/* * KERNEL32 thunks and other undocumented stuff * * Copyright 1997-1998 Marcus Meissner * Copyright 1998 Ulrich Weigand * * BUG: The GetBinaryType implementation is not complete. See * the function documentation for more details. */ #include "windows.h" #include "callback.h" #include "task.h" #include "user.h" #include "heap.h" #include "module.h" #include "neexe.h" #include "process.h" #include "stackframe.h" #include "heap.h" #include "selectors.h" #include "task.h" #include "win.h" #include "file.h" #include "debug.h" #include "flatthunk.h" #include "syslevel.h" #include "winerror.h" /*********************************************************************** * * * Win95 internal thunks * * * ***********************************************************************/ /*********************************************************************** * Generates a FT_Prolog call. * * 0FB6D1 movzbl edx,cl * 8B1495xxxxxxxx mov edx,[4*edx + targetTable] * 68xxxxxxxx push FT_Prolog * C3 lret */ static void _write_ftprolog(LPBYTE relayCode ,DWORD *targetTable) { LPBYTE x; x = relayCode; *x++ = 0x0f;*x++=0xb6;*x++=0xd1; /* movzbl edx,cl */ *x++ = 0x8B;*x++=0x14;*x++=0x95;*(DWORD**)x= targetTable; x+=4; /* mov edx, [4*edx + targetTable] */ *x++ = 0x68; *(DWORD*)x = (DWORD)GetProcAddress32(GetModuleHandle32A("KERNEL32"),"FT_Prolog"); x+=4; /* push FT_Prolog */ *x++ = 0xC3; /* lret */ /* fill rest with 0xCC / int 3 */ } /*********************************************************************** * _write_qtthunk (internal) * Generates a QT_Thunk style call. * * 33C9 xor ecx, ecx * 8A4DFC mov cl , [ebp-04] * 8B148Dxxxxxxxx mov edx, [4*ecx + targetTable] * B8yyyyyyyy mov eax, QT_Thunk * FFE0 jmp eax */ static void _write_qtthunk( LPBYTE relayCode, /* [in] start of QT_Thunk stub */ DWORD *targetTable /* [in] start of thunk (for index lookup) */ ) { LPBYTE x; x = relayCode; *x++ = 0x33;*x++=0xC9; /* xor ecx,ecx */ *x++ = 0x8A;*x++=0x4D;*x++=0xFC; /* movb cl,[ebp-04] */ *x++ = 0x8B;*x++=0x14;*x++=0x8D;*(DWORD**)x= targetTable; x+=4; /* mov edx, [4*ecx + targetTable */ *x++ = 0xB8; *(DWORD*)x = (DWORD)GetProcAddress32(GetModuleHandle32A("KERNEL32"),"QT_Thunk"); x+=4; /* mov eax , QT_Thunk */ *x++ = 0xFF; *x++ = 0xE0; /* jmp eax */ /* should fill the rest of the 32 bytes with 0xCC */ } /*********************************************************************** * _loadthunk */ static LPVOID _loadthunk(LPCSTR module, LPCSTR func, LPCSTR module32, struct ThunkDataCommon *TD32, DWORD checksum) { struct ThunkDataCommon *TD16; HMODULE32 hmod; int ordinal; if ((hmod = LoadLibrary16(module)) <= 32) { ERR(thunk, "(%s, %s, %s): Unable to load '%s', error %d\n", module, func, module32, module, hmod); return 0; } if ( !(ordinal = NE_GetOrdinal(hmod, func)) || !(TD16 = PTR_SEG_TO_LIN(NE_GetEntryPointEx(hmod, ordinal, FALSE)))) { ERR(thunk, "(%s, %s, %s): Unable to find '%s'\n", module, func, module32, func); return 0; } if (TD32 && memcmp(TD16->magic, TD32->magic, 4)) { ERR(thunk, "(%s, %s, %s): Bad magic %c%c%c%c (should be %c%c%c%c)\n", module, func, module32, TD16->magic[0], TD16->magic[1], TD16->magic[2], TD16->magic[3], TD32->magic[0], TD32->magic[1], TD32->magic[2], TD32->magic[3]); return 0; } if (TD32 && TD16->checksum != TD32->checksum) { ERR(thunk, "(%s, %s, %s): Wrong checksum %08lx (should be %08lx)\n", module, func, module32, TD16->checksum, TD32->checksum); return 0; } if (!TD32 && checksum && checksum != *(LPDWORD)TD16) { ERR(thunk, "(%s, %s, %s): Wrong checksum %08lx (should be %08lx)\n", module, func, module32, *(LPDWORD)TD16, checksum); return 0; } return TD16; } /*********************************************************************** * GetThunkStuff (KERNEL32.53) */ LPVOID WINAPI GetThunkStuff(LPSTR module, LPSTR func) { return _loadthunk(module, func, "", NULL, 0L); } /*********************************************************************** * GetThunkBuff (KERNEL32.52) * Returns a pointer to ThkBuf in the 16bit library SYSTHUNK.DLL. */ LPVOID WINAPI GetThunkBuff(void) { return GetThunkStuff("SYSTHUNK.DLL", "ThkBuf"); } /*********************************************************************** * ThunkConnect32 (KERNEL32) * Connects a 32bit and a 16bit thunkbuffer. */ UINT32 WINAPI ThunkConnect32( struct ThunkDataCommon *TD, /* [in/out] thunkbuffer */ LPSTR thunkfun16, /* [in] win16 thunkfunction */ LPSTR module16, /* [in] name of win16 dll */ LPSTR module32, /* [in] name of win32 dll */ HMODULE32 hmod32, /* [in] hmodule of win32 dll */ DWORD dwReason /* [in] initialisation argument */ ) { BOOL32 directionSL; if (!lstrncmp32A(TD->magic, "SL01", 4)) { directionSL = TRUE; TRACE(thunk, "SL01 thunk %s (%lx) <- %s (%s), Reason: %ld\n", module32, (DWORD)TD, module16, thunkfun16, dwReason); } else if (!lstrncmp32A(TD->magic, "LS01", 4)) { directionSL = FALSE; TRACE(thunk, "LS01 thunk %s (%lx) -> %s (%s), Reason: %ld\n", module32, (DWORD)TD, module16, thunkfun16, dwReason); } else { ERR(thunk, "Invalid magic %c%c%c%c\n", TD->magic[0], TD->magic[1], TD->magic[2], TD->magic[3]); return 0; } switch (dwReason) { case DLL_PROCESS_ATTACH: { struct ThunkDataCommon *TD16; if (!(TD16 = _loadthunk(module16, thunkfun16, module32, TD, 0L))) return 0; if (directionSL) { struct ThunkDataSL32 *SL32 = (struct ThunkDataSL32 *)TD; struct ThunkDataSL16 *SL16 = (struct ThunkDataSL16 *)TD16; struct SLTargetDB *tdb; if (SL16->fpData == NULL) { ERR(thunk, "ThunkConnect16 was not called!\n"); return 0; } SL32->data = SL16->fpData; tdb = HeapAlloc(GetProcessHeap(), 0, sizeof(*tdb)); tdb->process = PROCESS_Current(); tdb->targetTable = (DWORD *)(thunkfun16 + SL32->offsetTargetTable); tdb->next = SL32->data->targetDB; /* FIXME: not thread-safe! */ SL32->data->targetDB = tdb; TRACE(thunk, "Process %08lx allocated TargetDB entry for ThunkDataSL %08lx\n", (DWORD)PROCESS_Current(), (DWORD)SL32->data); } else { struct ThunkDataLS32 *LS32 = (struct ThunkDataLS32 *)TD; struct ThunkDataLS16 *LS16 = (struct ThunkDataLS16 *)TD16; LS32->targetTable = PTR_SEG_TO_LIN(LS16->targetTable); /* write QT_Thunk and FT_Prolog stubs */ _write_qtthunk ((LPBYTE)TD + LS32->offsetQTThunk, LS32->targetTable); _write_ftprolog((LPBYTE)TD + LS32->offsetFTProlog, LS32->targetTable); } break; } case DLL_PROCESS_DETACH: /* FIXME: cleanup */ break; } return 1; } /********************************************************************** * QT_Thunk (KERNEL32) * * The target address is in EDX. * The 16 bit arguments start at ESP+4. * The number of 16bit argumentbytes is EBP-ESP-0x44 (68 Byte thunksetup). * [ok] */ REGS_ENTRYPOINT(QT_Thunk) { CONTEXT context16; DWORD argsize; THDB *thdb = THREAD_Current(); memcpy(&context16,context,sizeof(context16)); CS_reg(&context16) = HIWORD(EDX_reg(context)); IP_reg(&context16) = LOWORD(EDX_reg(context)); EBP_reg(&context16) = OFFSETOF( thdb->cur_stack ) + (WORD)&((STACK16FRAME*)0)->bp; argsize = EBP_reg(context)-ESP_reg(context)-0x44; memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize, (LPBYTE)ESP_reg(context)+4, argsize ); EAX_reg(context) = Callbacks->CallRegisterShortProc( &context16, argsize ); EDX_reg(context) = HIWORD(EAX_reg(context)); EAX_reg(context) = LOWORD(EAX_reg(context)); } /********************************************************************** * FT_Prolog (KERNEL32.233) * * The set of FT_... thunk routines is used instead of QT_Thunk, * if structures have to be converted from 32-bit to 16-bit * (change of member alignment, conversion of members). * * The thunk function (as created by the thunk compiler) calls * FT_Prolog at the beginning, to set up a stack frame and * allocate a 64 byte buffer on the stack. * The input parameters (target address and some flags) are * saved for later use by FT_Thunk. * * Input: EDX 16-bit target address (SEGPTR) * CX bits 0..7 target number (in target table) * bits 8..9 some flags (unclear???) * bits 10..15 number of DWORD arguments * * Output: A new stackframe is created, and a 64 byte buffer * allocated on the stack. The layout of the stack * on return is as follows: * * (ebp+4) return address to caller of thunk function * (ebp) old EBP * (ebp-4) saved EBX register of caller * (ebp-8) saved ESI register of caller * (ebp-12) saved EDI register of caller * (ebp-16) saved ECX register, containing flags * (ebp-20) bitmap containing parameters that are to be converted * by FT_Thunk; it is initialized to 0 by FT_Prolog and * filled in by the thunk code before calling FT_Thunk * (ebp-24) * ... (unclear) * (ebp-44) * (ebp-48) saved EAX register of caller (unclear, never restored???) * (ebp-52) saved EDX register, containing 16-bit thunk target * (ebp-56) * ... (unclear) * (ebp-64) * * ESP is EBP-68 on return. * */ REGS_ENTRYPOINT(FT_Prolog) { /* Pop return address to thunk code */ EIP_reg(context) = STACK32_POP(context); /* Build stack frame */ STACK32_PUSH(context, EBP_reg(context)); EBP_reg(context) = ESP_reg(context); /* Allocate 64-byte Thunk Buffer */ ESP_reg(context) -= 64; memset((char *)ESP_reg(context), '\0', 64); /* Store Flags (ECX) and Target Address (EDX) */ /* Save other registers to be restored later */ *(DWORD *)(EBP_reg(context) - 4) = EBX_reg(context); *(DWORD *)(EBP_reg(context) - 8) = ESI_reg(context); *(DWORD *)(EBP_reg(context) - 12) = EDI_reg(context); *(DWORD *)(EBP_reg(context) - 16) = ECX_reg(context); *(DWORD *)(EBP_reg(context) - 48) = EAX_reg(context); *(DWORD *)(EBP_reg(context) - 52) = EDX_reg(context); /* Push return address back onto stack */ STACK32_PUSH(context, EIP_reg(context)); } /********************************************************************** * FT_Thunk (KERNEL32.234) * * This routine performs the actual call to 16-bit code, * similar to QT_Thunk. The differences are: * - The call target is taken from the buffer created by FT_Prolog * - Those arguments requested by the thunk code (by setting the * corresponding bit in the bitmap at EBP-20) are converted * from 32-bit pointers to segmented pointers (those pointers * are guaranteed to point to structures copied to the stack * by the thunk code, so we always use the 16-bit stack selector * for those addresses). * * The bit #i of EBP-20 corresponds here to the DWORD starting at * ESP+4 + 2*i. * * FIXME: It is unclear what happens if there are more than 32 WORDs * of arguments, so that the single DWORD bitmap is no longer * sufficient ... */ REGS_ENTRYPOINT(FT_Thunk) { DWORD mapESPrelative = *(DWORD *)(EBP_reg(context) - 20); DWORD callTarget = *(DWORD *)(EBP_reg(context) - 52); CONTEXT context16; DWORD i, argsize; LPBYTE newstack, oldstack; THDB *thdb = THREAD_Current(); memcpy(&context16,context,sizeof(context16)); CS_reg(&context16) = HIWORD(callTarget); IP_reg(&context16) = LOWORD(callTarget); EBP_reg(&context16) = OFFSETOF( thdb->cur_stack ) + (WORD)&((STACK16FRAME*)0)->bp; argsize = EBP_reg(context)-ESP_reg(context)-0x44; newstack = ((LPBYTE)THREAD_STACK16(thdb))-argsize; oldstack = (LPBYTE)ESP_reg(context)+4; memcpy( newstack, oldstack, argsize ); for (i = 0; i < 32; i++) /* NOTE: What about > 32 arguments? */ if (mapESPrelative & (1 << i)) { SEGPTR *arg = (SEGPTR *)(newstack + 2*i); *arg = PTR_SEG_OFF_TO_SEGPTR(SELECTOROF(thdb->cur_stack), OFFSETOF(thdb->cur_stack) - argsize + (*(LPBYTE *)arg - oldstack)); } EAX_reg(context) = Callbacks->CallRegisterShortProc( &context16, argsize ); EDX_reg(context) = HIWORD(EAX_reg(context)); EAX_reg(context) = LOWORD(EAX_reg(context)); } /********************************************************************** * FT_ExitNN (KERNEL32.218 - 232) * * One of the FT_ExitNN functions is called at the end of the thunk code. * It removes the stack frame created by FT_Prolog, moves the function * return from EBX to EAX (yes, FT_Thunk did use EAX for the return * value, but the thunk code has moved it from EAX to EBX in the * meantime ... :-), restores the caller's EBX, ESI, and EDI registers, * and perform a return to the CALLER of the thunk code (while removing * the given number of arguments from the caller's stack). */ static void FT_Exit(CONTEXT *context, int nPopArgs) { /* Return value is in EBX */ EAX_reg(context) = EBX_reg(context); /* Restore EBX, ESI, and EDI registers */ EBX_reg(context) = *(DWORD *)(EBP_reg(context) - 4); ESI_reg(context) = *(DWORD *)(EBP_reg(context) - 8); EDI_reg(context) = *(DWORD *)(EBP_reg(context) - 12); /* Clean up stack frame */ ESP_reg(context) = EBP_reg(context); EBP_reg(context) = STACK32_POP(context); /* Pop return address to CALLER of thunk code */ EIP_reg(context) = STACK32_POP(context); /* Remove arguments */ ESP_reg(context) += nPopArgs; /* Push return address back onto stack */ STACK32_PUSH(context, EIP_reg(context)); } REGS_ENTRYPOINT(FT_Exit0) { FT_Exit(context, 0); } REGS_ENTRYPOINT(FT_Exit4) { FT_Exit(context, 4); } REGS_ENTRYPOINT(FT_Exit8) { FT_Exit(context, 8); } REGS_ENTRYPOINT(FT_Exit12) { FT_Exit(context, 12); } REGS_ENTRYPOINT(FT_Exit16) { FT_Exit(context, 16); } REGS_ENTRYPOINT(FT_Exit20) { FT_Exit(context, 20); } REGS_ENTRYPOINT(FT_Exit24) { FT_Exit(context, 24); } REGS_ENTRYPOINT(FT_Exit28) { FT_Exit(context, 28); } REGS_ENTRYPOINT(FT_Exit32) { FT_Exit(context, 32); } REGS_ENTRYPOINT(FT_Exit36) { FT_Exit(context, 36); } REGS_ENTRYPOINT(FT_Exit40) { FT_Exit(context, 40); } REGS_ENTRYPOINT(FT_Exit44) { FT_Exit(context, 44); } REGS_ENTRYPOINT(FT_Exit48) { FT_Exit(context, 48); } REGS_ENTRYPOINT(FT_Exit52) { FT_Exit(context, 52); } REGS_ENTRYPOINT(FT_Exit56) { FT_Exit(context, 56); } /********************************************************************** * WOWCallback16 (KERNEL32.62)(WOW32.2) * Calls a win16 function with a single DWORD argument. * RETURNS * the return value */ DWORD WINAPI WOWCallback16( FARPROC16 fproc, /* [in] win16 function to call */ DWORD arg /* [in] single DWORD argument to function */ ) { DWORD ret; TRACE(thunk,"(%p,0x%08lx)...\n",fproc,arg); ret = Callbacks->CallWOWCallbackProc(fproc,arg); TRACE(thunk,"... returns %ld\n",ret); return ret; } /********************************************************************** * WOWCallback16Ex (KERNEL32.55)(WOW32.3) * Calls a function in 16bit code. * RETURNS * TRUE for success */ BOOL32 WINAPI WOWCallback16Ex( FARPROC16 vpfn16, /* [in] win16 function to call */ DWORD dwFlags, /* [in] flags */ DWORD cbArgs, /* [in] nr of arguments */ LPVOID pArgs, /* [in] pointer to arguments (LPDWORD) */ LPDWORD pdwRetCode /* [out] return value of win16 function */ ) { return Callbacks->CallWOWCallback16Ex(vpfn16,dwFlags,cbArgs,pArgs,pdwRetCode); } /*********************************************************************** * ThunkInitLS (KERNEL32.43) * A thunkbuffer link routine * The thunkbuf looks like: * * 00: DWORD length ? don't know exactly * 04: SEGPTR ptr ? where does it point to? * The pointer ptr is written into the first DWORD of 'thunk'. * (probably correct implemented) * [ok probably] * RETURNS * segmented pointer to thunk? */ DWORD WINAPI ThunkInitLS( LPDWORD thunk, /* [in] win32 thunk */ LPCSTR thkbuf, /* [in] thkbuffer name in win16 dll */ DWORD len, /* [in] thkbuffer length */ LPCSTR dll16, /* [in] name of win16 dll */ LPCSTR dll32 /* [in] name of win32 dll (FIXME: not used?) */ ) { LPDWORD addr; if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len ))) return 0; if (!addr[1]) return 0; *(DWORD*)thunk = addr[1]; return addr[1]; } /*********************************************************************** * Common32ThkLS (KERNEL32.45) * * This is another 32->16 thunk, independent of the QT_Thunk/FT_Thunk * style thunks. The basic difference is that the parameter conversion * is done completely on the *16-bit* side here. Thus we do not call * the 16-bit target directly, but call a common entry point instead. * This entry function then calls the target according to the target * number passed in the DI register. * * Input: EAX SEGPTR to the common 16-bit entry point * CX offset in thunk table (target number * 4) * DX error return value if execution fails (unclear???) * EDX.HI number of DWORD parameters * * (Note that we need to move the thunk table offset from CX to DI !) * * The called 16-bit stub expects its stack to look like this: * ... * (esp+40) 32-bit arguments * ... * (esp+8) 32 byte of stack space available as buffer * (esp) 8 byte return address for use with 0x66 lret * * The called 16-bit stub uses a 0x66 lret to return to 32-bit code, * and uses the EAX register to return a DWORD return value. * Thus we need to use a special assembly glue routine * (CallRegisterLongProc instead of CallRegisterShortProc). * * Finally, we return to the caller, popping the arguments off * the stack. * * FIXME: The called function uses EBX to return the number of * arguments that are to be popped off the caller's stack. * This is clobbered by the assembly glue, so we simply use * the original EDX.HI to get the number of arguments. * (Those two values should be equal anyway ...?) * */ REGS_ENTRYPOINT(Common32ThkLS) { CONTEXT context16; DWORD argsize; THDB *thdb = THREAD_Current(); memcpy(&context16,context,sizeof(context16)); DI_reg(&context16) = CX_reg(context); CS_reg(&context16) = HIWORD(EAX_reg(context)); IP_reg(&context16) = LOWORD(EAX_reg(context)); EBP_reg(&context16) = OFFSETOF( thdb->cur_stack ) + (WORD)&((STACK16FRAME*)0)->bp; argsize = HIWORD(EDX_reg(context)) * 4; /* FIXME: hack for stupid USER32 CallbackGlueLS routine */ if (EDX_reg(context) == EIP_reg(context)) argsize = 6 * 4; memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize, (LPBYTE)ESP_reg(context)+4, argsize ); EAX_reg(context) = Callbacks->CallRegisterLongProc(&context16, argsize + 32); /* Clean up caller's stack frame */ EIP_reg(context) = STACK32_POP(context); ESP_reg(context) += argsize; STACK32_PUSH(context, EIP_reg(context)); } /*********************************************************************** * OT_32ThkLSF (KERNEL32.40) * * YET Another 32->16 thunk. The difference to Common32ThkLS is that * argument processing is done on both the 32-bit and the 16-bit side: * The 32-bit side prepares arguments, copying them onto the stack. * * When this routine is called, the first word on the stack is the * number of argument bytes prepared by the 32-bit code, and EDX * contains the 16-bit target address. * * The called 16-bit routine is another relaycode, doing further * argument processing and then calling the real 16-bit target * whose address is stored at [bp-04]. * * The call proceeds using a normal CallRegisterShortProc. * After return from the 16-bit relaycode, the arguments need * to be copied *back* to the 32-bit stack, since the 32-bit * relaycode processes output parameters. * * Note that we copy twice the number of arguments, since some of the * 16-bit relaycodes in SYSTHUNK.DLL directly access the original * arguments of the caller! * * (Note that this function seems only to be used for * OLECLI32 -> OLECLI and OLESVR32 -> OLESVR thunking.) */ REGS_ENTRYPOINT(OT_32ThkLSF) { CONTEXT context16; DWORD argsize; THDB *thdb = THREAD_Current(); memcpy(&context16,context,sizeof(context16)); CS_reg(&context16) = HIWORD(EDX_reg(context)); IP_reg(&context16) = LOWORD(EDX_reg(context)); EBP_reg(&context16) = OFFSETOF( thdb->cur_stack ) + (WORD)&((STACK16FRAME*)0)->bp; argsize = 2 * *(WORD *)(ESP_reg(context) + 4) + 2; memcpy( ((LPBYTE)THREAD_STACK16(thdb))-argsize, (LPBYTE)ESP_reg(context)+4, argsize ); EAX_reg(context) = Callbacks->CallRegisterShortProc(&context16, argsize); memcpy( (LPBYTE)ESP_reg(context)+4, ((LPBYTE)THREAD_STACK16(thdb))-argsize, argsize ); } /*********************************************************************** * ThunkInitLSF (KERNEL32.41) * A thunk setup routine. * Expects a pointer to a preinitialized thunkbuffer in the first argument * looking like: * 00..03: unknown (pointer, check _41, _43, _46) * 04: EB1E jmp +0x20 * * 06..23: unknown (space for replacement code, check .90) * * 24:>E800000000 call offset 29 * 29:>58 pop eax ( target of call ) * 2A: 2D25000000 sub eax,0x00000025 ( now points to offset 4 ) * 2F: BAxxxxxxxx mov edx,xxxxxxxx * 34: 68yyyyyyyy push KERNEL32.90 * 39: C3 ret * * 3A: EB1E jmp +0x20 * 3E ... 59: unknown (space for replacement code?) * 5A: E8xxxxxxxx call <32bitoffset xxxxxxxx> * 5F: 5A pop edx * 60: 81EA25xxxxxx sub edx, 0x25xxxxxx * 66: 52 push edx * 67: 68xxxxxxxx push xxxxxxxx * 6C: 68yyyyyyyy push KERNEL32.89 * 71: C3 ret * 72: end? * This function checks if the code is there, and replaces the yyyyyyyy entries * by the functionpointers. * The thunkbuf looks like: * * 00: DWORD length ? don't know exactly * 04: SEGPTR ptr ? where does it point to? * The segpointer ptr is written into the first DWORD of 'thunk'. * [ok probably] * RETURNS * unclear, pointer to win16 thkbuffer? */ LPVOID WINAPI ThunkInitLSF( LPBYTE thunk, /* [in] win32 thunk */ LPCSTR thkbuf, /* [in] thkbuffer name in win16 dll */ DWORD len, /* [in] length of thkbuffer */ LPCSTR dll16, /* [in] name of win16 dll */ LPCSTR dll32 /* [in] name of win32 dll */ ) { HMODULE32 hkrnl32 = GetModuleHandle32A("KERNEL32"); LPDWORD addr,addr2; /* FIXME: add checks for valid code ... */ /* write pointers to kernel32.89 and kernel32.90 (+ordinal base of 1) */ *(DWORD*)(thunk+0x35) = (DWORD)GetProcAddress32(hkrnl32,(LPSTR)90); *(DWORD*)(thunk+0x6D) = (DWORD)GetProcAddress32(hkrnl32,(LPSTR)89); if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len ))) return 0; addr2 = PTR_SEG_TO_LIN(addr[1]); if (HIWORD(addr2)) *(DWORD*)thunk = (DWORD)addr2; return addr2; } /*********************************************************************** * FT_PrologPrime (KERNEL32.89) * * This function is called from the relay code installed by * ThunkInitLSF. It replaces the location from where it was * called by a standard FT_Prolog call stub (which is 'primed' * by inserting the correct target table pointer). * Finally, it calls that stub. * * Input: ECX target number + flags (passed through to FT_Prolog) * (ESP) offset of location where target table pointer * is stored, relative to the start of the relay code * (ESP+4) pointer to start of relay code * (this is where the FT_Prolog call stub gets written to) * * Note: The two DWORD arguments get popped from the stack. * */ REGS_ENTRYPOINT(FT_PrologPrime) { DWORD targetTableOffset = STACK32_POP(context); LPBYTE relayCode = (LPBYTE)STACK32_POP(context); DWORD *targetTable = *(DWORD **)(relayCode+targetTableOffset); DWORD targetNr = LOBYTE(ECX_reg(context)); _write_ftprolog(relayCode, targetTable); /* We should actually call the relay code now, */ /* but we skip it and go directly to FT_Prolog */ EDX_reg(context) = targetTable[targetNr]; __regs_FT_Prolog(context); } /*********************************************************************** * QT_ThunkPrime (KERNEL32.90) * * This function corresponds to FT_PrologPrime, but installs a * call stub for QT_Thunk instead. * * Input: (EBP-4) target number (passed through to QT_Thunk) * EDX target table pointer location offset * EAX start of relay code * */ REGS_ENTRYPOINT(QT_ThunkPrime) { DWORD targetTableOffset = EDX_reg(context); LPBYTE relayCode = (LPBYTE)EAX_reg(context); DWORD *targetTable = *(DWORD **)(relayCode+targetTableOffset); DWORD targetNr = LOBYTE(*(DWORD *)(EBP_reg(context) - 4)); _write_qtthunk(relayCode, targetTable); /* We should actually call the relay code now, */ /* but we skip it and go directly to QT_Thunk */ EDX_reg(context) = targetTable[targetNr]; __regs_QT_Thunk(context); } /*********************************************************************** * (KERNEL32.46) * Another thunkbuf link routine. * The start of the thunkbuf looks like this: * 00: DWORD length * 04: SEGPTR address for thunkbuffer pointer * [ok probably] */ VOID WINAPI ThunkInitSL( LPBYTE thunk, /* [in] start of thunkbuffer */ LPCSTR thkbuf, /* [in] name/ordinal of thunkbuffer in win16 dll */ DWORD len, /* [in] length of thunkbuffer */ LPCSTR dll16, /* [in] name of win16 dll containing the thkbuf */ LPCSTR dll32 /* [in] win32 dll. FIXME: strange, unused */ ) { LPDWORD addr; if (!(addr = _loadthunk( dll16, thkbuf, dll32, NULL, len ))) return; *(DWORD*)PTR_SEG_TO_LIN(addr[1]) = (DWORD)thunk; } /********************************************************************** * SSInit KERNEL.700 * RETURNS * TRUE for success. */ BOOL32 WINAPI SSInit() { return TRUE; } /********************************************************************** * SSOnBigStack KERNEL32.87 * Check if thunking is initialized (ss selector set up etc.) * We do that differently, so just return TRUE. * [ok] * RETURNS * TRUE for success. */ BOOL32 WINAPI SSOnBigStack() { TRACE(thunk, "Yes, thunking is initialized\n"); return TRUE; } /********************************************************************** * SSCall * One of the real thunking functions. This one seems to be for 32<->32 * thunks. It should probably be capable of crossing processboundaries. * * And YES, I've seen nr=48 (somewhere in the Win95 32<->16 OLE coupling) * [ok] */ DWORD WINAPIV SSCall( DWORD nr, /* [in] number of argument bytes */ DWORD flags, /* [in] FIXME: flags ? */ FARPROC32 fun, /* [in] function to call */ ... /* [in/out] arguments */ ) { DWORD i,ret; DWORD *args = ((DWORD *)&fun) + 1; if(TRACE_ON(thunk)){ dbg_decl_str(thunk, 256); for (i=0;ilong registers. * * 665A pop edx * 6668x arg2 x pushl * 6652 push edx * EAx arg1 x jmpf * * returns the startaddress of this thunk. * * Note, that they look very similair to the ones allocates by THUNK_Alloc. * RETURNS * segmented pointer to the start of the thunk */ DWORD WINAPI AllocSLCallback( DWORD finalizer, /* [in] finalizer function */ DWORD callback /* [in] callback function */ ) { LPBYTE x,thunk = HeapAlloc( GetProcessHeap(), 0, 32 ); WORD sel; x=thunk; *x++=0x66;*x++=0x5a; /* popl edx */ *x++=0x66;*x++=0x68;*(DWORD*)x=finalizer;x+=4; /* pushl finalizer */ *x++=0x66;*x++=0x52; /* pushl edx */ *x++=0xea;*(DWORD*)x=callback;x+=4; /* jmpf callback */ *(PDB32**)(thunk+18) = PROCESS_Current(); sel = SELECTOR_AllocBlock( thunk , 32, SEGMENT_CODE, FALSE, FALSE ); return (sel<<16)|0; } /********************************************************************** * FreeSLCallback (KERNEL32.274) * Frees the specified 16->32 callback */ void WINAPI FreeSLCallback( DWORD x /* [in] 16 bit callback (segmented pointer?) */ ) { FIXME(win32,"(0x%08lx): stub\n",x); } /********************************************************************** * GetTEBSelectorFS (KERNEL.475) * Set the 16-bit %fs to the 32-bit %fs (current TEB selector) */ VOID WINAPI GetTEBSelectorFS( CONTEXT *context ) { GET_FS( FS_reg(context) ); } /********************************************************************** * KERNEL_431 (KERNEL.431) * IsPeFormat (W32SYS.2) * Checks the passed filename if it is a PE format executeable * RETURNS * TRUE, if it is. * FALSE if not. */ BOOL16 WINAPI IsPeFormat( LPSTR fn, /* [in] filename to executeable */ HFILE16 hf16 /* [in] open file, if filename is NULL */ ) { IMAGE_DOS_HEADER mzh; HFILE32 hf=FILE_GetHandle32(hf16); OFSTRUCT ofs; DWORD xmagic; if (fn) { hf = OpenFile32(fn,&ofs,OF_READ); if (hf==HFILE_ERROR32) return FALSE; } _llseek32(hf,0,SEEK_SET); if (sizeof(mzh)!=_lread32(hf,&mzh,sizeof(mzh))) { _lclose32(hf); return FALSE; } if (mzh.e_magic!=IMAGE_DOS_SIGNATURE) { WARN(dosmem,"File has not got dos signature!\n"); _lclose32(hf); return FALSE; } _llseek32(hf,mzh.e_lfanew,SEEK_SET); if (sizeof(DWORD)!=_lread32(hf,&xmagic,sizeof(DWORD))) { _lclose32(hf); return FALSE; } _lclose32(hf); return (xmagic == IMAGE_NT_SIGNATURE); } /*********************************************************************** * WOWHandle32 (KERNEL32.57)(WOW32.16) * Converts a win16 handle of type into the respective win32 handle. * We currently just return this handle, since most handles are the same * for win16 and win32. * RETURNS * The new handle */ HANDLE32 WINAPI WOWHandle32( WORD handle, /* [in] win16 handle */ WOW_HANDLE_TYPE type /* [in] handle type */ ) { TRACE(win32,"(0x%04x,%d)\n",handle,type); return (HANDLE32)handle; } /*********************************************************************** * K32Thk1632Prolog (KERNEL32.492) */ REGS_ENTRYPOINT(K32Thk1632Prolog) { LPBYTE code = (LPBYTE)EIP_reg(context) - 5; /* Arrrgh! SYSTHUNK.DLL just has to re-implement another method of 16->32 thunks instead of using one of the standard methods! This means that SYSTHUNK.DLL itself switches to a 32-bit stack, and does a far call to the 32-bit code segment of OLECLI32/OLESVR32. Unfortunately, our CallTo/CallFrom mechanism is therefore completely bypassed, which means it will crash the next time the 32-bit OLE code thunks down again to 16-bit (this *will* happen!). The following hack tries to recognize this situation. This is possible since the called stubs in OLECLI32/OLESVR32 all look exactly the same: 00 E8xxxxxxxx call K32Thk1632Prolog 05 FF55FC call [ebp-04] 08 E8xxxxxxxx call K32Thk1632Epilog 0D 66CB retf If we recognize this situation, we try to simulate the actions of our CallTo/CallFrom mechanism by copying the 16-bit stack to our 32-bit stack, creating a proper STACK16FRAME and updating thdb->cur_stack. */ if ( code[5] == 0xFF && code[6] == 0x55 && code[7] == 0xFC && code[13] == 0x66 && code[14] == 0xCB) { WORD stackSel = NtCurrentTeb()->stack_sel; DWORD stackBase = GetSelectorBase(stackSel); THDB *thdb = THREAD_Current(); DWORD argSize = EBP_reg(context) - ESP_reg(context); char *stack16 = (char *)ESP_reg(context); char *stack32 = (char *)thdb->cur_stack - argSize; STACK16FRAME *frame16 = (STACK16FRAME *)stack16 - 1; TRACE(thunk, "before SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n", EBP_reg(context), ESP_reg(context), thdb->cur_stack); memset(frame16, '\0', sizeof(STACK16FRAME)); frame16->frame32 = (STACK32FRAME *)thdb->cur_stack; frame16->ebp = EBP_reg(context); memcpy(stack32, stack16, argSize); thdb->cur_stack = PTR_SEG_OFF_TO_SEGPTR(stackSel, (DWORD)frame16 - stackBase); ESP_reg(context) = (DWORD)stack32; EBP_reg(context) = ESP_reg(context) + argSize; TRACE(thunk, "after SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n", EBP_reg(context), ESP_reg(context), thdb->cur_stack); } SYSLEVEL_ReleaseWin16Lock(); } /*********************************************************************** * K32Thk1632Epilog (KERNEL32.491) */ REGS_ENTRYPOINT(K32Thk1632Epilog) { LPBYTE code = (LPBYTE)EIP_reg(context) - 13; SYSLEVEL_RestoreWin16Lock(); /* We undo the SYSTHUNK hack if necessary. See K32Thk1632Prolog. */ if ( code[5] == 0xFF && code[6] == 0x55 && code[7] == 0xFC && code[13] == 0x66 && code[14] == 0xCB) { THDB *thdb = THREAD_Current(); STACK16FRAME *frame16 = (STACK16FRAME *)PTR_SEG_TO_LIN(thdb->cur_stack); char *stack16 = (char *)(frame16 + 1); DWORD argSize = frame16->ebp - (DWORD)stack16; char *stack32 = (char *)frame16->frame32 - argSize; DWORD nArgsPopped = ESP_reg(context) - (DWORD)stack32; TRACE(thunk, "before SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n", EBP_reg(context), ESP_reg(context), thdb->cur_stack); thdb->cur_stack = (DWORD)frame16->frame32; ESP_reg(context) = (DWORD)stack16 + nArgsPopped; EBP_reg(context) = frame16->ebp; TRACE(thunk, "after SYSTHUNK hack: EBP: %08lx ESP: %08lx cur_stack: %08lx\n", EBP_reg(context), ESP_reg(context), thdb->cur_stack); } } /*********************************************************************** * UpdateResource32A (KERNEL32.707) */ BOOL32 WINAPI UpdateResource32A( HANDLE32 hUpdate, LPCSTR lpType, LPCSTR lpName, WORD wLanguage, LPVOID lpData, DWORD cbData) { FIXME(win32, ": stub\n"); SetLastError(ERROR_CALL_NOT_IMPLEMENTED); return FALSE; } /*********************************************************************** * UpdateResource32W (KERNEL32.708) */ BOOL32 WINAPI UpdateResource32W( HANDLE32 hUpdate, LPCWSTR lpType, LPCWSTR lpName, WORD wLanguage, LPVOID lpData, DWORD cbData) { FIXME(win32, ": stub\n"); SetLastError(ERROR_CALL_NOT_IMPLEMENTED); return FALSE; } /*********************************************************************** * WaitNamedPipe32A [KERNEL32.725] */ BOOL32 WINAPI WaitNamedPipe32A (LPCSTR lpNamedPipeName, DWORD nTimeOut) { FIXME (win32,"%s 0x%08lx\n",lpNamedPipeName,nTimeOut); SetLastError(ERROR_PIPE_NOT_CONNECTED); return FALSE; } /*********************************************************************** * WaitNamedPipe32W [KERNEL32.726] */ BOOL32 WINAPI WaitNamedPipe32W (LPCWSTR lpNamedPipeName, DWORD nTimeOut) { FIXME (win32,"%s 0x%08lx\n",debugstr_w(lpNamedPipeName),nTimeOut); SetLastError(ERROR_PIPE_NOT_CONNECTED); return FALSE; } /*********************************************************************** * GetBinaryType32A [KERNEL32.280] * * The GetBinaryType function determines whether a file is executable * or not and if it is it returns what type of executable it is. * The type of executable is a property that determines in which * subsystem an executable file runs under. * * lpApplicationName: points to a fully qualified path of the file to test * lpBinaryType: points to a variable that will receive the binary type info * * Binary types returned: * SCS_32BIT_BINARY: A win32 based application * SCS_DOS_BINARY: An MS-Dos based application * SCS_WOW_BINARY: A 16bit OS/2 based application * SCS_PIF_BINARY: A PIF file that executes an MS-Dos based app ( Not implemented ) * SCS_POSIX_BINARY: A POSIX based application ( Not implemented ) * SCS_OS216_BINARY: A 16bit Windows based application ( Not implemented ) * * Returns TRUE if the file is an executable in which case * the value pointed by lpBinaryType is set. * Returns FALSE if the file is not an executable or if the function fails. * * This function is not complete. It can only determine if a file * is a DOS, 32bit/16bit Windows executable. Also .COM file support * is not complete. * To do so it opens the file and reads in the header information * if the extended header information is not presend it will * assume that that the file is a DOS executable. * If the extended header information is present it will * determine if the file is an 16 or 32 bit Windows executable * by check the flags in the header. */ BOOL32 WINAPI GetBinaryType32A (LPCSTR lpApplicationName, LPDWORD lpBinaryType) { BOOL32 ret = FALSE; HFILE32 hfile; OFSTRUCT ofs; IMAGE_DOS_HEADER mz_header; char magic[4]; TRACE (win32,"%s\n",lpApplicationName); /* Sanity check. */ if( lpApplicationName == NULL || lpBinaryType == NULL ) { return FALSE; } /* Open the file indicated by lpApplicationName for reading. */ hfile = OpenFile32( lpApplicationName, &ofs, OF_READ ); /* If we cannot read the file return failed. */ if( hfile == HFILE_ERROR32 ) { return FALSE; } /* Seek to the start of the file and read the DOS header information. */ if( _llseek32( hfile, 0, SEEK_SET ) >= 0 && _lread32( hfile, &mz_header, sizeof(mz_header) ) == sizeof(mz_header) ) { /* Now that we have the header check the e_magic field * to see if this is a dos image. */ if( mz_header.e_magic == IMAGE_DOS_SIGNATURE ) { BOOL32 lfanewValid = FALSE; /* We do have a DOS image so we will now try to seek into * the file by the amount indicated by the field * "Offset to extended header" and read in the * "magic" field information at that location. * This will tell us if there is more header information * to read or not. */ /* But before we do we will make sure that header * structure encompasses the "Offset to extended header" * field. */ if( (mz_header.e_cparhdr<<4) >= sizeof(IMAGE_DOS_HEADER) ) { if( ( mz_header.e_crlc == 0 && mz_header.e_lfarlc == 0 ) || ( mz_header.e_lfarlc >= sizeof(IMAGE_DOS_HEADER) ) ) { if( mz_header.e_lfanew >= sizeof(IMAGE_DOS_HEADER) && _llseek32( hfile, mz_header.e_lfanew, SEEK_SET ) >= 0 && _lread32( hfile, magic, sizeof(magic) ) == sizeof(magic) ) { lfanewValid = TRUE; } } } if( lfanewValid == FALSE ) { /* If we cannot read this "extended header" we will * assume that we have a simple DOS executable. */ FIXME( win32, "Determine if this check is complete enough\n" ); *lpBinaryType = SCS_DOS_BINARY; ret = TRUE; } else { /* Reading the magic field succeeded so * we will not try to determine what type it is. */ if( *(DWORD*)magic == IMAGE_NT_SIGNATURE ) { /* This is an NT signature. */ *lpBinaryType = SCS_32BIT_BINARY; ret = TRUE; } else if( *(WORD*)magic == IMAGE_OS2_SIGNATURE ) { /* The IMAGE_OS2_SIGNATURE indicates that the * "extended header is a Windows executable (NE) * header. This is a bit misleading, but it is * documented in the SDK. ( for more details see * the neexe.h file ) */ /* Now we know that it is a Windows executable * we will read in the Windows header and * determine if it is a 16/32bit Windows executable. */ IMAGE_OS2_HEADER ne_header; if( _lread32( hfile, &ne_header, sizeof(ne_header) ) == sizeof(ne_header) ) { /* Check the format flag to determine if it is * Win32 or not. */ if( ne_header.format_flags & NE_FFLAGS_WIN32 ) { *lpBinaryType = SCS_32BIT_BINARY; ret = TRUE; } else { /* We will assume it is a 16bit Windows executable. * I'm not sure if this check is sufficient. */ FIXME( win32, "Determine if this check is complete enough\n" ); *lpBinaryType = SCS_WOW_BINARY; ret = TRUE; } } } } } } /* Close the file. */ CloseHandle( hfile ); return ret; } /*********************************************************************** * GetBinaryType32W [KERNEL32.281] * * See GetBinaryType32A. */ BOOL32 WINAPI GetBinaryType32W (LPCWSTR lpApplicationName, LPDWORD lpBinaryType) { BOOL32 ret = FALSE; LPSTR strNew = NULL; TRACE (win32,"%s\n",debugstr_w(lpApplicationName)); /* Sanity check. */ if( lpApplicationName == NULL || lpBinaryType == NULL ) { return FALSE; } /* Convert the wide string to a ascii string. */ strNew = HEAP_strdupWtoA( GetProcessHeap(), 0, lpApplicationName ); if( strNew != NULL ) { ret = GetBinaryType32A( strNew, lpBinaryType ); /* Free the allocated string. */ HeapFree( GetProcessHeap(), 0, strNew ); } return ret; }