/* * msvcrt.dll math functions * * Copyright 2000 Jon Griffiths * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA * * * For functions copied from musl libc (http://musl.libc.org/): * ==================================================== * Copyright 2005-2020 Rich Felker, et al. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * ==================================================== */ #include #include #include #include #include #include #include #include "msvcrt.h" #include "winternl.h" #include "unixlib.h" #include "wine/asm.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(msvcrt); #undef div #undef ldiv #define _DOMAIN 1 /* domain error in argument */ #define _SING 2 /* singularity */ #define _OVERFLOW 3 /* range overflow */ #define _UNDERFLOW 4 /* range underflow */ typedef int (CDECL *MSVCRT_matherr_func)(struct _exception *); static MSVCRT_matherr_func MSVCRT_default_matherr_func = NULL; static BOOL sse2_supported; static BOOL sse2_enabled; static const struct unix_funcs *unix_funcs; void msvcrt_init_math( void *module ) { sse2_supported = sse2_enabled = IsProcessorFeaturePresent( PF_XMMI64_INSTRUCTIONS_AVAILABLE ); __wine_init_unix_lib( module, DLL_PROCESS_ATTACH, NULL, &unix_funcs ); } /* Copied from musl: src/internal/libm.h */ static inline float fp_barrierf(float x) { volatile float y = x; return y; } /********************************************************************* * _matherr (CRTDLL.@) */ int CDECL _matherr(struct _exception *e) { return 0; } static double math_error(int type, const char *name, double arg1, double arg2, double retval) { struct _exception exception = {type, (char *)name, arg1, arg2, retval}; TRACE("(%d, %s, %g, %g, %g)\n", type, debugstr_a(name), arg1, arg2, retval); if (MSVCRT_default_matherr_func && MSVCRT_default_matherr_func(&exception)) return exception.retval; switch (type) { case _DOMAIN: *_errno() = EDOM; break; case _SING: case _OVERFLOW: *_errno() = ERANGE; break; case _UNDERFLOW: /* don't set errno */ break; default: ERR("Unhandled math error!\n"); } return exception.retval; } /********************************************************************* * __setusermatherr (MSVCRT.@) */ void CDECL __setusermatherr(MSVCRT_matherr_func func) { MSVCRT_default_matherr_func = func; TRACE("new matherr handler %p\n", func); } /********************************************************************* * _set_SSE2_enable (MSVCRT.@) */ int CDECL _set_SSE2_enable(int flag) { sse2_enabled = flag && sse2_supported; return sse2_enabled; } #if defined(_WIN64) # if _MSVCR_VER>=140 /********************************************************************* * _get_FMA3_enable (UCRTBASE.@) */ int CDECL _get_FMA3_enable(void) { FIXME("() stub\n"); return 0; } # endif # if _MSVCR_VER>=120 /********************************************************************* * _set_FMA3_enable (MSVCR120.@) */ int CDECL _set_FMA3_enable(int flag) { FIXME("(%x) stub\n", flag); return 0; } # endif #endif #if !defined(__i386__) || _MSVCR_VER>=120 /********************************************************************* * _chgsignf (MSVCRT.@) */ float CDECL _chgsignf( float num ) { union { float f; UINT32 i; } u = { num }; u.i ^= 0x80000000; return u.f; } /********************************************************************* * _copysignf (MSVCRT.@) * * Copied from musl: src/math/copysignf.c */ float CDECL _copysignf( float x, float y ) { union { float f; UINT32 i; } ux = { x }, uy = { y }; ux.i &= 0x7fffffff; ux.i |= uy.i & 0x80000000; return ux.f; } /********************************************************************* * _nextafterf (MSVCRT.@) */ float CDECL _nextafterf( float num, float next ) { if (!isfinite(num) || !isfinite(next)) *_errno() = EDOM; return unix_funcs->nextafterf( num, next ); } /********************************************************************* * _logbf (MSVCRT.@) */ float CDECL _logbf( float num ) { float ret = unix_funcs->logbf(num); if (isnan(num)) return math_error(_DOMAIN, "_logbf", num, 0, ret); if (!num) return math_error(_SING, "_logbf", num, 0, ret); return ret; } #endif #ifndef __i386__ /********************************************************************* * _fpclassf (MSVCRT.@) */ int CDECL _fpclassf( float num ) { union { float f; UINT32 i; } u = { num }; int e = u.i >> 23 & 0xff; int s = u.i >> 31; switch (e) { case 0: if (u.i << 1) return s ? _FPCLASS_ND : _FPCLASS_PD; return s ? _FPCLASS_NZ : _FPCLASS_PZ; case 0xff: if (u.i << 9) return ((u.i >> 22) & 1) ? _FPCLASS_QNAN : _FPCLASS_SNAN; return s ? _FPCLASS_NINF : _FPCLASS_PINF; default: return s ? _FPCLASS_NN : _FPCLASS_PN; } } /********************************************************************* * _finitef (MSVCRT.@) */ int CDECL _finitef( float num ) { union { float f; UINT32 i; } u = { num }; return (u.i & 0x7fffffff) < 0x7f800000; } /********************************************************************* * _isnanf (MSVCRT.@) */ int CDECL _isnanf( float num ) { union { float f; UINT32 i; } u = { num }; return (u.i & 0x7fffffff) > 0x7f800000; } /********************************************************************* * acosf (MSVCRT.@) * * Copied from musl: src/math/acosf.c */ static float acosf_R(float z) { static const float pS0 = 1.6666586697e-01, pS1 = -4.2743422091e-02, pS2 = -8.6563630030e-03, qS1 = -7.0662963390e-01; float p, q; p = z * (pS0 + z * (pS1 + z * pS2)); q = 1.0f + z * qS1; return p / q; } float CDECL acosf( float x ) { static const float pio2_hi = 1.5707962513e+00, pio2_lo = 7.5497894159e-08; float z, w, s, c, df; unsigned int hx, ix; hx = *(unsigned int*)&x; ix = hx & 0x7fffffff; /* |x| >= 1 or nan */ if (ix >= 0x3f800000) { if (ix == 0x3f800000) { if (hx >> 31) return 2 * pio2_lo + 2 * pio2_hi + 7.5231638453e-37; return 0; } if (isnan(x)) return x; return math_error(_DOMAIN, "acosf", x, 0, 0 / (x - x)); } /* |x| < 0.5 */ if (ix < 0x3f000000) { if (ix <= 0x32800000) /* |x| < 2**-26 */ return pio2_lo + pio2_hi + 7.5231638453e-37; return pio2_hi - (x - (pio2_lo - x * acosf_R(x * x))); } /* x < -0.5 */ if (hx >> 31) { z = (1 + x) * 0.5f; s = sqrtf(z); w = acosf_R(z) * s - pio2_lo; return 2 * (pio2_hi - (s + w)); } /* x > 0.5 */ z = (1 - x) * 0.5f; s = sqrtf(z); hx = *(unsigned int*)&s & 0xfffff000; df = *(float*)&hx; c = (z - df * df) / (s + df); w = acosf_R(z) * s + c; return 2 * (df + w); } /********************************************************************* * asinf (MSVCRT.@) * * Copied from musl: src/math/asinf.c */ static float asinf_R(float z) { /* coefficients for R(x^2) */ static const float pS0 = 1.6666586697e-01, pS1 = -4.2743422091e-02, pS2 = -8.6563630030e-03, qS1 = -7.0662963390e-01; float p, q; p = z * (pS0 + z * (pS1 + z * pS2)); q = 1.0f + z * qS1; return p / q; } float CDECL asinf( float x ) { static const double pio2 = 1.570796326794896558e+00; double s; float z; unsigned int hx, ix; hx = *(unsigned int*)&x; ix = hx & 0x7fffffff; if (ix >= 0x3f800000) { /* |x| >= 1 */ if (ix == 0x3f800000) /* |x| == 1 */ return x * pio2 + 7.5231638453e-37; /* asin(+-1) = +-pi/2 with inexact */ if (isnan(x)) return x; return math_error(_DOMAIN, "asinf", x, 0, 0 / (x - x)); } if (ix < 0x3f000000) { /* |x| < 0.5 */ /* if 0x1p-126 <= |x| < 0x1p-12, avoid raising underflow */ if (ix < 0x39800000 && ix >= 0x00800000) return x; return x + x * asinf_R(x * x); } /* 1 > |x| >= 0.5 */ z = (1 - fabsf(x)) * 0.5f; s = sqrt(z); x = pio2 - 2 * (s + s * asinf_R(z)); if (hx >> 31) return -x; return x; } /********************************************************************* * atanf (MSVCRT.@) * * Copied from musl: src/math/atanf.c */ float CDECL atanf( float x ) { static const float atanhi[] = { 4.6364760399e-01, 7.8539812565e-01, 9.8279368877e-01, 1.5707962513e+00, }; static const float atanlo[] = { 5.0121582440e-09, 3.7748947079e-08, 3.4473217170e-08, 7.5497894159e-08, }; static const float aT[] = { 3.3333328366e-01, -1.9999158382e-01, 1.4253635705e-01, -1.0648017377e-01, 6.1687607318e-02, }; float w, s1, s2, z; unsigned int ix, sign; int id; #if _MSVCR_VER == 0 if (isnan(x)) return math_error(_DOMAIN, "atanf", x, 0, x); #endif ix = *(unsigned int*)&x; sign = ix >> 31; ix &= 0x7fffffff; if (ix >= 0x4c800000) { /* if |x| >= 2**26 */ if (isnan(x)) return x; z = atanhi[3] + 7.5231638453e-37; return sign ? -z : z; } if (ix < 0x3ee00000) { /* |x| < 0.4375 */ if (ix < 0x39800000) { /* |x| < 2**-12 */ if (ix < 0x00800000) /* raise underflow for subnormal x */ fp_barrierf(x*x); return x; } id = -1; } else { x = fabsf(x); if (ix < 0x3f980000) { /* |x| < 1.1875 */ if (ix < 0x3f300000) { /* 7/16 <= |x| < 11/16 */ id = 0; x = (2.0f * x - 1.0f) / (2.0f + x); } else { /* 11/16 <= |x| < 19/16 */ id = 1; x = (x - 1.0f) / (x + 1.0f); } } else { if (ix < 0x401c0000) { /* |x| < 2.4375 */ id = 2; x = (x - 1.5f) / (1.0f + 1.5f * x); } else { /* 2.4375 <= |x| < 2**26 */ id = 3; x = -1.0f / x; } } } /* end of argument reduction */ z = x * x; w = z * z; /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ s1 = z * (aT[0] + w * (aT[2] + w * aT[4])); s2 = w * (aT[1] + w * aT[3]); if (id < 0) return x - x * (s1 + s2); z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x); return sign ? -z : z; } /********************************************************************* * atan2f (MSVCRT.@) * * Copied from musl: src/math/atan2f.c */ float CDECL atan2f( float y, float x ) { static const float pi = 3.1415927410e+00, pi_lo = -8.7422776573e-08; float z; unsigned int m, ix, iy; if (isnan(x) || isnan(y)) return x + y; ix = *(unsigned int*)&x; iy = *(unsigned int*)&y; if (ix == 0x3f800000) /* x=1.0 */ return atanf(y); m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */ ix &= 0x7fffffff; iy &= 0x7fffffff; /* when y = 0 */ if (iy == 0) { switch (m) { case 0: case 1: return y; /* atan(+-0,+anything)=+-0 */ case 2: return pi; /* atan(+0,-anything) = pi */ case 3: return -pi; /* atan(-0,-anything) =-pi */ } } /* when x = 0 */ if (ix == 0) return m & 1 ? -pi / 2 : pi / 2; /* when x is INF */ if (ix == 0x7f800000) { if (iy == 0x7f800000) { switch (m) { case 0: return pi / 4; /* atan(+INF,+INF) */ case 1: return -pi / 4; /* atan(-INF,+INF) */ case 2: return 3 * pi / 4; /*atan(+INF,-INF)*/ case 3: return -3 * pi / 4; /*atan(-INF,-INF)*/ } } else { switch (m) { case 0: return 0.0f; /* atan(+...,+INF) */ case 1: return -0.0f; /* atan(-...,+INF) */ case 2: return pi; /* atan(+...,-INF) */ case 3: return -pi; /* atan(-...,-INF) */ } } } /* |y/x| > 0x1p26 */ if (ix + (26 << 23) < iy || iy == 0x7f800000) return m & 1 ? -pi / 2 : pi / 2; /* z = atan(|y/x|) with correct underflow */ if ((m & 2) && iy + (26 << 23) < ix) /*|y/x| < 0x1p-26, x < 0 */ z = 0.0; else z = atanf(fabsf(y / x)); switch (m) { case 0: return z; /* atan(+,+) */ case 1: return -z; /* atan(-,+) */ case 2: return pi - (z - pi_lo); /* atan(+,-) */ default: /* case 3 */ return (z - pi_lo) - pi; /* atan(-,-) */ } } /********************************************************************* * cosf (MSVCRT.@) */ float CDECL cosf( float x ) { float ret = unix_funcs->cosf( x ); if (!isfinite(x)) return math_error(_DOMAIN, "cosf", x, 0, ret); return ret; } /********************************************************************* * coshf (MSVCRT.@) */ float CDECL coshf( float x ) { float ret = unix_funcs->coshf( x ); if (isnan(x)) return math_error(_DOMAIN, "coshf", x, 0, ret); return ret; } /********************************************************************* * expf (MSVCRT.@) */ float CDECL expf( float x ) { float ret = unix_funcs->expf( x ); if (isnan(x)) return math_error(_DOMAIN, "expf", x, 0, ret); if (isfinite(x) && !ret) return math_error(_UNDERFLOW, "expf", x, 0, ret); if (isfinite(x) && !isfinite(ret)) return math_error(_OVERFLOW, "expf", x, 0, ret); return ret; } /********************************************************************* * fmodf (MSVCRT.@) */ float CDECL fmodf( float x, float y ) { float ret = unix_funcs->fmodf( x, y ); if (!isfinite(x) || !isfinite(y)) return math_error(_DOMAIN, "fmodf", x, 0, ret); return ret; } /********************************************************************* * logf (MSVCRT.@) */ float CDECL logf( float x ) { float ret = unix_funcs->logf( x ); if (x < 0.0) return math_error(_DOMAIN, "logf", x, 0, ret); if (x == 0.0) return math_error(_SING, "logf", x, 0, ret); return ret; } /********************************************************************* * log10f (MSVCRT.@) */ float CDECL log10f( float x ) { float ret = unix_funcs->log10f( x ); if (x < 0.0) return math_error(_DOMAIN, "log10f", x, 0, ret); if (x == 0.0) return math_error(_SING, "log10f", x, 0, ret); return ret; } /********************************************************************* * powf (MSVCRT.@) */ float CDECL powf( float x, float y ) { float z = unix_funcs->powf(x,y); if (x < 0 && y != floorf(y)) return math_error(_DOMAIN, "powf", x, y, z); if (!x && isfinite(y) && y < 0) return math_error(_SING, "powf", x, y, z); if (isfinite(x) && isfinite(y) && !isfinite(z)) return math_error(_OVERFLOW, "powf", x, y, z); if (x && isfinite(x) && isfinite(y) && !z) return math_error(_UNDERFLOW, "powf", x, y, z); return z; } /********************************************************************* * sinf (MSVCRT.@) */ float CDECL sinf( float x ) { float ret = unix_funcs->sinf( x ); if (!isfinite(x)) return math_error(_DOMAIN, "sinf", x, 0, ret); return ret; } /********************************************************************* * sinhf (MSVCRT.@) */ float CDECL sinhf( float x ) { float ret = unix_funcs->sinhf( x ); if (isnan(x)) return math_error(_DOMAIN, "sinhf", x, 0, ret); return ret; } /********************************************************************* * sqrtf (MSVCRT.@) * * Copied from musl: src/math/sqrtf.c */ float CDECL sqrtf( float x ) { static const float tiny = 1.0e-30; float z; int sign = 0x80000000; int ix,s,q,m,t,i; unsigned int r; ix = *(int*)&x; /* take care of Inf and NaN */ if ((ix & 0x7f800000) == 0x7f800000 && (ix == 0x7f800000 || ix & 0x7fffff)) return x; /* take care of zero */ if (ix <= 0) { if ((ix & ~sign) == 0) return x; /* sqrt(+-0) = +-0 */ return math_error(_DOMAIN, "sqrtf", x, 0, (x - x) / (x - x)); /* sqrt(-ve) = sNaN */ } /* normalize x */ m = ix >> 23; if (m == 0) { /* subnormal x */ for (i = 0; (ix & 0x00800000) == 0; i++) ix <<= 1; m -= i - 1; } m -= 127; /* unbias exponent */ ix = (ix & 0x007fffff) | 0x00800000; if (m & 1) /* odd m, double x to make it even */ ix += ix; m >>= 1; /* m = [m/2] */ /* generate sqrt(x) bit by bit */ ix += ix; q = s = 0; /* q = sqrt(x) */ r = 0x01000000; /* r = moving bit from right to left */ while (r != 0) { t = s + r; if (t <= ix) { s = t + r; ix -= t; q += r; } ix += ix; r >>= 1; } /* use floating add to find out rounding direction */ if (ix != 0) { z = 1.0f - tiny; /* raise inexact flag */ if (z >= 1.0f) { z = 1.0f + tiny; if (z > 1.0f) q += 2; else q += q & 1; } } ix = (q >> 1) + 0x3f000000; r = ix + ((unsigned int)m << 23); z = *(float*)&r; return z; } /********************************************************************* * tanf (MSVCRT.@) */ float CDECL tanf( float x ) { float ret = unix_funcs->tanf(x); if (!isfinite(x)) return math_error(_DOMAIN, "tanf", x, 0, ret); return ret; } /********************************************************************* * tanhf (MSVCRT.@) */ float CDECL tanhf( float x ) { float ret = unix_funcs->tanhf(x); if (!isfinite(x)) return math_error(_DOMAIN, "tanhf", x, 0, ret); return ret; } /********************************************************************* * ceilf (MSVCRT.@) */ float CDECL ceilf( float x ) { return unix_funcs->ceilf(x); } /********************************************************************* * floorf (MSVCRT.@) */ float CDECL floorf( float x ) { return unix_funcs->floorf(x); } /********************************************************************* * frexpf (MSVCRT.@) */ float CDECL frexpf( float x, int *exp ) { return unix_funcs->frexpf( x, exp ); } /********************************************************************* * modff (MSVCRT.@) */ float CDECL modff( float x, float *iptr ) { return unix_funcs->modff( x, iptr ); } #endif #if !defined(__i386__) && !defined(__x86_64__) && (_MSVCR_VER == 0 || _MSVCR_VER >= 110) /********************************************************************* * fabsf (MSVCRT.@) * * Copied from musl: src/math/fabsf.c */ float CDECL fabsf( float x ) { union { float f; UINT32 i; } u = { x }; u.i &= 0x7fffffff; return u.f; } #endif /********************************************************************* * acos (MSVCRT.@) * * Copied from musl: src/math/acos.c */ static double acos_R(double z) { static const double pS0 = 1.66666666666666657415e-01, pS1 = -3.25565818622400915405e-01, pS2 = 2.01212532134862925881e-01, pS3 = -4.00555345006794114027e-02, pS4 = 7.91534994289814532176e-04, pS5 = 3.47933107596021167570e-05, qS1 = -2.40339491173441421878e+00, qS2 = 2.02094576023350569471e+00, qS3 = -6.88283971605453293030e-01, qS4 = 7.70381505559019352791e-02; double p, q; p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); return p/q; } double CDECL acos( double x ) { static const double pio2_hi = 1.57079632679489655800e+00, pio2_lo = 6.12323399573676603587e-17; double z, w, s, c, df; unsigned int hx, ix; ULONGLONG llx; hx = *(ULONGLONG*)&x >> 32; ix = hx & 0x7fffffff; /* |x| >= 1 or nan */ if (ix >= 0x3ff00000) { unsigned int lx; lx = *(ULONGLONG*)&x; if (((ix - 0x3ff00000) | lx) == 0) { /* acos(1)=0, acos(-1)=pi */ if (hx >> 31) return 2 * pio2_hi + 7.5231638452626401e-37; return 0; } if (isnan(x)) return x; return math_error(_DOMAIN, "acos", x, 0, 0 / (x - x)); } /* |x| < 0.5 */ if (ix < 0x3fe00000) { if (ix <= 0x3c600000) /* |x| < 2**-57 */ return pio2_hi + 7.5231638452626401e-37; return pio2_hi - (x - (pio2_lo - x * acos_R(x * x))); } /* x < -0.5 */ if (hx >> 31) { z = (1.0 + x) * 0.5; s = sqrt(z); w = acos_R(z) * s - pio2_lo; return 2 * (pio2_hi - (s + w)); } /* x > 0.5 */ z = (1.0 - x) * 0.5; s = sqrt(z); df = s; llx = (*(ULONGLONG*)&df >> 32) << 32; df = *(double*)&llx; c = (z - df * df) / (s + df); w = acos_R(z) * s + c; return 2 * (df + w); } /********************************************************************* * asin (MSVCRT.@) * * Copied from musl: src/math/asin.c */ static double asin_R(double z) { /* coefficients for R(x^2) */ static const double pS0 = 1.66666666666666657415e-01, pS1 = -3.25565818622400915405e-01, pS2 = 2.01212532134862925881e-01, pS3 = -4.00555345006794114027e-02, pS4 = 7.91534994289814532176e-04, pS5 = 3.47933107596021167570e-05, qS1 = -2.40339491173441421878e+00, qS2 = 2.02094576023350569471e+00, qS3 = -6.88283971605453293030e-01, qS4 = 7.70381505559019352791e-02; double p, q; p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); return p / q; } double CDECL asin( double x ) { static const double pio2_hi = 1.57079632679489655800e+00, pio2_lo = 6.12323399573676603587e-17; double z, r, s; unsigned int hx, ix; ULONGLONG llx; hx = *(ULONGLONG*)&x >> 32; ix = hx & 0x7fffffff; /* |x| >= 1 or nan */ if (ix >= 0x3ff00000) { unsigned int lx; lx = *(ULONGLONG*)&x; if (((ix - 0x3ff00000) | lx) == 0) /* asin(1) = +-pi/2 with inexact */ return x * pio2_hi + 7.5231638452626401e-37; if (isnan(x)) return x; return math_error(_DOMAIN, "asin", x, 0, 0 / (x - x)); } /* |x| < 0.5 */ if (ix < 0x3fe00000) { /* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */ if (ix < 0x3e500000 && ix >= 0x00100000) return x; return x + x * asin_R(x * x); } /* 1 > |x| >= 0.5 */ z = (1 - fabs(x)) * 0.5; s = sqrt(z); r = asin_R(z); if (ix >= 0x3fef3333) { /* if |x| > 0.975 */ x = pio2_hi - (2 * (s + s * r) - pio2_lo); } else { double f, c; /* f+c = sqrt(z) */ f = s; llx = (*(ULONGLONG*)&f >> 32) << 32; f = *(double*)&llx; c = (z - f * f) / (s + f); x = 0.5 * pio2_hi - (2 * s * r - (pio2_lo - 2 * c) - (0.5 * pio2_hi - 2 * f)); } if (hx >> 31) return -x; return x; } /********************************************************************* * atan (MSVCRT.@) * * Copied from musl: src/math/atan.c */ double CDECL atan( double x ) { static const double atanhi[] = { 4.63647609000806093515e-01, 7.85398163397448278999e-01, 9.82793723247329054082e-01, 1.57079632679489655800e+00, }; static const double atanlo[] = { 2.26987774529616870924e-17, 3.06161699786838301793e-17, 1.39033110312309984516e-17, 6.12323399573676603587e-17, }; static const double aT[] = { 3.33333333333329318027e-01, -1.99999999998764832476e-01, 1.42857142725034663711e-01, -1.11111104054623557880e-01, 9.09088713343650656196e-02, -7.69187620504482999495e-02, 6.66107313738753120669e-02, -5.83357013379057348645e-02, 4.97687799461593236017e-02, -3.65315727442169155270e-02, 1.62858201153657823623e-02, }; double w, s1, s2, z; unsigned int ix, sign; int id; #if _MSVCR_VER == 0 if (isnan(x)) return math_error(_DOMAIN, "atan", x, 0, x); #endif ix = *(ULONGLONG*)&x >> 32; sign = ix >> 31; ix &= 0x7fffffff; if (ix >= 0x44100000) { /* if |x| >= 2^66 */ if (isnan(x)) return x; z = atanhi[3] + 7.5231638452626401e-37; return sign ? -z : z; } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ if (ix < 0x3e400000) { /* |x| < 2^-27 */ if (ix < 0x00100000) /* raise underflow for subnormal x */ fp_barrierf((float)x); return x; } id = -1; } else { x = fabs(x); if (ix < 0x3ff30000) { /* |x| < 1.1875 */ if (ix < 0x3fe60000) { /* 7/16 <= |x| < 11/16 */ id = 0; x = (2.0 * x - 1.0) / (2.0 + x); } else { /* 11/16 <= |x| < 19/16 */ id = 1; x = (x - 1.0) / (x + 1.0); } } else { if (ix < 0x40038000) { /* |x| < 2.4375 */ id = 2; x = (x - 1.5) / (1.0 + 1.5 * x); } else { /* 2.4375 <= |x| < 2^66 */ id = 3; x = -1.0 / x; } } } /* end of argument reduction */ z = x * x; w = z * z; /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ s1 = z * (aT[0] + w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10]))))); s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9])))); if (id < 0) return x - x * (s1 + s2); z = atanhi[id] - (x * (s1 + s2) - atanlo[id] - x); return sign ? -z : z; } /********************************************************************* * atan2 (MSVCRT.@) * * Copied from musl: src/math/atan2.c */ double CDECL atan2( double y, double x ) { static const double pi = 3.1415926535897931160E+00, pi_lo = 1.2246467991473531772E-16; double z; unsigned int m, lx, ly, ix, iy; if (isnan(x) || isnan(y)) return x+y; ix = *(ULONGLONG*)&x >> 32; lx = *(ULONGLONG*)&x; iy = *(ULONGLONG*)&y >> 32; ly = *(ULONGLONG*)&y; if (((ix - 0x3ff00000) | lx) == 0) /* x = 1.0 */ return atan(y); m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */ ix = ix & 0x7fffffff; iy = iy & 0x7fffffff; /* when y = 0 */ if ((iy | ly) == 0) { switch(m) { case 0: case 1: return y; /* atan(+-0,+anything)=+-0 */ case 2: return pi; /* atan(+0,-anything) = pi */ case 3: return -pi; /* atan(-0,-anything) =-pi */ } } /* when x = 0 */ if ((ix | lx) == 0) return m & 1 ? -pi / 2 : pi / 2; /* when x is INF */ if (ix == 0x7ff00000) { if (iy == 0x7ff00000) { switch(m) { case 0: return pi / 4; /* atan(+INF,+INF) */ case 1: return -pi / 4; /* atan(-INF,+INF) */ case 2: return 3 * pi / 4; /* atan(+INF,-INF) */ case 3: return -3 * pi / 4; /* atan(-INF,-INF) */ } } else { switch(m) { case 0: return 0.0; /* atan(+...,+INF) */ case 1: return -0.0; /* atan(-...,+INF) */ case 2: return pi; /* atan(+...,-INF) */ case 3: return -pi; /* atan(-...,-INF) */ } } } /* |y/x| > 0x1p64 */ if (ix + (64 << 20) < iy || iy == 0x7ff00000) return m & 1 ? -pi / 2 : pi / 2; /* z = atan(|y/x|) without spurious underflow */ if ((m & 2) && iy + (64 << 20) < ix) /* |y/x| < 0x1p-64, x<0 */ z = 0; else z = atan(fabs(y / x)); switch (m) { case 0: return z; /* atan(+,+) */ case 1: return -z; /* atan(-,+) */ case 2: return pi - (z - pi_lo); /* atan(+,-) */ default: /* case 3 */ return (z - pi_lo) - pi; /* atan(-,-) */ } } /********************************************************************* * cos (MSVCRT.@) */ double CDECL cos( double x ) { double ret = unix_funcs->cos( x ); if (!isfinite(x)) return math_error(_DOMAIN, "cos", x, 0, ret); return ret; } /********************************************************************* * cosh (MSVCRT.@) */ double CDECL cosh( double x ) { double ret = unix_funcs->cosh( x ); if (isnan(x)) return math_error(_DOMAIN, "cosh", x, 0, ret); return ret; } /********************************************************************* * exp (MSVCRT.@) */ double CDECL exp( double x ) { double ret = unix_funcs->exp( x ); if (isnan(x)) return math_error(_DOMAIN, "exp", x, 0, ret); if (isfinite(x) && !ret) return math_error(_UNDERFLOW, "exp", x, 0, ret); if (isfinite(x) && !isfinite(ret)) return math_error(_OVERFLOW, "exp", x, 0, ret); return ret; } /********************************************************************* * fmod (MSVCRT.@) */ double CDECL fmod( double x, double y ) { double ret = unix_funcs->fmod( x, y ); if (!isfinite(x) || !isfinite(y)) return math_error(_DOMAIN, "fmod", x, y, ret); return ret; } /********************************************************************* * log (MSVCRT.@) */ double CDECL log( double x ) { double ret = unix_funcs->log( x ); if (x < 0.0) return math_error(_DOMAIN, "log", x, 0, ret); if (x == 0.0) return math_error(_SING, "log", x, 0, ret); return ret; } /********************************************************************* * log10 (MSVCRT.@) */ double CDECL log10( double x ) { double ret = unix_funcs->log10( x ); if (x < 0.0) return math_error(_DOMAIN, "log10", x, 0, ret); if (x == 0.0) return math_error(_SING, "log10", x, 0, ret); return ret; } /********************************************************************* * pow (MSVCRT.@) */ double CDECL pow( double x, double y ) { double z = unix_funcs->pow(x,y); if (x < 0 && y != floor(y)) return math_error(_DOMAIN, "pow", x, y, z); if (!x && isfinite(y) && y < 0) return math_error(_SING, "pow", x, y, z); if (isfinite(x) && isfinite(y) && !isfinite(z)) return math_error(_OVERFLOW, "pow", x, y, z); if (x && isfinite(x) && isfinite(y) && !z) return math_error(_UNDERFLOW, "pow", x, y, z); return z; } /********************************************************************* * sin (MSVCRT.@) */ double CDECL sin( double x ) { double ret = unix_funcs->sin( x ); if (!isfinite(x)) return math_error(_DOMAIN, "sin", x, 0, ret); return ret; } /********************************************************************* * sinh (MSVCRT.@) */ double CDECL sinh( double x ) { double ret = unix_funcs->sinh( x ); if (isnan(x)) return math_error(_DOMAIN, "sinh", x, 0, ret); return ret; } /********************************************************************* * sqrt (MSVCRT.@) * * Copied from musl: src/math/sqrt.c */ double CDECL sqrt( double x ) { static const double tiny = 1.0e-300; double z; int sign = 0x80000000; int ix0,s0,q,m,t,i; unsigned int r,t1,s1,ix1,q1; ULONGLONG ix; ix = *(ULONGLONG*)&x; ix0 = ix >> 32; ix1 = ix; /* take care of Inf and NaN */ if (isnan(x) || (isinf(x) && x > 0)) return x; /* take care of zero */ if (ix0 <= 0) { if (((ix0 & ~sign) | ix1) == 0) return x; /* sqrt(+-0) = +-0 */ if (ix0 < 0) return math_error(_DOMAIN, "sqrt", x, 0, (x - x) / (x - x)); } /* normalize x */ m = ix0 >> 20; if (m == 0) { /* subnormal x */ while (ix0 == 0) { m -= 21; ix0 |= (ix1 >> 11); ix1 <<= 21; } for (i=0; (ix0 & 0x00100000) == 0; i++) ix0 <<= 1; m -= i - 1; ix0 |= ix1 >> (32 - i); ix1 <<= i; } m -= 1023; /* unbias exponent */ ix0 = (ix0 & 0x000fffff) | 0x00100000; if (m & 1) { /* odd m, double x to make it even */ ix0 += ix0 + ((ix1 & sign) >> 31); ix1 += ix1; } m >>= 1; /* m = [m/2] */ /* generate sqrt(x) bit by bit */ ix0 += ix0 + ((ix1 & sign) >> 31); ix1 += ix1; q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ r = 0x00200000; /* r = moving bit from right to left */ while (r != 0) { t = s0 + r; if (t <= ix0) { s0 = t + r; ix0 -= t; q += r; } ix0 += ix0 + ((ix1 & sign) >> 31); ix1 += ix1; r >>= 1; } r = sign; while (r != 0) { t1 = s1 + r; t = s0; if (t < ix0 || (t == ix0 && t1 <= ix1)) { s1 = t1 + r; if ((t1&sign) == sign && (s1 & sign) == 0) s0++; ix0 -= t; if (ix1 < t1) ix0--; ix1 -= t1; q1 += r; } ix0 += ix0 + ((ix1 & sign) >> 31); ix1 += ix1; r >>= 1; } /* use floating add to find out rounding direction */ if ((ix0 | ix1) != 0) { z = 1.0 - tiny; /* raise inexact flag */ if (z >= 1.0) { z = 1.0 + tiny; if (q1 == (unsigned int)0xffffffff) { q1 = 0; q++; } else if (z > 1.0) { if (q1 == (unsigned int)0xfffffffe) q++; q1 += 2; } else q1 += q1 & 1; } } ix0 = (q >> 1) + 0x3fe00000; ix1 = q1 >> 1; if (q & 1) ix1 |= sign; ix = ix0 + ((unsigned int)m << 20); ix <<= 32; ix |= ix1; return *(double*)&ix; } /********************************************************************* * tan (MSVCRT.@) */ double CDECL tan( double x ) { double ret = unix_funcs->tan(x); if (!isfinite(x)) return math_error(_DOMAIN, "tan", x, 0, ret); return ret; } /********************************************************************* * tanh (MSVCRT.@) */ double CDECL tanh( double x ) { double ret = unix_funcs->tanh(x); if (isnan(x)) return math_error(_DOMAIN, "tanh", x, 0, ret); return ret; } #if (defined(__GNUC__) || defined(__clang__)) && defined(__i386__) #define CREATE_FPU_FUNC1(name, call) \ __ASM_GLOBAL_FUNC(name, \ "pushl %ebp\n\t" \ __ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \ __ASM_CFI(".cfi_rel_offset %ebp,0\n\t") \ "movl %esp, %ebp\n\t" \ __ASM_CFI(".cfi_def_cfa_register %ebp\n\t") \ "subl $68, %esp\n\t" /* sizeof(double)*8 + sizeof(int) */ \ "fstpl (%esp)\n\t" /* store function argument */ \ "fwait\n\t" \ "movl $1, %ecx\n\t" /* empty FPU stack */ \ "1:\n\t" \ "fxam\n\t" \ "fstsw %ax\n\t" \ "and $0x4500, %ax\n\t" \ "cmp $0x4100, %ax\n\t" \ "je 2f\n\t" \ "fstpl (%esp,%ecx,8)\n\t" \ "fwait\n\t" \ "incl %ecx\n\t" \ "jmp 1b\n\t" \ "2:\n\t" \ "movl %ecx, -4(%ebp)\n\t" \ "call " __ASM_NAME( #call ) "\n\t" \ "movl -4(%ebp), %ecx\n\t" \ "fstpl (%esp)\n\t" /* save result */ \ "3:\n\t" /* restore FPU stack */ \ "decl %ecx\n\t" \ "fldl (%esp,%ecx,8)\n\t" \ "cmpl $0, %ecx\n\t" \ "jne 3b\n\t" \ "leave\n\t" \ __ASM_CFI(".cfi_def_cfa %esp,4\n\t") \ __ASM_CFI(".cfi_same_value %ebp\n\t") \ "ret") #define CREATE_FPU_FUNC2(name, call) \ __ASM_GLOBAL_FUNC(name, \ "pushl %ebp\n\t" \ __ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") \ __ASM_CFI(".cfi_rel_offset %ebp,0\n\t") \ "movl %esp, %ebp\n\t" \ __ASM_CFI(".cfi_def_cfa_register %ebp\n\t") \ "subl $68, %esp\n\t" /* sizeof(double)*8 + sizeof(int) */ \ "fstpl 8(%esp)\n\t" /* store function argument */ \ "fwait\n\t" \ "fstpl (%esp)\n\t" \ "fwait\n\t" \ "movl $2, %ecx\n\t" /* empty FPU stack */ \ "1:\n\t" \ "fxam\n\t" \ "fstsw %ax\n\t" \ "and $0x4500, %ax\n\t" \ "cmp $0x4100, %ax\n\t" \ "je 2f\n\t" \ "fstpl (%esp,%ecx,8)\n\t" \ "fwait\n\t" \ "incl %ecx\n\t" \ "jmp 1b\n\t" \ "2:\n\t" \ "movl %ecx, -4(%ebp)\n\t" \ "call " __ASM_NAME( #call ) "\n\t" \ "movl -4(%ebp), %ecx\n\t" \ "fstpl 8(%esp)\n\t" /* save result */ \ "3:\n\t" /* restore FPU stack */ \ "decl %ecx\n\t" \ "fldl (%esp,%ecx,8)\n\t" \ "cmpl $1, %ecx\n\t" \ "jne 3b\n\t" \ "leave\n\t" \ __ASM_CFI(".cfi_def_cfa %esp,4\n\t") \ __ASM_CFI(".cfi_same_value %ebp\n\t") \ "ret") CREATE_FPU_FUNC1(_CIacos, acos) CREATE_FPU_FUNC1(_CIasin, asin) CREATE_FPU_FUNC1(_CIatan, atan) CREATE_FPU_FUNC2(_CIatan2, atan2) CREATE_FPU_FUNC1(_CIcos, cos) CREATE_FPU_FUNC1(_CIcosh, cosh) CREATE_FPU_FUNC1(_CIexp, exp) CREATE_FPU_FUNC2(_CIfmod, fmod) CREATE_FPU_FUNC1(_CIlog, log) CREATE_FPU_FUNC1(_CIlog10, log10) CREATE_FPU_FUNC2(_CIpow, pow) CREATE_FPU_FUNC1(_CIsin, sin) CREATE_FPU_FUNC1(_CIsinh, sinh) CREATE_FPU_FUNC1(_CIsqrt, sqrt) CREATE_FPU_FUNC1(_CItan, tan) CREATE_FPU_FUNC1(_CItanh, tanh) __ASM_GLOBAL_FUNC(_ftol, "pushl %ebp\n\t" __ASM_CFI(".cfi_adjust_cfa_offset 4\n\t") __ASM_CFI(".cfi_rel_offset %ebp,0\n\t") "movl %esp, %ebp\n\t" __ASM_CFI(".cfi_def_cfa_register %ebp\n\t") "subl $12, %esp\n\t" /* sizeof(LONGLONG) + 2*sizeof(WORD) */ "fnstcw (%esp)\n\t" "mov (%esp), %ax\n\t" "or $0xc00, %ax\n\t" "mov %ax, 2(%esp)\n\t" "fldcw 2(%esp)\n\t" "fistpq 4(%esp)\n\t" "fldcw (%esp)\n\t" "movl 4(%esp), %eax\n\t" "movl 8(%esp), %edx\n\t" "leave\n\t" __ASM_CFI(".cfi_def_cfa %esp,4\n\t") __ASM_CFI(".cfi_same_value %ebp\n\t") "ret") #endif /* (defined(__GNUC__) || defined(__clang__)) && defined(__i386__) */ /********************************************************************* * _fpclass (MSVCRT.@) */ int CDECL _fpclass(double num) { union { double f; UINT64 i; } u = { num }; int e = u.i >> 52 & 0x7ff; int s = u.i >> 63; switch (e) { case 0: if (u.i << 1) return s ? _FPCLASS_ND : _FPCLASS_PD; return s ? _FPCLASS_NZ : _FPCLASS_PZ; case 0x7ff: if (u.i << 12) return ((u.i >> 51) & 1) ? _FPCLASS_QNAN : _FPCLASS_SNAN; return s ? _FPCLASS_NINF : _FPCLASS_PINF; default: return s ? _FPCLASS_NN : _FPCLASS_PN; } } /********************************************************************* * _rotl (MSVCRT.@) */ unsigned int CDECL MSVCRT__rotl(unsigned int num, int shift) { shift &= 31; return (num << shift) | (num >> (32-shift)); } /********************************************************************* * _lrotl (MSVCRT.@) */ __msvcrt_ulong CDECL MSVCRT__lrotl(__msvcrt_ulong num, int shift) { shift &= 0x1f; return (num << shift) | (num >> (32-shift)); } /********************************************************************* * _lrotr (MSVCRT.@) */ __msvcrt_ulong CDECL MSVCRT__lrotr(__msvcrt_ulong num, int shift) { shift &= 0x1f; return (num >> shift) | (num << (32-shift)); } /********************************************************************* * _rotr (MSVCRT.@) */ unsigned int CDECL MSVCRT__rotr(unsigned int num, int shift) { shift &= 0x1f; return (num >> shift) | (num << (32-shift)); } /********************************************************************* * _rotl64 (MSVCRT.@) */ unsigned __int64 CDECL MSVCRT__rotl64(unsigned __int64 num, int shift) { shift &= 63; return (num << shift) | (num >> (64-shift)); } /********************************************************************* * _rotr64 (MSVCRT.@) */ unsigned __int64 CDECL MSVCRT__rotr64(unsigned __int64 num, int shift) { shift &= 63; return (num >> shift) | (num << (64-shift)); } /********************************************************************* * abs (MSVCRT.@) */ int CDECL abs( int n ) { return n >= 0 ? n : -n; } /********************************************************************* * labs (MSVCRT.@) */ __msvcrt_long CDECL labs( __msvcrt_long n ) { return n >= 0 ? n : -n; } #if _MSVCR_VER>=100 /********************************************************************* * llabs (MSVCR100.@) */ __int64 CDECL llabs( __int64 n ) { return n >= 0 ? n : -n; } #endif #if _MSVCR_VER>=120 /********************************************************************* * imaxabs (MSVCR120.@) */ intmax_t CDECL imaxabs( intmax_t n ) { return n >= 0 ? n : -n; } #endif /********************************************************************* * _abs64 (MSVCRT.@) */ __int64 CDECL _abs64( __int64 n ) { return n >= 0 ? n : -n; } /********************************************************************* * _logb (MSVCRT.@) */ double CDECL _logb(double num) { double ret = unix_funcs->logb(num); if (isnan(num)) return math_error(_DOMAIN, "_logb", num, 0, ret); if (!num) return math_error(_SING, "_logb", num, 0, ret); return ret; } /********************************************************************* * _hypot (MSVCRT.@) */ double CDECL _hypot(double x, double y) { /* FIXME: errno handling */ return unix_funcs->hypot( x, y ); } /********************************************************************* * _hypotf (MSVCRT.@) */ float CDECL _hypotf(float x, float y) { /* FIXME: errno handling */ return unix_funcs->hypotf( x, y ); } /********************************************************************* * ceil (MSVCRT.@) */ double CDECL ceil( double x ) { return unix_funcs->ceil(x); } /********************************************************************* * floor (MSVCRT.@) */ double CDECL floor( double x ) { return unix_funcs->floor(x); } /********************************************************************* * fma (MSVCRT.@) */ double CDECL fma( double x, double y, double z ) { double w = unix_funcs->fma(x, y, z); if ((isinf(x) && y == 0) || (x == 0 && isinf(y))) *_errno() = EDOM; else if (isinf(x) && isinf(z) && x != z) *_errno() = EDOM; else if (isinf(y) && isinf(z) && y != z) *_errno() = EDOM; return w; } /********************************************************************* * fmaf (MSVCRT.@) */ float CDECL fmaf( float x, float y, float z ) { float w = unix_funcs->fmaf(x, y, z); if ((isinf(x) && y == 0) || (x == 0 && isinf(y))) *_errno() = EDOM; else if (isinf(x) && isinf(z) && x != z) *_errno() = EDOM; else if (isinf(y) && isinf(z) && y != z) *_errno() = EDOM; return w; } /********************************************************************* * fabs (MSVCRT.@) * * Copied from musl: src/math/fabsf.c */ double CDECL fabs( double x ) { union { double f; UINT64 i; } u = { x }; u.i &= ~0ull >> 1; return u.f; } /********************************************************************* * frexp (MSVCRT.@) */ double CDECL frexp( double x, int *exp ) { return unix_funcs->frexp( x, exp ); } /********************************************************************* * modf (MSVCRT.@) */ double CDECL modf( double x, double *iptr ) { return unix_funcs->modf( x, iptr ); } /********************************************************************** * _statusfp2 (MSVCRT.@) * * Not exported by native msvcrt, added in msvcr80. */ #if defined(__i386__) || defined(__x86_64__) void CDECL _statusfp2( unsigned int *x86_sw, unsigned int *sse2_sw ) { #if defined(__GNUC__) || defined(__clang__) unsigned int flags; unsigned long fpword; if (x86_sw) { __asm__ __volatile__( "fstsw %0" : "=m" (fpword) ); flags = 0; if (fpword & 0x1) flags |= _SW_INVALID; if (fpword & 0x2) flags |= _SW_DENORMAL; if (fpword & 0x4) flags |= _SW_ZERODIVIDE; if (fpword & 0x8) flags |= _SW_OVERFLOW; if (fpword & 0x10) flags |= _SW_UNDERFLOW; if (fpword & 0x20) flags |= _SW_INEXACT; *x86_sw = flags; } if (!sse2_sw) return; if (sse2_supported) { __asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) ); flags = 0; if (fpword & 0x1) flags |= _SW_INVALID; if (fpword & 0x2) flags |= _SW_DENORMAL; if (fpword & 0x4) flags |= _SW_ZERODIVIDE; if (fpword & 0x8) flags |= _SW_OVERFLOW; if (fpword & 0x10) flags |= _SW_UNDERFLOW; if (fpword & 0x20) flags |= _SW_INEXACT; *sse2_sw = flags; } else *sse2_sw = 0; #else FIXME( "not implemented\n" ); #endif } #endif /********************************************************************** * _statusfp (MSVCRT.@) */ unsigned int CDECL _statusfp(void) { unsigned int flags = 0; #if defined(__i386__) || defined(__x86_64__) unsigned int x86_sw, sse2_sw; _statusfp2( &x86_sw, &sse2_sw ); /* FIXME: there's no definition for ambiguous status, just return all status bits for now */ flags = x86_sw | sse2_sw; #elif defined(__aarch64__) ULONG_PTR fpsr; __asm__ __volatile__( "mrs %0, fpsr" : "=r" (fpsr) ); if (fpsr & 0x1) flags |= _SW_INVALID; if (fpsr & 0x2) flags |= _SW_ZERODIVIDE; if (fpsr & 0x4) flags |= _SW_OVERFLOW; if (fpsr & 0x8) flags |= _SW_UNDERFLOW; if (fpsr & 0x10) flags |= _SW_INEXACT; if (fpsr & 0x80) flags |= _SW_DENORMAL; #else FIXME( "not implemented\n" ); #endif return flags; } /********************************************************************* * _clearfp (MSVCRT.@) */ unsigned int CDECL _clearfp(void) { unsigned int flags = 0; #if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) unsigned long fpword; __asm__ __volatile__( "fnstsw %0; fnclex" : "=m" (fpword) ); if (fpword & 0x1) flags |= _SW_INVALID; if (fpword & 0x2) flags |= _SW_DENORMAL; if (fpword & 0x4) flags |= _SW_ZERODIVIDE; if (fpword & 0x8) flags |= _SW_OVERFLOW; if (fpword & 0x10) flags |= _SW_UNDERFLOW; if (fpword & 0x20) flags |= _SW_INEXACT; if (sse2_supported) { __asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) ); if (fpword & 0x1) flags |= _SW_INVALID; if (fpword & 0x2) flags |= _SW_DENORMAL; if (fpword & 0x4) flags |= _SW_ZERODIVIDE; if (fpword & 0x8) flags |= _SW_OVERFLOW; if (fpword & 0x10) flags |= _SW_UNDERFLOW; if (fpword & 0x20) flags |= _SW_INEXACT; fpword &= ~0x3f; __asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) ); } #elif defined(__aarch64__) ULONG_PTR fpsr; __asm__ __volatile__( "mrs %0, fpsr" : "=r" (fpsr) ); if (fpsr & 0x1) flags |= _SW_INVALID; if (fpsr & 0x2) flags |= _SW_ZERODIVIDE; if (fpsr & 0x4) flags |= _SW_OVERFLOW; if (fpsr & 0x8) flags |= _SW_UNDERFLOW; if (fpsr & 0x10) flags |= _SW_INEXACT; if (fpsr & 0x80) flags |= _SW_DENORMAL; fpsr &= ~0x9f; __asm__ __volatile__( "msr fpsr, %0" :: "r" (fpsr) ); #else FIXME( "not implemented\n" ); #endif return flags; } /********************************************************************* * __fpecode (MSVCRT.@) */ int * CDECL __fpecode(void) { return &msvcrt_get_thread_data()->fpecode; } /********************************************************************* * ldexp (MSVCRT.@) */ double CDECL ldexp(double num, int exp) { double z = unix_funcs->ldexp(num,exp); if (isfinite(num) && !isfinite(z)) return math_error(_OVERFLOW, "ldexp", num, exp, z); if (num && isfinite(num) && !z) return math_error(_UNDERFLOW, "ldexp", num, exp, z); if (z == 0 && signbit(z)) z = 0.0; /* Convert -0 -> +0 */ return z; } /********************************************************************* * _cabs (MSVCRT.@) */ double CDECL _cabs(struct _complex num) { return sqrt(num.x * num.x + num.y * num.y); } /********************************************************************* * _chgsign (MSVCRT.@) */ double CDECL _chgsign(double num) { union { double f; UINT64 i; } u = { num }; u.i ^= 1ull << 63; return u.f; } /********************************************************************* * __control87_2 (MSVCR80.@) * * Not exported by native msvcrt, added in msvcr80. */ #ifdef __i386__ int CDECL __control87_2( unsigned int newval, unsigned int mask, unsigned int *x86_cw, unsigned int *sse2_cw ) { #if defined(__GNUC__) || defined(__clang__) unsigned long fpword; unsigned int flags; unsigned int old_flags; if (x86_cw) { __asm__ __volatile__( "fstcw %0" : "=m" (fpword) ); /* Convert into mask constants */ flags = 0; if (fpword & 0x1) flags |= _EM_INVALID; if (fpword & 0x2) flags |= _EM_DENORMAL; if (fpword & 0x4) flags |= _EM_ZERODIVIDE; if (fpword & 0x8) flags |= _EM_OVERFLOW; if (fpword & 0x10) flags |= _EM_UNDERFLOW; if (fpword & 0x20) flags |= _EM_INEXACT; switch (fpword & 0xc00) { case 0xc00: flags |= _RC_UP|_RC_DOWN; break; case 0x800: flags |= _RC_UP; break; case 0x400: flags |= _RC_DOWN; break; } switch (fpword & 0x300) { case 0x0: flags |= _PC_24; break; case 0x200: flags |= _PC_53; break; case 0x300: flags |= _PC_64; break; } if (fpword & 0x1000) flags |= _IC_AFFINE; TRACE( "x86 flags=%08x newval=%08x mask=%08x\n", flags, newval, mask ); if (mask) { flags = (flags & ~mask) | (newval & mask); /* Convert (masked) value back to fp word */ fpword = 0; if (flags & _EM_INVALID) fpword |= 0x1; if (flags & _EM_DENORMAL) fpword |= 0x2; if (flags & _EM_ZERODIVIDE) fpword |= 0x4; if (flags & _EM_OVERFLOW) fpword |= 0x8; if (flags & _EM_UNDERFLOW) fpword |= 0x10; if (flags & _EM_INEXACT) fpword |= 0x20; switch (flags & _MCW_RC) { case _RC_UP|_RC_DOWN: fpword |= 0xc00; break; case _RC_UP: fpword |= 0x800; break; case _RC_DOWN: fpword |= 0x400; break; } switch (flags & _MCW_PC) { case _PC_64: fpword |= 0x300; break; case _PC_53: fpword |= 0x200; break; case _PC_24: fpword |= 0x0; break; } if (flags & _IC_AFFINE) fpword |= 0x1000; __asm__ __volatile__( "fldcw %0" : : "m" (fpword) ); } *x86_cw = flags; } if (!sse2_cw) return 1; if (sse2_supported) { __asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) ); /* Convert into mask constants */ flags = 0; if (fpword & 0x80) flags |= _EM_INVALID; if (fpword & 0x100) flags |= _EM_DENORMAL; if (fpword & 0x200) flags |= _EM_ZERODIVIDE; if (fpword & 0x400) flags |= _EM_OVERFLOW; if (fpword & 0x800) flags |= _EM_UNDERFLOW; if (fpword & 0x1000) flags |= _EM_INEXACT; switch (fpword & 0x6000) { case 0x6000: flags |= _RC_UP|_RC_DOWN; break; case 0x4000: flags |= _RC_UP; break; case 0x2000: flags |= _RC_DOWN; break; } switch (fpword & 0x8040) { case 0x0040: flags |= _DN_FLUSH_OPERANDS_SAVE_RESULTS; break; case 0x8000: flags |= _DN_SAVE_OPERANDS_FLUSH_RESULTS; break; case 0x8040: flags |= _DN_FLUSH; break; } TRACE( "sse2 flags=%08x newval=%08x mask=%08x\n", flags, newval, mask ); if (mask) { old_flags = flags; mask &= _MCW_EM | _MCW_RC | _MCW_DN; flags = (flags & ~mask) | (newval & mask); if (flags != old_flags) { /* Convert (masked) value back to fp word */ fpword = 0; if (flags & _EM_INVALID) fpword |= 0x80; if (flags & _EM_DENORMAL) fpword |= 0x100; if (flags & _EM_ZERODIVIDE) fpword |= 0x200; if (flags & _EM_OVERFLOW) fpword |= 0x400; if (flags & _EM_UNDERFLOW) fpword |= 0x800; if (flags & _EM_INEXACT) fpword |= 0x1000; switch (flags & _MCW_RC) { case _RC_UP|_RC_DOWN: fpword |= 0x6000; break; case _RC_UP: fpword |= 0x4000; break; case _RC_DOWN: fpword |= 0x2000; break; } switch (flags & _MCW_DN) { case _DN_FLUSH_OPERANDS_SAVE_RESULTS: fpword |= 0x0040; break; case _DN_SAVE_OPERANDS_FLUSH_RESULTS: fpword |= 0x8000; break; case _DN_FLUSH: fpword |= 0x8040; break; } __asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) ); } } *sse2_cw = flags; } else *sse2_cw = 0; return 1; #else FIXME( "not implemented\n" ); return 0; #endif } #endif /********************************************************************* * _control87 (MSVCRT.@) */ unsigned int CDECL _control87(unsigned int newval, unsigned int mask) { unsigned int flags = 0; #ifdef __i386__ unsigned int sse2_cw; __control87_2( newval, mask, &flags, &sse2_cw ); if ((flags ^ sse2_cw) & (_MCW_EM | _MCW_RC)) flags |= _EM_AMBIGUOUS; flags |= sse2_cw; #elif defined(__x86_64__) unsigned long fpword; unsigned int old_flags; __asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) ); if (fpword & 0x80) flags |= _EM_INVALID; if (fpword & 0x100) flags |= _EM_DENORMAL; if (fpword & 0x200) flags |= _EM_ZERODIVIDE; if (fpword & 0x400) flags |= _EM_OVERFLOW; if (fpword & 0x800) flags |= _EM_UNDERFLOW; if (fpword & 0x1000) flags |= _EM_INEXACT; switch (fpword & 0x6000) { case 0x6000: flags |= _RC_CHOP; break; case 0x4000: flags |= _RC_UP; break; case 0x2000: flags |= _RC_DOWN; break; } switch (fpword & 0x8040) { case 0x0040: flags |= _DN_FLUSH_OPERANDS_SAVE_RESULTS; break; case 0x8000: flags |= _DN_SAVE_OPERANDS_FLUSH_RESULTS; break; case 0x8040: flags |= _DN_FLUSH; break; } old_flags = flags; mask &= _MCW_EM | _MCW_RC | _MCW_DN; flags = (flags & ~mask) | (newval & mask); if (flags != old_flags) { fpword = 0; if (flags & _EM_INVALID) fpword |= 0x80; if (flags & _EM_DENORMAL) fpword |= 0x100; if (flags & _EM_ZERODIVIDE) fpword |= 0x200; if (flags & _EM_OVERFLOW) fpword |= 0x400; if (flags & _EM_UNDERFLOW) fpword |= 0x800; if (flags & _EM_INEXACT) fpword |= 0x1000; switch (flags & _MCW_RC) { case _RC_CHOP: fpword |= 0x6000; break; case _RC_UP: fpword |= 0x4000; break; case _RC_DOWN: fpword |= 0x2000; break; } switch (flags & _MCW_DN) { case _DN_FLUSH_OPERANDS_SAVE_RESULTS: fpword |= 0x0040; break; case _DN_SAVE_OPERANDS_FLUSH_RESULTS: fpword |= 0x8000; break; case _DN_FLUSH: fpword |= 0x8040; break; } __asm__ __volatile__( "ldmxcsr %0" :: "m" (fpword) ); } #elif defined(__aarch64__) ULONG_PTR fpcr; __asm__ __volatile__( "mrs %0, fpcr" : "=r" (fpcr) ); if (!(fpcr & 0x100)) flags |= _EM_INVALID; if (!(fpcr & 0x200)) flags |= _EM_ZERODIVIDE; if (!(fpcr & 0x400)) flags |= _EM_OVERFLOW; if (!(fpcr & 0x800)) flags |= _EM_UNDERFLOW; if (!(fpcr & 0x1000)) flags |= _EM_INEXACT; if (!(fpcr & 0x8000)) flags |= _EM_DENORMAL; switch (fpcr & 0xc00000) { case 0x400000: flags |= _RC_UP; break; case 0x800000: flags |= _RC_DOWN; break; case 0xc00000: flags |= _RC_CHOP; break; } flags = (flags & ~mask) | (newval & mask); fpcr &= ~0xc09f00ul; if (!(flags & _EM_INVALID)) fpcr |= 0x100; if (!(flags & _EM_ZERODIVIDE)) fpcr |= 0x200; if (!(flags & _EM_OVERFLOW)) fpcr |= 0x400; if (!(flags & _EM_UNDERFLOW)) fpcr |= 0x800; if (!(flags & _EM_INEXACT)) fpcr |= 0x1000; if (!(flags & _EM_DENORMAL)) fpcr |= 0x8000; switch (flags & _MCW_RC) { case _RC_CHOP: fpcr |= 0xc00000; break; case _RC_UP: fpcr |= 0x400000; break; case _RC_DOWN: fpcr |= 0x800000; break; } __asm__ __volatile__( "msr fpcr, %0" :: "r" (fpcr) ); #else FIXME( "not implemented\n" ); #endif return flags; } /********************************************************************* * _controlfp (MSVCRT.@) */ unsigned int CDECL _controlfp(unsigned int newval, unsigned int mask) { return _control87( newval, mask & ~_EM_DENORMAL ); } /********************************************************************* * _set_controlfp (MSVCRT.@) */ void CDECL _set_controlfp( unsigned int newval, unsigned int mask ) { _controlfp( newval, mask ); } /********************************************************************* * _controlfp_s (MSVCRT.@) */ int CDECL _controlfp_s(unsigned int *cur, unsigned int newval, unsigned int mask) { static const unsigned int all_flags = (_MCW_EM | _MCW_IC | _MCW_RC | _MCW_PC | _MCW_DN); unsigned int val; if (!MSVCRT_CHECK_PMT( !(newval & mask & ~all_flags) )) { if (cur) *cur = _controlfp( 0, 0 ); /* retrieve it anyway */ return EINVAL; } val = _controlfp( newval, mask ); if (cur) *cur = val; return 0; } #if _MSVCR_VER>=120 /********************************************************************* * fegetenv (MSVCR120.@) */ int CDECL fegetenv(fenv_t *env) { env->_Fe_ctl = _controlfp(0, 0) & (_EM_INEXACT | _EM_UNDERFLOW | _EM_OVERFLOW | _EM_ZERODIVIDE | _EM_INVALID | _RC_CHOP); env->_Fe_stat = _statusfp(); return 0; } #endif #if _MSVCR_VER>=140 /********************************************************************* * __fpe_flt_rounds (UCRTBASE.@) */ int CDECL __fpe_flt_rounds(void) { unsigned int fpc = _controlfp(0, 0) & _RC_CHOP; TRACE("()\n"); switch(fpc) { case _RC_CHOP: return 0; case _RC_NEAR: return 1; case _RC_UP: return 2; default: return 3; } } #endif #if _MSVCR_VER>=120 /********************************************************************* * fegetround (MSVCR120.@) */ int CDECL fegetround(void) { return _controlfp(0, 0) & _RC_CHOP; } /********************************************************************* * fesetround (MSVCR120.@) */ int CDECL fesetround(int round_mode) { if (round_mode & (~_RC_CHOP)) return 1; _controlfp(round_mode, _RC_CHOP); return 0; } #endif /* _MSVCR_VER>=120 */ /********************************************************************* * _copysign (MSVCRT.@) * * Copied from musl: src/math/copysign.c */ double CDECL _copysign( double x, double y ) { union { double f; UINT64 i; } ux = { x }, uy = { y }; ux.i &= ~0ull >> 1; ux.i |= uy.i & 1ull << 63; return ux.f; } /********************************************************************* * _finite (MSVCRT.@) */ int CDECL _finite(double num) { union { double f; UINT64 i; } u = { num }; return (u.i & ~0ull >> 1) < 0x7ffull << 52; } /********************************************************************* * _fpreset (MSVCRT.@) */ void CDECL _fpreset(void) { #if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) const unsigned int x86_cw = 0x27f; __asm__ __volatile__( "fninit; fldcw %0" : : "m" (x86_cw) ); if (sse2_supported) { const unsigned long sse2_cw = 0x1f80; __asm__ __volatile__( "ldmxcsr %0" : : "m" (sse2_cw) ); } #else FIXME( "not implemented\n" ); #endif } #if _MSVCR_VER>=120 /********************************************************************* * fesetenv (MSVCR120.@) */ int CDECL fesetenv(const fenv_t *env) { #if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) struct { WORD control_word; WORD unused1; WORD status_word; WORD unused2; WORD tag_word; WORD unused3; DWORD instruction_pointer; WORD code_segment; WORD unused4; DWORD operand_addr; WORD data_segment; WORD unused5; } fenv; TRACE( "(%p)\n", env ); if (!env->_Fe_ctl && !env->_Fe_stat) { _fpreset(); return 0; } __asm__ __volatile__( "fnstenv %0" : "=m" (fenv) ); fenv.control_word &= ~0xc3d; if (env->_Fe_ctl & _EM_INVALID) fenv.control_word |= 0x1; if (env->_Fe_ctl & _EM_ZERODIVIDE) fenv.control_word |= 0x4; if (env->_Fe_ctl & _EM_OVERFLOW) fenv.control_word |= 0x8; if (env->_Fe_ctl & _EM_UNDERFLOW) fenv.control_word |= 0x10; if (env->_Fe_ctl & _EM_INEXACT) fenv.control_word |= 0x20; switch (env->_Fe_ctl & _MCW_RC) { case _RC_UP|_RC_DOWN: fenv.control_word |= 0xc00; break; case _RC_UP: fenv.control_word |= 0x800; break; case _RC_DOWN: fenv.control_word |= 0x400; break; } fenv.status_word &= ~0x3d; if (env->_Fe_stat & FE_INVALID) fenv.status_word |= 0x1; if (env->_Fe_stat & FE_DIVBYZERO) fenv.status_word |= 0x4; if (env->_Fe_stat & FE_OVERFLOW) fenv.status_word |= 0x8; if (env->_Fe_stat & FE_UNDERFLOW) fenv.status_word |= 0x10; if (env->_Fe_stat & FE_INEXACT) fenv.status_word |= 0x20; __asm__ __volatile__( "fldenv %0" : : "m" (fenv) : "st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)" ); if (sse2_supported) { DWORD fpword; __asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) ); fpword &= ~0x7e80; if (env->_Fe_ctl & _EM_INVALID) fpword |= 0x80; if (env->_Fe_ctl & _EM_ZERODIVIDE) fpword |= 0x200; if (env->_Fe_ctl & _EM_OVERFLOW) fpword |= 0x400; if (env->_Fe_ctl & _EM_UNDERFLOW) fpword |= 0x800; if (env->_Fe_ctl & _EM_INEXACT) fpword |= 0x1000; switch (env->_Fe_ctl & _MCW_RC) { case _RC_CHOP: fpword |= 0x6000; break; case _RC_UP: fpword |= 0x4000; break; case _RC_DOWN: fpword |= 0x2000; break; } __asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) ); } return 0; #else FIXME( "not implemented\n" ); #endif return 1; } #endif /********************************************************************* * _isnan (MSVCRT.@) */ int CDECL _isnan(double num) { union { double f; UINT64 i; } u = { num }; return (u.i & ~0ull >> 1) > 0x7ffull << 52; } /********************************************************************* * _j0 (MSVCRT.@) */ double CDECL _j0(double num) { /* FIXME: errno handling */ return unix_funcs->j0( num ); } /********************************************************************* * _j1 (MSVCRT.@) */ double CDECL _j1(double num) { /* FIXME: errno handling */ return unix_funcs->j1( num ); } /********************************************************************* * _jn (MSVCRT.@) */ double CDECL _jn(int n, double num) { /* FIXME: errno handling */ return unix_funcs->jn( n, num ); } /********************************************************************* * _y0 (MSVCRT.@) */ double CDECL _y0(double num) { double retval; if (!isfinite(num)) *_errno() = EDOM; retval = unix_funcs->y0( num ); if (_fpclass(retval) == _FPCLASS_NINF) { *_errno() = EDOM; retval = NAN; } return retval; } /********************************************************************* * _y1 (MSVCRT.@) */ double CDECL _y1(double num) { double retval; if (!isfinite(num)) *_errno() = EDOM; retval = unix_funcs->y1( num ); if (_fpclass(retval) == _FPCLASS_NINF) { *_errno() = EDOM; retval = NAN; } return retval; } /********************************************************************* * _yn (MSVCRT.@) */ double CDECL _yn(int order, double num) { double retval; if (!isfinite(num)) *_errno() = EDOM; retval = unix_funcs->yn( order, num ); if (_fpclass(retval) == _FPCLASS_NINF) { *_errno() = EDOM; retval = NAN; } return retval; } #if _MSVCR_VER>=120 /********************************************************************* * _nearbyint (MSVCR120.@) */ double CDECL nearbyint(double num) { return unix_funcs->nearbyint( num ); } /********************************************************************* * _nearbyintf (MSVCR120.@) */ float CDECL nearbyintf(float num) { return unix_funcs->nearbyintf( num ); } /********************************************************************* * nexttoward (MSVCR120.@) */ double CDECL MSVCRT_nexttoward(double num, double next) { double ret = unix_funcs->nexttoward(num, next); if (!(_fpclass(ret) & (_FPCLASS_PN | _FPCLASS_NN | _FPCLASS_SNAN | _FPCLASS_QNAN)) && !isinf(num)) { *_errno() = ERANGE; } return ret; } /********************************************************************* * nexttowardf (MSVCR120.@) */ float CDECL MSVCRT_nexttowardf(float num, double next) { float ret = unix_funcs->nexttowardf( num, next ); if (!(_fpclass(ret) & (_FPCLASS_PN | _FPCLASS_NN | _FPCLASS_SNAN | _FPCLASS_QNAN)) && !isinf(num)) { *_errno() = ERANGE; } return ret; } #endif /* _MSVCR_VER>=120 */ /********************************************************************* * _nextafter (MSVCRT.@) */ double CDECL _nextafter(double num, double next) { double retval; if (!isfinite(num) || !isfinite(next)) *_errno() = EDOM; retval = unix_funcs->nextafter(num,next); return retval; } /********************************************************************* * _ecvt (MSVCRT.@) */ char * CDECL _ecvt( double number, int ndigits, int *decpt, int *sign ) { int prec, len; thread_data_t *data = msvcrt_get_thread_data(); /* FIXME: check better for overflow (native supports over 300 chars) */ ndigits = min( ndigits, 80 - 7); /* 7 : space for dec point, 1 for "e", * 4 for exponent and one for * terminating '\0' */ if (!data->efcvt_buffer) data->efcvt_buffer = malloc( 80 ); /* ought to be enough */ if( number < 0) { *sign = TRUE; number = -number; } else *sign = FALSE; /* handle cases with zero ndigits or less */ prec = ndigits; if( prec < 1) prec = 2; len = _snprintf(data->efcvt_buffer, 80, "%.*le", prec - 1, number); /* take the decimal "point away */ if( prec != 1) memmove( data->efcvt_buffer + 1, data->efcvt_buffer + 2, len - 1 ); /* take the exponential "e" out */ data->efcvt_buffer[ prec] = '\0'; /* read the exponent */ sscanf( data->efcvt_buffer + prec + 1, "%d", decpt); (*decpt)++; /* adjust for some border cases */ if( data->efcvt_buffer[0] == '0')/* value is zero */ *decpt = 0; /* handle cases with zero ndigits or less */ if( ndigits < 1){ if( data->efcvt_buffer[ 0] >= '5') (*decpt)++; data->efcvt_buffer[ 0] = '\0'; } TRACE("out=\"%s\"\n",data->efcvt_buffer); return data->efcvt_buffer; } /********************************************************************* * _ecvt_s (MSVCRT.@) */ int CDECL _ecvt_s( char *buffer, size_t length, double number, int ndigits, int *decpt, int *sign ) { int prec, len; char *result; const char infret[] = "1#INF"; if (!MSVCRT_CHECK_PMT(buffer != NULL)) return EINVAL; if (!MSVCRT_CHECK_PMT(decpt != NULL)) return EINVAL; if (!MSVCRT_CHECK_PMT(sign != NULL)) return EINVAL; if (!MSVCRT_CHECK_PMT_ERR( length > 2, ERANGE )) return ERANGE; if (!MSVCRT_CHECK_PMT_ERR(ndigits < (int)length - 1, ERANGE )) return ERANGE; /* special case - inf */ if(number == HUGE_VAL || number == -HUGE_VAL) { memset(buffer, '0', ndigits); memcpy(buffer, infret, min(ndigits, sizeof(infret) - 1 ) ); buffer[ndigits] = '\0'; (*decpt) = 1; if(number == -HUGE_VAL) (*sign) = 1; else (*sign) = 0; return 0; } /* handle cases with zero ndigits or less */ prec = ndigits; if( prec < 1) prec = 2; result = malloc(prec + 7); if( number < 0) { *sign = TRUE; number = -number; } else *sign = FALSE; len = _snprintf(result, prec + 7, "%.*le", prec - 1, number); /* take the decimal "point away */ if( prec != 1) memmove( result + 1, result + 2, len - 1 ); /* take the exponential "e" out */ result[ prec] = '\0'; /* read the exponent */ sscanf( result + prec + 1, "%d", decpt); (*decpt)++; /* adjust for some border cases */ if( result[0] == '0')/* value is zero */ *decpt = 0; /* handle cases with zero ndigits or less */ if( ndigits < 1){ if( result[ 0] >= '5') (*decpt)++; result[ 0] = '\0'; } memcpy( buffer, result, max(ndigits + 1, 1) ); free( result ); return 0; } /*********************************************************************** * _fcvt (MSVCRT.@) */ char * CDECL _fcvt( double number, int ndigits, int *decpt, int *sign ) { thread_data_t *data = msvcrt_get_thread_data(); int stop, dec1, dec2; char *ptr1, *ptr2, *first; char buf[80]; /* ought to be enough */ char decimal_separator = get_locinfo()->lconv->decimal_point[0]; if (!data->efcvt_buffer) data->efcvt_buffer = malloc( 80 ); /* ought to be enough */ if (number < 0) { *sign = 1; number = -number; } else *sign = 0; stop = _snprintf(buf, 80, "%.*f", ndigits < 0 ? 0 : ndigits, number); ptr1 = buf; ptr2 = data->efcvt_buffer; first = NULL; dec1 = 0; dec2 = 0; /* For numbers below the requested resolution, work out where the decimal point will be rather than finding it in the string */ if (number < 1.0 && number > 0.0) { dec2 = log10(number + 1e-10); if (-dec2 <= ndigits) dec2 = 0; } /* If requested digits is zero or less, we will need to truncate * the returned string */ if (ndigits < 1) { stop += ndigits; } while (*ptr1 == '0') ptr1++; /* Skip leading zeroes */ while (*ptr1 != '\0' && *ptr1 != decimal_separator) { if (!first) first = ptr2; if ((ptr1 - buf) < stop) { *ptr2++ = *ptr1++; } else { ptr1++; } dec1++; } if (ndigits > 0) { ptr1++; if (!first) { while (*ptr1 == '0') { /* Process leading zeroes */ *ptr2++ = *ptr1++; dec1--; } } while (*ptr1 != '\0') { if (!first) first = ptr2; *ptr2++ = *ptr1++; } } *ptr2 = '\0'; /* We never found a non-zero digit, then our number is either * smaller than the requested precision, or 0.0 */ if (!first) { if (number > 0.0) { first = ptr2; } else { first = data->efcvt_buffer; dec1 = 0; } } *decpt = dec2 ? dec2 : dec1; return first; } /*********************************************************************** * _fcvt_s (MSVCRT.@) */ int CDECL _fcvt_s(char* outbuffer, size_t size, double number, int ndigits, int *decpt, int *sign) { int stop, dec1, dec2; char *ptr1, *ptr2, *first; char buf[80]; /* ought to be enough */ char decimal_separator = get_locinfo()->lconv->decimal_point[0]; if (!outbuffer || !decpt || !sign || size == 0) { *_errno() = EINVAL; return EINVAL; } if (number < 0) { *sign = 1; number = -number; } else *sign = 0; stop = _snprintf(buf, 80, "%.*f", ndigits < 0 ? 0 : ndigits, number); ptr1 = buf; ptr2 = outbuffer; first = NULL; dec1 = 0; dec2 = 0; /* For numbers below the requested resolution, work out where the decimal point will be rather than finding it in the string */ if (number < 1.0 && number > 0.0) { dec2 = log10(number + 1e-10); if (-dec2 <= ndigits) dec2 = 0; } /* If requested digits is zero or less, we will need to truncate * the returned string */ if (ndigits < 1) { stop += ndigits; } while (*ptr1 == '0') ptr1++; /* Skip leading zeroes */ while (*ptr1 != '\0' && *ptr1 != decimal_separator) { if (!first) first = ptr2; if ((ptr1 - buf) < stop) { if (size > 1) { *ptr2++ = *ptr1++; size--; } } else { ptr1++; } dec1++; } if (ndigits > 0) { ptr1++; if (!first) { while (*ptr1 == '0') { /* Process leading zeroes */ if (number == 0.0 && size > 1) { *ptr2++ = '0'; size--; } ptr1++; dec1--; } } while (*ptr1 != '\0') { if (!first) first = ptr2; if (size > 1) { *ptr2++ = *ptr1++; size--; } } } *ptr2 = '\0'; /* We never found a non-zero digit, then our number is either * smaller than the requested precision, or 0.0 */ if (!first && (number <= 0.0)) dec1 = 0; *decpt = dec2 ? dec2 : dec1; return 0; } /*********************************************************************** * _gcvt (MSVCRT.@) */ char * CDECL _gcvt( double number, int ndigit, char *buff ) { if(!buff) { *_errno() = EINVAL; return NULL; } if(ndigit < 0) { *_errno() = ERANGE; return NULL; } sprintf(buff, "%.*g", ndigit, number); return buff; } /*********************************************************************** * _gcvt_s (MSVCRT.@) */ int CDECL _gcvt_s(char *buff, size_t size, double number, int digits) { int len; if(!buff) { *_errno() = EINVAL; return EINVAL; } if( digits<0 || digits>=size) { if(size) buff[0] = '\0'; *_errno() = ERANGE; return ERANGE; } len = _scprintf("%.*g", digits, number); if(len > size) { buff[0] = '\0'; *_errno() = ERANGE; return ERANGE; } sprintf(buff, "%.*g", digits, number); return 0; } #include /* div_t, ldiv_t */ /********************************************************************* * div (MSVCRT.@) * VERSION * [i386] Windows binary compatible - returns the struct in eax/edx. */ #ifdef __i386__ unsigned __int64 CDECL div(int num, int denom) { union { div_t div; unsigned __int64 uint64; } ret; ret.div.quot = num / denom; ret.div.rem = num % denom; return ret.uint64; } #else /********************************************************************* * div (MSVCRT.@) * VERSION * [!i386] Non-x86 can't run win32 apps so we don't need binary compatibility */ div_t CDECL div(int num, int denom) { div_t ret; ret.quot = num / denom; ret.rem = num % denom; return ret; } #endif /* ifdef __i386__ */ /********************************************************************* * ldiv (MSVCRT.@) * VERSION * [i386] Windows binary compatible - returns the struct in eax/edx. */ #ifdef __i386__ unsigned __int64 CDECL ldiv(__msvcrt_long num, __msvcrt_long denom) { union { ldiv_t ldiv; unsigned __int64 uint64; } ret; ret.ldiv.quot = num / denom; ret.ldiv.rem = num % denom; return ret.uint64; } #else /********************************************************************* * ldiv (MSVCRT.@) * VERSION * [!i386] Non-x86 can't run win32 apps so we don't need binary compatibility */ ldiv_t CDECL ldiv(__msvcrt_long num, __msvcrt_long denom) { ldiv_t ret; ret.quot = num / denom; ret.rem = num % denom; return ret; } #endif /* ifdef __i386__ */ #if _MSVCR_VER>=100 /********************************************************************* * lldiv (MSVCR100.@) */ lldiv_t CDECL lldiv(__int64 num, __int64 denom) { lldiv_t ret; ret.quot = num / denom; ret.rem = num % denom; return ret; } #endif #ifdef __i386__ /********************************************************************* * _adjust_fdiv (MSVCRT.@) * Used by the MSVC compiler to work around the Pentium FDIV bug. */ int MSVCRT__adjust_fdiv = 0; /*********************************************************************** * _adj_fdiv_m16i (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdiv_m16i( short arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdiv_m32 (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdiv_m32( unsigned int arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdiv_m32i (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdiv_m32i( int arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdiv_m64 (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdiv_m64( unsigned __int64 arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdiv_r (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _adj_fdiv_r(void) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdivr_m16i (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdivr_m16i( short arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdivr_m32 (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdivr_m32( unsigned int arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdivr_m32i (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdivr_m32i( int arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fdivr_m64 (MSVCRT.@) * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void __stdcall _adj_fdivr_m64( unsigned __int64 arg ) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fpatan (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _adj_fpatan(void) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fprem (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _adj_fprem(void) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fprem1 (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _adj_fprem1(void) { TRACE("(): stub\n"); } /*********************************************************************** * _adj_fptan (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _adj_fptan(void) { TRACE("(): stub\n"); } /*********************************************************************** * _safe_fdiv (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _safe_fdiv(void) { TRACE("(): stub\n"); } /*********************************************************************** * _safe_fdivr (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _safe_fdivr(void) { TRACE("(): stub\n"); } /*********************************************************************** * _safe_fprem (MSVCRT.@) * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _safe_fprem(void) { TRACE("(): stub\n"); } /*********************************************************************** * _safe_fprem1 (MSVCRT.@) * * FIXME * This function is likely to have the wrong number of arguments. * * NOTE * I _think_ this function is intended to work around the Pentium * fdiv bug. */ void _safe_fprem1(void) { TRACE("(): stub\n"); } /*********************************************************************** * __libm_sse2_acos (MSVCRT.@) */ void __cdecl __libm_sse2_acos(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = acos( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_acosf (MSVCRT.@) */ void __cdecl __libm_sse2_acosf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = acosf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_asin (MSVCRT.@) */ void __cdecl __libm_sse2_asin(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = asin( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_asinf (MSVCRT.@) */ void __cdecl __libm_sse2_asinf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = asinf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_atan (MSVCRT.@) */ void __cdecl __libm_sse2_atan(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = atan( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_atan2 (MSVCRT.@) */ void __cdecl __libm_sse2_atan2(void) { double d1, d2; __asm__ __volatile__( "movq %%xmm0,%0; movq %%xmm1,%1 " : "=m" (d1), "=m" (d2) ); d1 = atan2( d1, d2 ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d1) ); } /*********************************************************************** * __libm_sse2_atanf (MSVCRT.@) */ void __cdecl __libm_sse2_atanf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = atanf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_cos (MSVCRT.@) */ void __cdecl __libm_sse2_cos(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = cos( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_cosf (MSVCRT.@) */ void __cdecl __libm_sse2_cosf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = cosf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_exp (MSVCRT.@) */ void __cdecl __libm_sse2_exp(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = exp( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_expf (MSVCRT.@) */ void __cdecl __libm_sse2_expf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = expf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_log (MSVCRT.@) */ void __cdecl __libm_sse2_log(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = log( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_log10 (MSVCRT.@) */ void __cdecl __libm_sse2_log10(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = log10( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_log10f (MSVCRT.@) */ void __cdecl __libm_sse2_log10f(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = log10f( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_logf (MSVCRT.@) */ void __cdecl __libm_sse2_logf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = logf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_pow (MSVCRT.@) */ void __cdecl __libm_sse2_pow(void) { double d1, d2; __asm__ __volatile__( "movq %%xmm0,%0; movq %%xmm1,%1 " : "=m" (d1), "=m" (d2) ); d1 = pow( d1, d2 ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d1) ); } /*********************************************************************** * __libm_sse2_powf (MSVCRT.@) */ void __cdecl __libm_sse2_powf(void) { float f1, f2; __asm__ __volatile__( "movd %%xmm0,%0; movd %%xmm1,%1" : "=g" (f1), "=g" (f2) ); f1 = powf( f1, f2 ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f1) ); } /*********************************************************************** * __libm_sse2_sin (MSVCRT.@) */ void __cdecl __libm_sse2_sin(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = sin( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_sinf (MSVCRT.@) */ void __cdecl __libm_sse2_sinf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = sinf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_tan (MSVCRT.@) */ void __cdecl __libm_sse2_tan(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = tan( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } /*********************************************************************** * __libm_sse2_tanf (MSVCRT.@) */ void __cdecl __libm_sse2_tanf(void) { float f; __asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) ); f = tanf( f ); __asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) ); } /*********************************************************************** * __libm_sse2_sqrt_precise (MSVCR110.@) */ void __cdecl __libm_sse2_sqrt_precise(void) { double d; __asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) ); d = sqrt( d ); __asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) ); } #endif /* __i386__ */ /********************************************************************* * cbrt (MSVCR120.@) */ double CDECL cbrt(double x) { return unix_funcs->cbrt( x ); } /********************************************************************* * cbrtf (MSVCR120.@) */ float CDECL cbrtf(float x) { return unix_funcs->cbrtf( x ); } /********************************************************************* * exp2 (MSVCR120.@) */ double CDECL exp2(double x) { double ret = unix_funcs->exp2( x ); if (isfinite(x) && !isfinite(ret)) *_errno() = ERANGE; return ret; } /********************************************************************* * exp2f (MSVCR120.@) */ float CDECL exp2f(float x) { float ret = unix_funcs->exp2f( x ); if (isfinite(x) && !isfinite(ret)) *_errno() = ERANGE; return ret; } /********************************************************************* * expm1 (MSVCR120.@) */ double CDECL expm1(double x) { double ret = unix_funcs->expm1( x ); if (isfinite(x) && !isfinite(ret)) *_errno() = ERANGE; return ret; } /********************************************************************* * expm1f (MSVCR120.@) */ float CDECL expm1f(float x) { float ret = unix_funcs->expm1f( x ); if (isfinite(x) && !isfinite(ret)) *_errno() = ERANGE; return ret; } /********************************************************************* * log1p (MSVCR120.@) */ double CDECL log1p(double x) { if (x < -1) *_errno() = EDOM; else if (x == -1) *_errno() = ERANGE; return unix_funcs->log1p( x ); } /********************************************************************* * log1pf (MSVCR120.@) */ float CDECL log1pf(float x) { if (x < -1) *_errno() = EDOM; else if (x == -1) *_errno() = ERANGE; return unix_funcs->log1pf( x ); } /********************************************************************* * log2 (MSVCR120.@) */ double CDECL log2(double x) { if (x < 0) *_errno() = EDOM; else if (x == 0) *_errno() = ERANGE; return unix_funcs->log2( x ); } /********************************************************************* * log2f (MSVCR120.@) */ float CDECL log2f(float x) { if (x < 0) *_errno() = EDOM; else if (x == 0) *_errno() = ERANGE; return unix_funcs->log2f( x ); } /********************************************************************* * rint (MSVCR120.@) */ double CDECL rint(double x) { return unix_funcs->rint(x); } /********************************************************************* * rintf (MSVCR120.@) */ float CDECL rintf(float x) { return unix_funcs->rintf(x); } /********************************************************************* * lrint (MSVCR120.@) */ __msvcrt_long CDECL lrint(double x) { return unix_funcs->lrint( x ); } /********************************************************************* * lrintf (MSVCR120.@) */ __msvcrt_long CDECL lrintf(float x) { return unix_funcs->lrintf( x ); } /********************************************************************* * llrint (MSVCR120.@) */ __int64 CDECL llrint(double x) { return unix_funcs->llrint( x ); } /********************************************************************* * llrintf (MSVCR120.@) */ __int64 CDECL llrintf(float x) { return unix_funcs->llrintf( x ); } #if _MSVCR_VER>=120 /********************************************************************* * round (MSVCR120.@) */ double CDECL round(double x) { return unix_funcs->round(x); } /********************************************************************* * roundf (MSVCR120.@) */ float CDECL roundf(float x) { return unix_funcs->roundf(x); } /********************************************************************* * lround (MSVCR120.@) */ __msvcrt_long CDECL lround(double x) { return unix_funcs->lround( x ); } /********************************************************************* * lroundf (MSVCR120.@) */ __msvcrt_long CDECL lroundf(float x) { return unix_funcs->lroundf( x ); } /********************************************************************* * llround (MSVCR120.@) */ __int64 CDECL llround(double x) { return unix_funcs->llround( x ); } /********************************************************************* * llroundf (MSVCR120.@) */ __int64 CDECL llroundf(float x) { return unix_funcs->llroundf( x ); } /********************************************************************* * trunc (MSVCR120.@) */ double CDECL trunc(double x) { return unix_funcs->trunc(x); } /********************************************************************* * truncf (MSVCR120.@) */ float CDECL truncf(float x) { return unix_funcs->truncf(x); } /********************************************************************* * _dclass (MSVCR120.@) * * Copied from musl: src/math/__fpclassify.c */ short CDECL _dclass(double x) { union { double f; UINT64 i; } u = { x }; int e = u.i >> 52 & 0x7ff; if (!e) return u.i << 1 ? FP_SUBNORMAL : FP_ZERO; if (e == 0x7ff) return (u.i << 12) ? FP_NAN : FP_INFINITE; return FP_NORMAL; } /********************************************************************* * _fdclass (MSVCR120.@) * * Copied from musl: src/math/__fpclassifyf.c */ short CDECL _fdclass(float x) { union { float f; UINT32 i; } u = { x }; int e = u.i >> 23 & 0xff; if (!e) return u.i << 1 ? FP_SUBNORMAL : FP_ZERO; if (e == 0xff) return u.i << 9 ? FP_NAN : FP_INFINITE; return FP_NORMAL; } /********************************************************************* * _dtest (MSVCR120.@) */ short CDECL _dtest(double *x) { return _dclass(*x); } /********************************************************************* * _fdtest (MSVCR120.@) */ short CDECL _fdtest(float *x) { return _fdclass(*x); } /********************************************************************* * erf (MSVCR120.@) */ double CDECL erf(double x) { return unix_funcs->erf( x ); } /********************************************************************* * erff (MSVCR120.@) */ float CDECL erff(float x) { return unix_funcs->erff( x ); } /********************************************************************* * erfc (MSVCR120.@) */ double CDECL erfc(double x) { return unix_funcs->erfc( x ); } /********************************************************************* * erfcf (MSVCR120.@) */ float CDECL erfcf(float x) { return unix_funcs->erfcf( x ); } /********************************************************************* * fmaxf (MSVCR120.@) */ float CDECL fmaxf(float x, float y) { if(isnan(x)) return y; if(isnan(y)) return x; if(x==0 && y==0) return signbit(x) ? y : x; return xy ? x-y : 0; } /********************************************************************* * fdim (MSVCR120.@) */ double CDECL fdim(double x, double y) { if(isnan(x)) return x; if(isnan(y)) return y; return x>y ? x-y : 0; } /********************************************************************* * _fdsign (MSVCR120.@) */ int CDECL _fdsign(float x) { union { float f; UINT32 i; } u = { x }; return (u.i >> 16) & 0x8000; } /********************************************************************* * _dsign (MSVCR120.@) */ int CDECL _dsign(double x) { union { double f; UINT64 i; } u = { x }; return (u.i >> 48) & 0x8000; } /********************************************************************* * _dpcomp (MSVCR120.@) */ int CDECL _dpcomp(double x, double y) { if(isnan(x) || isnan(y)) return 0; if(x == y) return 2; return x < y ? 1 : 4; } /********************************************************************* * _fdpcomp (MSVCR120.@) */ int CDECL _fdpcomp(float x, float y) { return _dpcomp(x, y); } /********************************************************************* * fminf (MSVCR120.@) */ float CDECL fminf(float x, float y) { if(isnan(x)) return y; if(isnan(y)) return x; if(x==0 && y==0) return signbit(x) ? x : y; return xasinh( x ); } /********************************************************************* * asinhf (MSVCR120.@) */ float CDECL asinhf(float x) { return unix_funcs->asinhf( x ); } /********************************************************************* * acosh (MSVCR120.@) */ double CDECL acosh(double x) { if (x < 1) { fenv_t env; *_errno() = EDOM; fegetenv(&env); env._Fe_stat |= FE_INVALID; fesetenv(&env); return NAN; } return unix_funcs->acosh( x ); } /********************************************************************* * acoshf (MSVCR120.@) */ float CDECL acoshf(float x) { if (x < 1) { fenv_t env; *_errno() = EDOM; fegetenv(&env); env._Fe_stat |= FE_INVALID; fesetenv(&env); return NAN; } return unix_funcs->acoshf( x ); } /********************************************************************* * atanh (MSVCR120.@) */ double CDECL atanh(double x) { double ret; if (x > 1 || x < -1) { fenv_t env; *_errno() = EDOM; /* on Linux atanh returns -NAN in this case */ fegetenv(&env); env._Fe_stat |= FE_INVALID; fesetenv(&env); return NAN; } ret = unix_funcs->atanh( x ); if (!isfinite(ret)) *_errno() = ERANGE; return ret; } /********************************************************************* * atanhf (MSVCR120.@) */ float CDECL atanhf(float x) { float ret; if (x > 1 || x < -1) { fenv_t env; *_errno() = EDOM; fegetenv(&env); env._Fe_stat |= FE_INVALID; fesetenv(&env); return NAN; } ret = unix_funcs->atanh( x ); if (!isfinite(ret)) *_errno() = ERANGE; return ret; } #endif /* _MSVCR_VER>=120 */ /********************************************************************* * _scalb (MSVCRT.@) * scalbn (MSVCR120.@) * scalbln (MSVCR120.@) */ double CDECL _scalb(double num, __msvcrt_long power) { return ldexp(num, power); } /********************************************************************* * _scalbf (MSVCRT.@) * scalbnf (MSVCR120.@) * scalblnf (MSVCR120.@) */ float CDECL _scalbf(float num, __msvcrt_long power) { return ldexp(num, power); } #if _MSVCR_VER>=120 /********************************************************************* * remainder (MSVCR120.@) */ double CDECL remainder(double x, double y) { /* this matches 64-bit Windows. 32-bit Windows is slightly different */ if(!isfinite(x)) *_errno() = EDOM; if(isnan(y) || y==0.0) *_errno() = EDOM; return unix_funcs->remainder( x, y ); } /********************************************************************* * remainderf (MSVCR120.@) */ float CDECL remainderf(float x, float y) { /* this matches 64-bit Windows. 32-bit Windows is slightly different */ if(!isfinite(x)) *_errno() = EDOM; if(isnan(y) || y==0.0f) *_errno() = EDOM; return unix_funcs->remainderf( x, y ); } /********************************************************************* * remquo (MSVCR120.@) */ double CDECL remquo(double x, double y, int *quo) { if(!isfinite(x)) *_errno() = EDOM; if(isnan(y) || y==0.0) *_errno() = EDOM; return unix_funcs->remquo( x, y, quo ); } /********************************************************************* * remquof (MSVCR120.@) */ float CDECL remquof(float x, float y, int *quo) { if(!isfinite(x)) *_errno() = EDOM; if(isnan(y) || y==0.0f) *_errno() = EDOM; return unix_funcs->remquof( x, y, quo ); } /********************************************************************* * lgamma (MSVCR120.@) */ double CDECL lgamma(double x) { return unix_funcs->lgamma( x ); } /********************************************************************* * lgammaf (MSVCR120.@) */ float CDECL lgammaf(float x) { return unix_funcs->lgammaf( x ); } /********************************************************************* * tgamma (MSVCR120.@) */ double CDECL tgamma(double x) { return unix_funcs->tgamma( x ); } /********************************************************************* * tgammaf (MSVCR120.@) */ float CDECL tgammaf(float x) { return unix_funcs->tgammaf( x ); } /********************************************************************* * nan (MSVCR120.@) */ double CDECL nan(const char *tagp) { /* Windows ignores input (MSDN) */ return NAN; } /********************************************************************* * nanf (MSVCR120.@) */ float CDECL nanf(const char *tagp) { return NAN; } /********************************************************************* * _except1 (MSVCR120.@) * TODO: * - find meaning of ignored cw and operation bits * - unk parameter */ double CDECL _except1(DWORD fpe, _FP_OPERATION_CODE op, double arg, double res, DWORD cw, void *unk) { ULONG_PTR exception_arg; DWORD exception = 0; fenv_t env; DWORD fpword = 0; WORD operation; TRACE("(%x %x %lf %lf %x %p)\n", fpe, op, arg, res, cw, unk); #ifdef _WIN64 cw = ((cw >> 7) & 0x3f) | ((cw >> 3) & 0xc00); #endif operation = op << 5; exception_arg = (ULONG_PTR)&operation; fegetenv(&env); if (fpe & 0x1) { /* overflow */ if ((fpe == 0x1 && (cw & 0x8)) || (fpe==0x11 && (cw & 0x28))) { /* 32-bit version also sets SW_INEXACT here */ env._Fe_stat |= FE_OVERFLOW; if (fpe & 0x10) env._Fe_stat |= FE_INEXACT; res = signbit(res) ? -INFINITY : INFINITY; } else { exception = EXCEPTION_FLT_OVERFLOW; } } else if (fpe & 0x2) { /* underflow */ if ((fpe == 0x2 && (cw & 0x10)) || (fpe==0x12 && (cw & 0x30))) { env._Fe_stat |= FE_UNDERFLOW; if (fpe & 0x10) env._Fe_stat |= FE_INEXACT; res = signbit(res) ? -0.0 : 0.0; } else { exception = EXCEPTION_FLT_UNDERFLOW; } } else if (fpe & 0x4) { /* zerodivide */ if ((fpe == 0x4 && (cw & 0x4)) || (fpe==0x14 && (cw & 0x24))) { env._Fe_stat |= FE_DIVBYZERO; if (fpe & 0x10) env._Fe_stat |= FE_INEXACT; } else { exception = EXCEPTION_FLT_DIVIDE_BY_ZERO; } } else if (fpe & 0x8) { /* invalid */ if (fpe == 0x8 && (cw & 0x1)) { env._Fe_stat |= FE_INVALID; } else { exception = EXCEPTION_FLT_INVALID_OPERATION; } } else if (fpe & 0x10) { /* inexact */ if (fpe == 0x10 && (cw & 0x20)) { env._Fe_stat |= FE_INEXACT; } else { exception = EXCEPTION_FLT_INEXACT_RESULT; } } if (exception) env._Fe_stat = 0; fesetenv(&env); if (exception) RaiseException(exception, 0, 1, &exception_arg); if (cw & 0x1) fpword |= _EM_INVALID; if (cw & 0x2) fpword |= _EM_DENORMAL; if (cw & 0x4) fpword |= _EM_ZERODIVIDE; if (cw & 0x8) fpword |= _EM_OVERFLOW; if (cw & 0x10) fpword |= _EM_UNDERFLOW; if (cw & 0x20) fpword |= _EM_INEXACT; switch (cw & 0xc00) { case 0xc00: fpword |= _RC_UP|_RC_DOWN; break; case 0x800: fpword |= _RC_UP; break; case 0x400: fpword |= _RC_DOWN; break; } switch (cw & 0x300) { case 0x0: fpword |= _PC_24; break; case 0x200: fpword |= _PC_53; break; case 0x300: fpword |= _PC_64; break; } if (cw & 0x1000) fpword |= _IC_AFFINE; _control87(fpword, 0xffffffff); return res; } _Dcomplex* CDECL _Cbuild(_Dcomplex *ret, double r, double i) { ret->_Val[0] = r; ret->_Val[1] = i; return ret; } double CDECL MSVCR120_creal(_Dcomplex z) { return z._Val[0]; } /********************************************************************* * ilogb (MSVCR120.@) * * Copied from musl: src/math/ilogb.c */ int CDECL ilogb(double x) { union { double f; UINT64 i; } u = { x }; int e = u.i >> 52 & 0x7ff; if (!e) { u.i <<= 12; if (u.i == 0) return FP_ILOGB0; /* subnormal x */ for (e = -0x3ff; u.i >> 63 == 0; e--, u.i <<= 1); return e; } if (e == 0x7ff) return u.i << 12 ? FP_ILOGBNAN : INT_MAX; return e - 0x3ff; } /********************************************************************* * ilogbf (MSVCR120.@) * * Copied from musl: src/math/ilogbf.c */ int CDECL ilogbf(float x) { union { float f; UINT32 i; } u = { x }; int e = u.i >> 23 & 0xff; if (!e) { u.i <<= 9; if (u.i == 0) return FP_ILOGB0; /* subnormal x */ for (e = -0x7f; u.i >> 31 == 0; e--, u.i <<= 1); return e; } if (e == 0xff) return u.i << 9 ? FP_ILOGBNAN : INT_MAX; return e - 0x7f; } #endif /* _MSVCR_VER>=120 */