearest symbol if any. */ void print_address(const ADDRESS64* addr, BOOLEAN with_line) { char buffer[sizeof(SYMBOL_INFO) + 256]; SYMBOL_INFO* si = (SYMBOL_INFO*)buffer; DWORD_PTR lin = (DWORD_PTR)memory_to_linear_addr(addr); DWORD64 disp64; DWORD disp; IMAGEHLP_MODULE im; print_bare_address(addr); si->SizeOfStruct = sizeof(*si); si->MaxNameLen = 256; im.SizeOfStruct = 0; if (SymFromAddr(dbg_curr_process->handle, lin, &disp64, si) && disp64 < si->Size) { dbg_printf(" %s", si->Name); if (disp64) dbg_printf("+0x%I64x", disp64); } else { im.SizeOfStruct = sizeof(im); if (!SymGetModuleInfo(dbg_curr_process->handle, lin, &im)) return; dbg_printf(" %s", im.ModuleName); if (lin > im.BaseOfImage) dbg_printf("+0x%Ix", lin - im.BaseOfImage); } if (with_line) { IMAGEHLP_LINE64 il; il.SizeOfStruct = sizeof(il); if (SymGetLineFromAddr64(dbg_curr_process->handle, lin, &disp, &il)) dbg_printf(" [%s:%lu]", il.FileName, il.LineNumber); if (im.SizeOfStruct == 0) /* don't display again module if address is in module+disp form */ { im.SizeOfStruct = sizeof(im); if (SymGetModuleInfo(dbg_curr_process->handle, lin, &im)) dbg_printf(" in %s", im.ModuleName); } } } BOOL memory_disasm_one_insn(ADDRESS64* addr) { char ch; print_address(addr, TRUE); dbg_printf(": "); if (!dbg_read_memory(memory_to_linear_addr(addr), &ch, sizeof(ch))) { dbg_printf("-- no code accessible --\n"); return FALSE; } dbg_curr_process->be_cpu->disasm_one_insn(addr, TRUE); dbg_printf("\n"); return TRUE; } void memory_disassemble(const struct dbg_lvalue* xstart, const struct dbg_lvalue* xend, int instruction_count) { static ADDRESS64 last = {0,0,0}; dbg_lgint_t stop = 0; int i; if (!xstart && !xend) { if (!last.Segment && !last.Offset) memory_get_current_pc(&last); } else { if (xstart) types_extract_as_address(xstart, &last); if (xend) stop = types_extract_as_integer(xend); } for (i = 0; (instruction_count == 0 || i < instruction_count) && (stop == 0 || last.Offset <= stop); i++) memory_disasm_one_insn(&last); } BOOL memory_get_register(DWORD regno, DWORD_PTR** value, char* buffer, int len) { const struct dbg_internal_var* div; /* negative register values are wine's dbghelp hacks * see dlls/dbghelp/dbghelp_private.h for the details */ switch (regno) { case -1: if (buffer) snprintf(buffer, len, ""); return FALSE; case -2: if (buffer) snprintf(buffer, len, ""); return FALSE; case -3: if (buffer) snprintf(buffer, len, ""); return FALSE; case -4: if (buffer) snprintf(buffer, len, ""); return FALSE; case -5: if (buffer) snprintf(buffer, len, ""); return FALSE; } for (div = dbg_curr_process->be_cpu->context_vars; div->name; div++) { if (div->val == regno) { if (!stack_get_register_frame(div, value)) { if (buffer) snprintf(buffer, len, "", div->name); return FALSE; } if (buffer) lstrcpynA(buffer, div->name, len); return TRUE; } } if (buffer) snprintf(buffer, len, "", regno); return FALSE; }