/* * Copyright (C) 2007 Google (Evan Stade) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA * */ #include <stdarg.h> #include <math.h> #include "windef.h" #include "winbase.h" #include "winuser.h" #include "wingdi.h" #include "objbase.h" #include "gdiplus.h" #include "gdiplus_private.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(gdiplus); typedef struct path_list_node_t path_list_node_t; struct path_list_node_t { GpPointF pt; BYTE type; /* PathPointTypeStart or PathPointTypeLine */ path_list_node_t *next; }; /* init list */ static BOOL init_path_list(path_list_node_t **node, REAL x, REAL y) { *node = heap_alloc_zero(sizeof(path_list_node_t)); if(!*node) return FALSE; (*node)->pt.X = x; (*node)->pt.Y = y; (*node)->type = PathPointTypeStart; (*node)->next = NULL; return TRUE; } /* free all nodes including argument */ static void free_path_list(path_list_node_t *node) { path_list_node_t *n = node; while(n){ n = n->next; heap_free(node); node = n; } } /* Add a node after 'node' */ /* * Returns * pointer on success * NULL on allocation problems */ static path_list_node_t* add_path_list_node(path_list_node_t *node, REAL x, REAL y, BOOL type) { path_list_node_t *new; new = heap_alloc_zero(sizeof(path_list_node_t)); if(!new) return NULL; new->pt.X = x; new->pt.Y = y; new->type = type; new->next = node->next; node->next = new; return new; } /* returns element count */ static INT path_list_count(path_list_node_t *node) { INT count = 1; while((node = node->next)) ++count; return count; } /* GdipFlattenPath helper */ /* * Used to recursively flatten single Bezier curve * Parameters: * - start : pointer to start point node; * - (x2, y2): first control point; * - (x3, y3): second control point; * - end : pointer to end point node * - flatness: admissible error of linear approximation. * * Return value: * TRUE : success * FALSE: out of memory * * TODO: used quality criteria should be revised to match native as * closer as possible. */ static BOOL flatten_bezier(path_list_node_t *start, REAL x2, REAL y2, REAL x3, REAL y3, path_list_node_t *end, REAL flatness) { /* this 5 middle points with start/end define to half-curves */ GpPointF mp[5]; GpPointF pt, pt_st; path_list_node_t *node; /* calculate bezier curve middle points == new control points */ mp[0].X = (start->pt.X + x2) / 2.0; mp[0].Y = (start->pt.Y + y2) / 2.0; /* middle point between control points */ pt.X = (x2 + x3) / 2.0; pt.Y = (y2 + y3) / 2.0; mp[1].X = (mp[0].X + pt.X) / 2.0; mp[1].Y = (mp[0].Y + pt.Y) / 2.0; mp[4].X = (end->pt.X + x3) / 2.0; mp[4].Y = (end->pt.Y + y3) / 2.0; mp[3].X = (mp[4].X + pt.X) / 2.0; mp[3].Y = (mp[4].Y + pt.Y) / 2.0; mp[2].X = (mp[1].X + mp[3].X) / 2.0; mp[2].Y = (mp[1].Y + mp[3].Y) / 2.0; if ((x2 == mp[0].X && y2 == mp[0].Y && x3 == mp[1].X && y3 == mp[1].Y) || (x2 == mp[3].X && y2 == mp[3].Y && x3 == mp[4].X && y3 == mp[4].Y)) return TRUE; pt = end->pt; pt_st = start->pt; /* check flatness as a half of distance between middle point and a linearized path */ if(fabs(((pt.Y - pt_st.Y)*mp[2].X + (pt_st.X - pt.X)*mp[2].Y + (pt_st.Y*pt.X - pt_st.X*pt.Y))) <= (0.5 * flatness*sqrtf((powf(pt.Y - pt_st.Y, 2.0) + powf(pt_st.X - pt.X, 2.0))))){ return TRUE; } else /* add a middle point */ if(!(node = add_path_list_node(start, mp[2].X, mp[2].Y, PathPointTypeLine))) return FALSE; /* do the same with halves */ flatten_bezier(start, mp[0].X, mp[0].Y, mp[1].X, mp[1].Y, node, flatness); flatten_bezier(node, mp[3].X, mp[3].Y, mp[4].X, mp[4].Y, end, flatness); return TRUE; } /* GdipAddPath* helper * * Several GdipAddPath functions are expected to add onto an open figure. * So if the first point being added is an exact match to the last point * of the existing line, that point should not be added. * * Parameters: * path : path to which points should be added * points : array of points to add * count : number of points to add (at least 1) * type : type of the points being added * * Return value: * OutOfMemory : out of memory, could not lengthen path * Ok : success */ static GpStatus extend_current_figure(GpPath *path, GDIPCONST PointF *points, INT count, BYTE type) { INT insert_index = path->pathdata.Count; BYTE first_point_type = (path->newfigure ? PathPointTypeStart : PathPointTypeLine); if(!path->newfigure && path->pathdata.Points[insert_index-1].X == points[0].X && path->pathdata.Points[insert_index-1].Y == points[0].Y) { points++; count--; first_point_type = type; } if(!count) return Ok; if(!lengthen_path(path, count)) return OutOfMemory; memcpy(path->pathdata.Points + insert_index, points, sizeof(GpPointF)*count); path->pathdata.Types[insert_index] = first_point_type; memset(path->pathdata.Types + insert_index + 1, type, count - 1); path->newfigure = FALSE; path->pathdata.Count += count; return Ok; } /******************************************************************************* * GdipAddPathArc [GDIPLUS.1] * * Add an elliptical arc to the given path. * * PARAMS * path [I/O] Path that the arc is appended to * x1 [I] X coordinate of the boundary box * y1 [I] Y coordinate of the boundary box * x2 [I] Width of the boundary box * y2 [I] Height of the boundary box * startAngle [I] Starting angle of the arc, clockwise * sweepAngle [I] Angle of the arc, clockwise * * RETURNS * InvalidParameter If the given path is invalid * OutOfMemory If memory allocation fails, i.e. the path cannot be lengthened * Ok If everything works out as expected * * NOTES * This functions takes the newfigure value of the given path into account, * i.e. the arc is connected to the end of the given path if it was set to * FALSE, otherwise the arc's first point gets the PathPointTypeStart value. * In both cases, the value of newfigure of the given path is FALSE * afterwards. */ GpStatus WINGDIPAPI GdipAddPathArc(GpPath *path, REAL x1, REAL y1, REAL x2, REAL y2, REAL startAngle, REAL sweepAngle) { GpPointF *points; GpStatus status; INT count; TRACE("(%p, %.2f, %.2f, %.2f, %.2f, %.2f, %.2f)\n", path, x1, y1, x2, y2, startAngle, sweepAngle); if(!path) return InvalidParameter; count = arc2polybezier(NULL, x1, y1, x2, y2, startAngle, sweepAngle); if(count == 0) return Ok; points = heap_alloc_zero(sizeof(GpPointF)*count); if(!points) return OutOfMemory; arc2polybezier(points, x1, y1, x2, y2, startAngle, sweepAngle); status = extend_current_figure(path, points, count, PathPointTypeBezier); heap_free(points); return status; } /******************************************************************************* * GdipAddPathArcI [GDUPLUS.2] * * See GdipAddPathArc */ GpStatus WINGDIPAPI GdipAddPathArcI(GpPath *path, INT x1, INT y1, INT x2, INT y2, REAL startAngle, REAL sweepAngle) { TRACE("(%p, %d, %d, %d, %d, %.2f, %.2f)\n", path, x1, y1, x2, y2, startAngle, sweepAngle); return GdipAddPathArc(path,(REAL)x1,(REAL)y1,(REAL)x2,(REAL)y2,startAngle,sweepAngle); } GpStatus WINGDIPAPI GdipAddPathBezier(GpPath *path, REAL x1, REAL y1, REAL x2, REAL y2, REAL x3, REAL y3, REAL x4, REAL y4) { PointF points[4]; TRACE("(%p, %.2f, %.2f, %.2f, %.2f, %.2f, %.2f, %.2f, %.2f)\n", path, x1, y1, x2, y2, x3, y3, x4, y4); if(!path) return InvalidParameter; points[0].X = x1; points[0].Y = y1; points[1].X = x2; points[1].Y = y2; points[2].X = x3; points[2].Y = y3; points[3].X = x4; points[3].Y = y4; return extend_current_figure(path, points, 4, PathPointTypeBezier); } GpStatus WINGDIPAPI GdipAddPathBezierI(GpPath *path, INT x1, INT y1, INT x2, INT y2, INT x3, INT y3, INT x4, INT y4) { TRACE("(%p, %d, %d, %d, %d, %d, %d, %d, %d)\n", path, x1, y1, x2, y2, x3, y3, x4, y4); return GdipAddPathBezier(path,(REAL)x1,(REAL)y1,(REAL)x2,(REAL)y2,(REAL)x3,(REAL)y3, (REAL)x4,(REAL)y4); } GpStatus WINGDIPAPI GdipAddPathBeziers(GpPath *path, GDIPCONST GpPointF *points, INT count) { TRACE("(%p, %p, %d)\n", path, points, count); if(!path || !points || ((count - 1) % 3)) return InvalidParameter; return extend_current_figure(path, points, count, PathPointTypeBezier); } GpStatus WINGDIPAPI GdipAddPathBeziersI(GpPath *path, GDIPCONST GpPoint *points, INT count) { GpPointF *ptsF; GpStatus ret; INT i; TRACE("(%p, %p, %d)\n", path, points, count); if(!points || ((count - 1) % 3)) return InvalidParameter; ptsF = heap_alloc_zero(sizeof(GpPointF) * count); if(!ptsF) return OutOfMemory; for(i = 0; i < count; i++){ ptsF[i].X = (REAL)points[i].X; ptsF[i].Y = (REAL)points[i].Y; } ret = GdipAddPathBeziers(path, ptsF, count); heap_free(ptsF); return ret; } GpStatus WINGDIPAPI GdipAddPathClosedCurve(GpPath *path, GDIPCONST GpPointF *points, INT count) { TRACE("(%p, %p, %d)\n", path, points, count); return GdipAddPathClosedCurve2(path, points, count, 1.0); } GpStatus WINGDIPAPI GdipAddPathClosedCurveI(GpPath *path, GDIPCONST GpPoint *points, INT count) { TRACE("(%p, %p, %d)\n", path, points, count); return GdipAddPathClosedCurve2I(path, points, count, 1.0); } GpStatus WINGDIPAPI GdipAddPathClosedCurve2(GpPath *path, GDIPCONST GpPointF *points, INT count, REAL tension) { INT i, len_pt = (count + 1)*3-2; GpPointF *pt; GpPointF *pts; REAL x1, x2, y1, y2; GpStatus stat; TRACE("(%p, %p, %d, %.2f)\n", path, points, count, tension); if(!path || !points || count <= 1) return InvalidParameter; pt = heap_alloc_zero(len_pt * sizeof(GpPointF)); pts = heap_alloc_zero((count + 1)*sizeof(GpPointF)); if(!pt || !pts){ heap_free(pt); heap_free(pts); return OutOfMemory; } /* copy source points to extend with the last one */ memcpy(pts, points, sizeof(GpPointF)*count); pts[count] = pts[0]; tension = tension * TENSION_CONST; for(i = 0; i < count-1; i++){ calc_curve_bezier(&(pts[i]), tension, &x1, &y1, &x2, &y2); pt[3*i+2].X = x1; pt[3*i+2].Y = y1; pt[3*i+3].X = pts[i+1].X; pt[3*i+3].Y = pts[i+1].Y; pt[3*i+4].X = x2; pt[3*i+4].Y = y2; } /* points [len_pt-2] and [0] are calculated separately to connect splines properly */ pts[0] = points[count-1]; pts[1] = points[0]; /* equals to start and end of a resulting path */ pts[2] = points[1]; calc_curve_bezier(pts, tension, &x1, &y1, &x2, &y2); pt[len_pt-2].X = x1; pt[len_pt-2].Y = y1; pt[0].X = pts[1].X; pt[0].Y = pts[1].Y; pt[1].X = x2; pt[1].Y = y2; /* close path */ pt[len_pt-1].X = pt[0].X; pt[len_pt-1].Y = pt[0].Y; stat = extend_current_figure(path, pt, len_pt, PathPointTypeBezier); /* close figure */ if(stat == Ok){ path->pathdata.Types[path->pathdata.Count - 1] |= PathPointTypeCloseSubpath; path->newfigure = TRUE; } heap_free(pts); heap_free(pt); return stat; } GpStatus WINGDIPAPI GdipAddPathClosedCurve2I(GpPath *path, GDIPCONST GpPoint *points, INT count, REAL tension) { GpPointF *ptf; INT i; GpStatus stat; TRACE("(%p, %p, %d, %.2f)\n", path, points, count, tension); if(!path || !points || count <= 1) return InvalidParameter; ptf = heap_alloc_zero(sizeof(GpPointF)*count); if(!ptf) return OutOfMemory; for(i = 0; i < count; i++){ ptf[i].X = (REAL)points[i].X; ptf[i].Y = (REAL)points[i].Y; } stat = GdipAddPathClosedCurve2(path, ptf, count, tension); heap_free(ptf); return stat; } GpStatus WINGDIPAPI GdipAddPathCurve(GpPath *path, GDIPCONST GpPointF *points, INT count) { TRACE("(%p, %p, %d)\n", path, points, count); if(!path || !points || count <= 1) return InvalidParameter; return GdipAddPathCurve2(path, points, count, 1.0); } GpStatus WINGDIPAPI GdipAddPathCurveI(GpPath *path, GDIPCONST GpPoint *points, INT count) { TRACE("(%p, %p, %d)\n", path, points, count); if(!path || !points || count <= 1) return InvalidParameter; return GdipAddPathCurve2I(path, points, count, 1.0); } GpStatus WINGDIPAPI GdipAddPathCurve2(GpPath *path, GDIPCONST GpPointF *points, INT count, REAL tension) { INT i, len_pt = count*3-2; GpPointF *pt; REAL x1, x2, y1, y2; GpStatus stat; TRACE("(%p, %p, %d, %.2f)\n", path, points, count, tension); if(!path || !points || count <= 1) return InvalidParameter; pt = heap_alloc_zero(len_pt * sizeof(GpPointF)); if(!pt) return OutOfMemory; tension = tension * TENSION_CONST; calc_curve_bezier_endp(points[0].X, points[0].Y, points[1].X, points[1].Y, tension, &x1, &y1); pt[0].X = points[0].X; pt[0].Y = points[0].Y; pt[1].X = x1; pt[1].Y = y1; for(i = 0; i < count-2; i++){ calc_curve_bezier(&(points[i]), tension, &x1, &y1, &x2, &y2); pt[3*i+2].X = x1; pt[3*i+2].Y = y1; pt[3*i+3].X = points[i+1].X; pt[3*i+3].Y = points[i+1].Y; pt[3*i+4].X = x2; pt[3*i+4].Y = y2; } calc_curve_bezier_endp(points[count-1].X, points[count-1].Y, points[count-2].X, points[count-2].Y, tension, &x1, &y1); pt[len_pt-2].X = x1; pt[len_pt-2].Y = y1; pt[len_pt-1].X = points[count-1].X; pt[len_pt-1].Y = points[count-1].Y; stat = extend_current_figure(path, pt, len_pt, PathPointTypeBezier); heap_free(pt); return stat; } GpStatus WINGDIPAPI GdipAddPathCurve2I(GpPath *path, GDIPCONST GpPoint *points, INT count, REAL tension) { GpPointF *ptf; INT i; GpStatus stat; TRACE("(%p, %p, %d, %.2f)\n", path, points, count, tension); if(!path || !points || count <= 1) return InvalidParameter; ptf = heap_alloc_zero(sizeof(GpPointF)*count); if(!ptf) return OutOfMemory; for(i = 0; i < count; i++){ ptf[i].X = (REAL)points[i].X; ptf[i].Y = (REAL)points[i].Y; } stat = GdipAddPathCurve2(path, ptf, count, tension); heap_free(ptf); return stat; } GpStatus WINGDIPAPI GdipAddPathCurve3(GpPath *path, GDIPCONST GpPointF *points, INT count, INT offset, INT nseg, REAL tension) { TRACE("(%p, %p, %d, %d, %d, %.2f)\n", path, points, count, offset, nseg, tension); if(!path || !points || offset + 1 >= count || count - offset < nseg + 1) return InvalidParameter; return GdipAddPathCurve2(path, &points[offset], nseg + 1, tension); } GpStatus WINGDIPAPI GdipAddPathCurve3I(GpPath *path, GDIPCONST GpPoint *points, INT count, INT offset, INT nseg, REAL tension) { TRACE("(%p, %p, %d, %d, %d, %.2f)\n", path, points, count, offset, nseg, tension); if(!path || !points || offset + 1 >= count || count - offset < nseg + 1) return InvalidParameter; return GdipAddPathCurve2I(path, &points[offset], nseg + 1, tension); } GpStatus WINGDIPAPI GdipAddPathEllipse(GpPath *path, REAL x, REAL y, REAL width, REAL height) { INT old_count, numpts; TRACE("(%p, %.2f, %.2f, %.2f, %.2f)\n", path, x, y, width, height); if(!path) return InvalidParameter; if(!lengthen_path(path, MAX_ARC_PTS)) return OutOfMemory; old_count = path->pathdata.Count; if((numpts = arc2polybezier(&path->pathdata.Points[old_count], x, y, width, height, 0.0, 360.0)) != MAX_ARC_PTS){ ERR("expected %d points but got %d\n", MAX_ARC_PTS, numpts); return GenericError; } memset(&path->pathdata.Types[old_count + 1], PathPointTypeBezier, MAX_ARC_PTS - 1); /* An ellipse is an intrinsic figure (always is its own subpath). */ path->pathdata.Types[old_count] = PathPointTypeStart; path->pathdata.Types[old_count + MAX_ARC_PTS - 1] |= PathPointTypeCloseSubpath; path->newfigure = TRUE; path->pathdata.Count += MAX_ARC_PTS; return Ok; } GpStatus WINGDIPAPI GdipAddPathEllipseI(GpPath *path, INT x, INT y, INT width, INT height) { TRACE("(%p, %d, %d, %d, %d)\n", path, x, y, width, height); return GdipAddPathEllipse(path,(REAL)x,(REAL)y,(REAL)width,(REAL)height); } GpStatus WINGDIPAPI GdipAddPathLine2(GpPath *path, GDIPCONST GpPointF *points, INT count) { TRACE("(%p, %p, %d)\n", path, points, count); if(!path || !points || count < 1) return InvalidParameter; return extend_current_figure(path, points, count, PathPointTypeLine); } GpStatus WINGDIPAPI GdipAddPathLine2I(GpPath *path, GDIPCONST GpPoint *points, INT count) { GpPointF *pointsF; INT i; GpStatus stat; TRACE("(%p, %p, %d)\n", path, points, count); if(count <= 0) return InvalidParameter; pointsF = heap_alloc_zero(sizeof(GpPointF) * count); if(!pointsF) return OutOfMemory; for(i = 0;i < count; i++){ pointsF[i].X = (REAL)points[i].X; pointsF[i].Y = (REAL)points[i].Y; } stat = GdipAddPathLine2(path, pointsF, count); heap_free(pointsF); return stat; } /************************************************************************* * GdipAddPathLine [GDIPLUS.21] * * Add two points to the given path. * * PARAMS * path [I/O] Path that the line is appended to * x1 [I] X coordinate of the first point of the line * y1 [I] Y coordinate of the first point of the line * x2 [I] X coordinate of the second point of the line * y2 [I] Y coordinate of the second point of the line * * RETURNS * InvalidParameter If the first parameter is not a valid path * OutOfMemory If the path cannot be lengthened, i.e. memory allocation fails * Ok If everything works out as expected * * NOTES * This functions takes the newfigure value of the given path into account, * i.e. the two new points are connected to the end of the given path if it * was set to FALSE, otherwise the first point is given the PathPointTypeStart * value. In both cases, the value of newfigure of the given path is FALSE * afterwards. */ GpStatus WINGDIPAPI GdipAddPathLine(GpPath *path, REAL x1, REAL y1, REAL x2, REAL y2) { PointF points[2]; TRACE("(%p, %.2f, %.2f, %.2f, %.2f)\n", path, x1, y1, x2, y2); if(!path) return InvalidParameter; points[0].X = x1; points[0].Y = y1; points[1].X = x2; points[1].Y = y2; return extend_current_figure(path, points, 2, PathPointTypeLine); } /************************************************************************* * GdipAddPathLineI [GDIPLUS.21] * * See GdipAddPathLine */ GpStatus WINGDIPAPI GdipAddPathLineI(GpPath *path, INT x1, INT y1, INT x2, INT y2) { TRACE("(%p, %d, %d, %d, %d)\n", path, x1, y1, x2, y2); return GdipAddPathLine(path, (REAL)x1, (REAL)y1, (REAL)x2, (REAL)y2); } GpStatus WINGDIPAPI GdipAddPathPath(GpPath *path, GDIPCONST GpPath* addingPath, BOOL connect) { INT old_count, count; TRACE("(%p, %p, %d)\n", path, addingPath, connect); if(!path || !addingPath) return InvalidParameter; old_count = path->pathdata.Count; count = addingPath->pathdata.Count; if(!lengthen_path(path, count)) return OutOfMemory; memcpy(&path->pathdata.Points[old_count], addingPath->pathdata.Points, count * sizeof(GpPointF)); memcpy(&path->pathdata.Types[old_count], addingPath->pathdata.Types, count); if(path->newfigure || !connect) path->pathdata.Types[old_count] = PathPointTypeStart; else path->pathdata.Types[old_count] = PathPointTypeLine; path->newfigure = FALSE; path->pathdata.Count += count; return Ok; } GpStatus WINGDIPAPI GdipAddPathPie(GpPath *path, REAL x, REAL y, REAL width, REAL height, REAL startAngle, REAL sweepAngle) { GpPointF *ptf; GpStatus status; INT i, count; TRACE("(%p, %.2f, %.2f, %.2f, %.2f, %.2f, %.2f)\n", path, x, y, width, height, startAngle, sweepAngle); if(!path) return InvalidParameter; /* on zero width/height only start point added */ if(width <= 1e-7 || height <= 1e-7){ if(!lengthen_path(path, 1)) return OutOfMemory; path->pathdata.Points[0].X = x + width / 2.0; path->pathdata.Points[0].Y = y + height / 2.0; path->pathdata.Types[0] = PathPointTypeStart | PathPointTypeCloseSubpath; path->pathdata.Count = 1; return InvalidParameter; } count = arc2polybezier(NULL, x, y, width, height, startAngle, sweepAngle); if(count == 0) return Ok; ptf = heap_alloc_zero(sizeof(GpPointF)*count); if(!ptf) return OutOfMemory; arc2polybezier(ptf, x, y, width, height, startAngle, sweepAngle); status = GdipAddPathLine(path, x + width/2, y + height/2, ptf[0].X, ptf[0].Y); if(status != Ok){ heap_free(ptf); return status; } /* one spline is already added as a line endpoint */ if(!lengthen_path(path, count - 1)){ heap_free(ptf); return OutOfMemory; } memcpy(&(path->pathdata.Points[path->pathdata.Count]), &(ptf[1]),sizeof(GpPointF)*(count-1)); for(i = 0; i < count-1; i++) path->pathdata.Types[path->pathdata.Count+i] = PathPointTypeBezier; path->pathdata.Count += count-1; GdipClosePathFigure(path); heap_free(ptf); return status; } GpStatus WINGDIPAPI GdipAddPathPieI(GpPath *path, INT x, INT y, INT width, INT height, REAL startAngle, REAL sweepAngle) { TRACE("(%p, %d, %d, %d, %d, %.2f, %.2f)\n", path, x, y, width, height, startAngle, sweepAngle); return GdipAddPathPie(path, (REAL)x, (REAL)y, (REAL)width, (REAL)height, startAngle, sweepAngle); } GpStatus WINGDIPAPI GdipAddPathPolygon(GpPath *path, GDIPCONST GpPointF *points, INT count) { INT old_count; TRACE("(%p, %p, %d)\n", path, points, count); if(!path || !points || count < 3) return InvalidParameter; if(!lengthen_path(path, count)) return OutOfMemory; old_count = path->pathdata.Count; memcpy(&path->pathdata.Points[old_count], points, count*sizeof(GpPointF)); memset(&path->pathdata.Types[old_count + 1], PathPointTypeLine, count - 1); /* A polygon is an intrinsic figure */ path->pathdata.Types[old_count] = PathPointTypeStart; path->pathdata.Types[old_count + count - 1] |= PathPointTypeCloseSubpath; path->newfigure = TRUE; path->pathdata.Count += count; return Ok; } GpStatus WINGDIPAPI GdipAddPathPolygonI(GpPath *path, GDIPCONST GpPoint *points, INT count) { GpPointF *ptf; GpStatus status; INT i; TRACE("(%p, %p, %d)\n", path, points, count); if(!points || count < 3) return InvalidParameter; ptf = heap_alloc_zero(sizeof(GpPointF) * count); if(!ptf) return OutOfMemory; for(i = 0; i < count; i++){ ptf[i].X = (REAL)points[i].X; ptf[i].Y = (REAL)points[i].Y; } status = GdipAddPathPolygon(path, ptf, count); heap_free(ptf); return status; } static float fromfixedpoint(const FIXED v) { float f = ((float)v.fract) / (1<<(sizeof(v.fract)*8)); f += v.value; return f; } struct format_string_args { GpPath *path; float maxY; float scale; float ascent; }; static GpStatus format_string_callback(HDC dc, GDIPCONST WCHAR *string, INT index, INT length, GDIPCONST GpFont *font, GDIPCONST RectF *rect, GDIPCONST GpStringFormat *format, INT lineno, const RectF *bounds, INT *underlined_indexes, INT underlined_index_count, void *priv) { static const MAT2 identity = { {0,1}, {0,0}, {0,0}, {0,1} }; struct format_string_args *args = priv; GpPath *path = args->path; GpStatus status = Ok; float x = rect->X + (bounds->X - rect->X) * args->scale; float y = rect->Y + (bounds->Y - rect->Y) * args->scale; int i; if (underlined_index_count) FIXME("hotkey underlines not drawn yet\n"); if (y + bounds->Height * args->scale > args->maxY) args->maxY = y + bounds->Height * args->scale; for (i = index; i < length; ++i) { GLYPHMETRICS gm; TTPOLYGONHEADER *ph = NULL, *origph; char *start; DWORD len, ofs = 0; len = GetGlyphOutlineW(dc, string[i], GGO_BEZIER, &gm, 0, NULL, &identity); if (len == GDI_ERROR) { status = GenericError; break; } origph = ph = heap_alloc_zero(len); start = (char *)ph; if (!ph || !lengthen_path(path, len / sizeof(POINTFX))) { heap_free(ph); status = OutOfMemory; break; } GetGlyphOutlineW(dc, string[i], GGO_BEZIER, &gm, len, start, &identity); ofs = 0; while (ofs < len) { DWORD ofs_start = ofs; ph = (TTPOLYGONHEADER*)&start[ofs]; path->pathdata.Types[path->pathdata.Count] = PathPointTypeStart; path->pathdata.Points[path->pathdata.Count].X = x + fromfixedpoint(ph->pfxStart.x) * args->scale; path->pathdata.Points[path->pathdata.Count++].Y = y + args->ascent - fromfixedpoint(ph->pfxStart.y) * args->scale; TRACE("Starting at count %i with pos %f, %f)\n", path->pathdata.Count, x, y); ofs += sizeof(*ph); while (ofs - ofs_start < ph->cb) { TTPOLYCURVE *curve = (TTPOLYCURVE*)&start[ofs]; int j; ofs += sizeof(TTPOLYCURVE) + (curve->cpfx - 1) * sizeof(POINTFX); switch (curve->wType) { case TT_PRIM_LINE: for (j = 0; j < curve->cpfx; ++j) { path->pathdata.Types[path->pathdata.Count] = PathPointTypeLine; path->pathdata.Points[path->pathdata.Count].X = x + fromfixedpoint(curve->apfx[j].x) * args->scale; path->pathdata.Points[path->pathdata.Count++].Y = y + args->ascent - fromfixedpoint(curve->apfx[j].y) * args->scale; } break; case TT_PRIM_CSPLINE: for (j = 0; j < curve->cpfx; ++j) { path->pathdata.Types[path->pathdata.Count] = PathPointTypeBezier; path->pathdata.Points[path->pathdata.Count].X = x + fromfixedpoint(curve->apfx[j].x) * args->scale; path->pathdata.Points[path->pathdata.Count++].Y = y + args->ascent - fromfixedpoint(curve->apfx[j].y) * args->scale; } break; default: ERR("Unhandled type: %u\n", curve->wType); status = GenericError; } } path->pathdata.Types[path->pathdata.Count - 1] |= PathPointTypeCloseSubpath; } path->newfigure = TRUE; x += gm.gmCellIncX * args->scale; y += gm.gmCellIncY * args->scale; heap_free(origph); if (status != Ok) break; } return status; } GpStatus WINGDIPAPI GdipAddPathString(GpPath* path, GDIPCONST WCHAR* string, INT length, GDIPCONST GpFontFamily* family, INT style, REAL emSize, GDIPCONST RectF* layoutRect, GDIPCONST GpStringFormat* format) { GpFont *font; GpStatus status; LOGFONTW lfw; HANDLE hfont; HDC dc; GpGraphics *graphics; GpPath *backup; struct format_string_args args; int i; UINT16 native_height; RectF scaled_layout_rect; TEXTMETRICW textmetric; TRACE("(%p, %s, %d, %p, %d, %f, %p, %p)\n", path, debugstr_w(string), length, family, style, emSize, layoutRect, format); if (!path || !string || !family || !emSize || !layoutRect || !format) return InvalidParameter; status = GdipGetEmHeight(family, style, &native_height); if (status != Ok) return status; scaled_layout_rect.X = layoutRect->X; scaled_layout_rect.Y = layoutRect->Y; scaled_layout_rect.Width = layoutRect->Width * native_height / emSize; scaled_layout_rect.Height = layoutRect->Height * native_height / emSize; if ((status = GdipClonePath(path, &backup)) != Ok) return status; dc = CreateCompatibleDC(0); status = GdipCreateFromHDC(dc, &graphics); if (status != Ok) { DeleteDC(dc); GdipDeletePath(backup); return status; } status = GdipCreateFont(family, native_height, style, UnitPixel, &font); if (status != Ok) { GdipDeleteGraphics(graphics); DeleteDC(dc); GdipDeletePath(backup); return status; } get_log_fontW(font, graphics, &lfw); GdipDeleteFont(font); GdipDeleteGraphics(graphics); hfont = CreateFontIndirectW(&lfw); if (!hfont) { WARN("Failed to create font\n"); DeleteDC(dc); GdipDeletePath(backup); return GenericError; } SelectObject(dc, hfont); GetTextMetricsW(dc, &textmetric); args.path = path; args.maxY = 0; args.scale = emSize / native_height; args.ascent = textmetric.tmAscent * args.scale; status = gdip_format_string(dc, string, length, NULL, &scaled_layout_rect, format, TRUE, format_string_callback, &args); DeleteDC(dc); DeleteObject(hfont); if (status != Ok) /* free backup */ { heap_free(path->pathdata.Points); heap_free(path->pathdata.Types); *path = *backup; heap_free(backup); return status; } if (format->line_align == StringAlignmentCenter && layoutRect->Y + args.maxY < layoutRect->Height) { float inc = layoutRect->Height + layoutRect->Y - args.maxY; inc /= 2; for (i = backup->pathdata.Count; i < path->pathdata.Count; ++i) path->pathdata.Points[i].Y += inc; } else if (format->line_align == StringAlignmentFar) { float inc = layoutRect->Height + layoutRect->Y - args.maxY; for (i = backup->pathdata.Count; i < path->pathdata.Count; ++i) path->pathdata.Points[i].Y += inc; } GdipDeletePath(backup); return status; } GpStatus WINGDIPAPI GdipAddPathStringI(GpPath* path, GDIPCONST WCHAR* string, INT length, GDIPCONST GpFontFamily* family, INT style, REAL emSize, GDIPCONST Rect* layoutRect, GDIPCONST GpStringFormat* format) { if (layoutRect) { RectF layoutRectF = { (REAL)layoutRect->X, (REAL)layoutRect->Y, (REAL)layoutRect->Width, (REAL)layoutRect->Height }; return GdipAddPathString(path, string, length, family, style, emSize, &layoutRectF, format); } return InvalidParameter; } /************************************************************************* * GdipClonePath [GDIPLUS.53] * * Duplicate the given path in memory. * * PARAMS * path [I] The path to be duplicated * clone [O] Pointer to the new path * * RETURNS * InvalidParameter If the input path is invalid * OutOfMemory If allocation of needed memory fails * Ok If everything works out as expected */ GpStatus WINGDIPAPI GdipClonePath(GpPath* path, GpPath **clone) { TRACE("(%p, %p)\n", path, clone); if(!path || !clone) return InvalidParameter; *clone = heap_alloc_zero(sizeof(GpPath)); if(!*clone) return OutOfMemory; **clone = *path; (*clone)->pathdata.Points = heap_alloc_zero(path->datalen * sizeof(PointF)); (*clone)->pathdata.Types = heap_alloc_zero(path->datalen); if(!(*clone)->pathdata.Points || !(*clone)->pathdata.Types){ heap_free((*clone)->pathdata.Points); heap_free((*clone)->pathdata.Types); heap_free(*clone); return OutOfMemory; } memcpy((*clone)->pathdata.Points, path->pathdata.Points, path->datalen * sizeof(PointF)); memcpy((*clone)->pathdata.Types, path->pathdata.Types, path->datalen); return Ok; } GpStatus WINGDIPAPI GdipClosePathFigure(GpPath* path) { TRACE("(%p)\n", path); if(!path) return InvalidParameter; if(path->pathdata.Count > 0){ path->pathdata.Types[path->pathdata.Count - 1] |= PathPointTypeCloseSubpath; path->newfigure = TRUE; } return Ok; } GpStatus WINGDIPAPI GdipClosePathFigures(GpPath* path) { INT i; TRACE("(%p)\n", path); if(!path) return InvalidParameter; for(i = 1; i < path->pathdata.Count; i++){ if(path->pathdata.Types[i] == PathPointTypeStart) path->pathdata.Types[i-1] |= PathPointTypeCloseSubpath; } path->newfigure = TRUE; return Ok; } GpStatus WINGDIPAPI GdipCreatePath(GpFillMode fill, GpPath **path) { TRACE("(%d, %p)\n", fill, path); if(!path) return InvalidParameter; *path = heap_alloc_zero(sizeof(GpPath)); if(!*path) return OutOfMemory; (*path)->fill = fill; (*path)->newfigure = TRUE; return Ok; } GpStatus WINGDIPAPI GdipCreatePath2(GDIPCONST GpPointF* points, GDIPCONST BYTE* types, INT count, GpFillMode fill, GpPath **path) { int i; TRACE("(%p, %p, %d, %d, %p)\n", points, types, count, fill, path); if(!points || !types || !path) return InvalidParameter; if(count <= 0) { *path = NULL; return OutOfMemory; } *path = heap_alloc_zero(sizeof(GpPath)); if(!*path) return OutOfMemory; if(count > 1 && (types[count-1] & PathPointTypePathTypeMask) == PathPointTypeStart) count = 0; for(i = 1; i < count; i++) { if((types[i] & PathPointTypePathTypeMask) == PathPointTypeBezier) { if(i+2 < count && (types[i+1] & PathPointTypePathTypeMask) == PathPointTypeBezier && (types[i+2] & PathPointTypePathTypeMask) == PathPointTypeBezier) i += 2; else { count = 0; break; } } } (*path)->pathdata.Points = heap_alloc_zero(count * sizeof(PointF)); (*path)->pathdata.Types = heap_alloc_zero(count); if(!(*path)->pathdata.Points || !(*path)->pathdata.Types){ heap_free((*path)->pathdata.Points); heap_free((*path)->pathdata.Types); heap_free(*path); return OutOfMemory; } memcpy((*path)->pathdata.Points, points, count * sizeof(PointF)); memcpy((*path)->pathdata.Types, types, count); if(count > 0) (*path)->pathdata.Types[0] = PathPointTypeStart; (*path)->pathdata.Count = count; (*path)->datalen = count; (*path)->fill = fill; (*path)->newfigure = TRUE; return Ok; } GpStatus WINGDIPAPI GdipCreatePath2I(GDIPCONST GpPoint* points, GDIPCONST BYTE* types, INT count, GpFillMode fill, GpPath **path) { GpPointF *ptF; GpStatus ret; INT i; TRACE("(%p, %p, %d, %d, %p)\n", points, types, count, fill, path); ptF = heap_alloc_zero(sizeof(GpPointF)*count); for(i = 0;i < count; i++){ ptF[i].X = (REAL)points[i].X; ptF[i].Y = (REAL)points[i].Y; } ret = GdipCreatePath2(ptF, types, count, fill, path); heap_free(ptF); return ret; } GpStatus WINGDIPAPI GdipDeletePath(GpPath *path) { TRACE("(%p)\n", path); if(!path) return InvalidParameter; heap_free(path->pathdata.Points); heap_free(path->pathdata.Types); heap_free(path); return Ok; } GpStatus WINGDIPAPI GdipFlattenPath(GpPath *path, GpMatrix* matrix, REAL flatness) { path_list_node_t *list, *node; GpPointF pt; INT i = 1; INT startidx = 0; GpStatus stat; TRACE("(%p, %p, %.2f)\n", path, matrix, flatness); if(!path) return InvalidParameter; if(path->pathdata.Count == 0) return Ok; stat = GdipTransformPath(path, matrix); if(stat != Ok) return stat; pt = path->pathdata.Points[0]; if(!init_path_list(&list, pt.X, pt.Y)) return OutOfMemory; node = list; while(i < path->pathdata.Count){ BYTE type = path->pathdata.Types[i] & PathPointTypePathTypeMask; path_list_node_t *start; pt = path->pathdata.Points[i]; /* save last start point index */ if(type == PathPointTypeStart) startidx = i; /* always add line points and start points */ if((type == PathPointTypeStart) || (type == PathPointTypeLine)){ if(!add_path_list_node(node, pt.X, pt.Y, path->pathdata.Types[i])) goto memout; node = node->next; ++i; continue; } /* Bezier curve */ /* test for closed figure */ if(path->pathdata.Types[i+1] & PathPointTypeCloseSubpath){ pt = path->pathdata.Points[startidx]; ++i; } else { i += 2; pt = path->pathdata.Points[i]; }; start = node; /* add Bezier end point */ type = (path->pathdata.Types[i] & ~PathPointTypePathTypeMask) | PathPointTypeLine; if(!add_path_list_node(node, pt.X, pt.Y, type)) goto memout; node = node->next; /* flatten curve */ if(!flatten_bezier(start, path->pathdata.Points[i-2].X, path->pathdata.Points[i-2].Y, path->pathdata.Points[i-1].X, path->pathdata.Points[i-1].Y, node, flatness)) goto memout; ++i; }/* while */ /* store path data back */ i = path_list_count(list); if(!lengthen_path(path, i)) goto memout; path->pathdata.Count = i; node = list; for(i = 0; i < path->pathdata.Count; i++){ path->pathdata.Points[i] = node->pt; path->pathdata.Types[i] = node->type; node = node->next; } free_path_list(list); return Ok; memout: free_path_list(list); return OutOfMemory; } GpStatus WINGDIPAPI GdipGetPathData(GpPath *path, GpPathData* pathData) { TRACE("(%p, %p)\n", path, pathData); if(!path || !pathData) return InvalidParameter; /* Only copy data. pathData allocation/freeing controlled by wrapper class. Assumed that pathData is enough wide to get all data - controlled by wrapper too. */ memcpy(pathData->Points, path->pathdata.Points, sizeof(PointF) * pathData->Count); memcpy(pathData->Types , path->pathdata.Types , pathData->Count); return Ok; } GpStatus WINGDIPAPI GdipGetPathFillMode(GpPath *path, GpFillMode *fillmode) { TRACE("(%p, %p)\n", path, fillmode); if(!path || !fillmode) return InvalidParameter; *fillmode = path->fill; return Ok; } GpStatus WINGDIPAPI GdipGetPathLastPoint(GpPath* path, GpPointF* lastPoint) { INT count; TRACE("(%p, %p)\n", path, lastPoint); if(!path || !lastPoint) return InvalidParameter; count = path->pathdata.Count; if(count > 0) *lastPoint = path->pathdata.Points[count-1]; return Ok; } GpStatus WINGDIPAPI GdipGetPathPoints(GpPath *path, GpPointF* points, INT count) { TRACE("(%p, %p, %d)\n", path, points, count); if(!path) return InvalidParameter; if(count < path->pathdata.Count) return InsufficientBuffer; memcpy(points, path->pathdata.Points, path->pathdata.Count * sizeof(GpPointF)); return Ok; } GpStatus WINGDIPAPI GdipGetPathPointsI(GpPath *path, GpPoint* points, INT count) { GpStatus ret; GpPointF *ptf; INT i; TRACE("(%p, %p, %d)\n", path, points, count); if(count <= 0) return InvalidParameter; ptf = heap_alloc_zero(sizeof(GpPointF)*count); if(!ptf) return OutOfMemory; ret = GdipGetPathPoints(path,ptf,count); if(ret == Ok) for(i = 0;i < count;i++){ points[i].X = gdip_round(ptf[i].X); points[i].Y = gdip_round(ptf[i].Y); }; heap_free(ptf); return ret; } GpStatus WINGDIPAPI GdipGetPathTypes(GpPath *path, BYTE* types, INT count) { TRACE("(%p, %p, %d)\n", path, types, count); if(!path) return InvalidParameter; if(count < path->pathdata.Count) return InsufficientBuffer; memcpy(types, path->pathdata.Types, path->pathdata.Count); return Ok; } /* Windows expands the bounding box to the maximum possible bounding box * for a given pen. For example, if a line join can extend past the point * it's joining by x units, the bounding box is extended by x units in every * direction (even though this is too conservative for most cases). */ GpStatus WINGDIPAPI GdipGetPathWorldBounds(GpPath* path, GpRectF* bounds, GDIPCONST GpMatrix *matrix, GDIPCONST GpPen *pen) { GpPointF * points, temp_pts[4]; INT count, i; REAL path_width = 1.0, width, height, temp, low_x, low_y, high_x, high_y; TRACE("(%p, %p, %p, %p)\n", path, bounds, matrix, pen); /* Matrix and pen can be null. */ if(!path || !bounds) return InvalidParameter; /* If path is empty just return. */ count = path->pathdata.Count; if(count == 0){ bounds->X = bounds->Y = bounds->Width = bounds->Height = 0.0; return Ok; } points = path->pathdata.Points; low_x = high_x = points[0].X; low_y = high_y = points[0].Y; for(i = 1; i < count; i++){ low_x = min(low_x, points[i].X); low_y = min(low_y, points[i].Y); high_x = max(high_x, points[i].X); high_y = max(high_y, points[i].Y); } width = high_x - low_x; height = high_y - low_y; /* This looks unusual but it's the only way I can imitate windows. */ if(matrix){ temp_pts[0].X = low_x; temp_pts[0].Y = low_y; temp_pts[1].X = low_x; temp_pts[1].Y = high_y; temp_pts[2].X = high_x; temp_pts[2].Y = high_y; temp_pts[3].X = high_x; temp_pts[3].Y = low_y; GdipTransformMatrixPoints((GpMatrix*)matrix, temp_pts, 4); low_x = temp_pts[0].X; low_y = temp_pts[0].Y; for(i = 1; i < 4; i++){ low_x = min(low_x, temp_pts[i].X); low_y = min(low_y, temp_pts[i].Y); } temp = width; width = height * fabs(matrix->matrix[2]) + width * fabs(matrix->matrix[0]); height = height * fabs(matrix->matrix[3]) + temp * fabs(matrix->matrix[1]); } if(pen){ path_width = pen->width / 2.0; if(count > 2) path_width = max(path_width, pen->width * pen->miterlimit / 2.0); /* FIXME: this should probably also check for the startcap */ if(pen->endcap & LineCapNoAnchor) path_width = max(path_width, pen->width * 2.2); low_x -= path_width; low_y -= path_width; width += 2.0 * path_width; height += 2.0 * path_width; } bounds->X = low_x; bounds->Y = low_y; bounds->Width = width; bounds->Height = height; return Ok; } GpStatus WINGDIPAPI GdipGetPathWorldBoundsI(GpPath* path, GpRect* bounds, GDIPCONST GpMatrix *matrix, GDIPCONST GpPen *pen) { GpStatus ret; GpRectF boundsF; TRACE("(%p, %p, %p, %p)\n", path, bounds, matrix, pen); ret = GdipGetPathWorldBounds(path,&boundsF,matrix,pen); if(ret == Ok){ bounds->X = gdip_round(boundsF.X); bounds->Y = gdip_round(boundsF.Y); bounds->Width = gdip_round(boundsF.Width); bounds->Height = gdip_round(boundsF.Height); } return ret; } GpStatus WINGDIPAPI GdipGetPointCount(GpPath *path, INT *count) { TRACE("(%p, %p)\n", path, count); if(!path) return InvalidParameter; *count = path->pathdata.Count; return Ok; } GpStatus WINGDIPAPI GdipReversePath(GpPath* path) { INT i, count; INT start = 0; /* position in reversed path */ GpPathData revpath; TRACE("(%p)\n", path); if(!path) return InvalidParameter; count = path->pathdata.Count; if(count == 0) return Ok; revpath.Points = heap_alloc_zero(sizeof(GpPointF)*count); revpath.Types = heap_alloc_zero(sizeof(BYTE)*count); revpath.Count = count; if(!revpath.Points || !revpath.Types){ heap_free(revpath.Points); heap_free(revpath.Types); return OutOfMemory; } for(i = 0; i < count; i++){ /* find next start point */ if(path->pathdata.Types[count-i-1] == PathPointTypeStart){ INT j; for(j = start; j <= i; j++){ revpath.Points[j] = path->pathdata.Points[count-j-1]; revpath.Types[j] = path->pathdata.Types[count-j-1]; } /* mark start point */ revpath.Types[start] = PathPointTypeStart; /* set 'figure' endpoint type */ if(i-start > 1){ revpath.Types[i] = path->pathdata.Types[count-start-1] & ~PathPointTypePathTypeMask; revpath.Types[i] |= revpath.Types[i-1]; } else revpath.Types[i] = path->pathdata.Types[start]; start = i+1; } } memcpy(path->pathdata.Points, revpath.Points, sizeof(GpPointF)*count); memcpy(path->pathdata.Types, revpath.Types, sizeof(BYTE)*count); heap_free(revpath.Points); heap_free(revpath.Types); return Ok; } GpStatus WINGDIPAPI GdipIsOutlineVisiblePathPointI(GpPath* path, INT x, INT y, GpPen *pen, GpGraphics *graphics, BOOL *result) { TRACE("(%p, %d, %d, %p, %p, %p)\n", path, x, y, pen, graphics, result); return GdipIsOutlineVisiblePathPoint(path, x, y, pen, graphics, result); } GpStatus WINGDIPAPI GdipIsOutlineVisiblePathPoint(GpPath* path, REAL x, REAL y, GpPen *pen, GpGraphics *graphics, BOOL *result) { GpStatus stat; GpPath *wide_path; GpMatrix *transform = NULL; TRACE("(%p,%0.2f,%0.2f,%p,%p,%p)\n", path, x, y, pen, graphics, result); if(!path || !pen) return InvalidParameter; stat = GdipClonePath(path, &wide_path); if (stat != Ok) return stat; if (pen->unit == UnitPixel && graphics != NULL) { stat = GdipCreateMatrix(&transform); if (stat == Ok) stat = get_graphics_transform(graphics, CoordinateSpaceDevice, CoordinateSpaceWorld, transform); } if (stat == Ok) stat = GdipWidenPath(wide_path, pen, transform, 1.0); if (pen->unit == UnitPixel && graphics != NULL) { if (stat == Ok) stat = GdipInvertMatrix(transform); if (stat == Ok) stat = GdipTransformPath(wide_path, transform); } if (stat == Ok) stat = GdipIsVisiblePathPoint(wide_path, x, y, graphics, result); GdipDeleteMatrix(transform); GdipDeletePath(wide_path); return stat; } GpStatus WINGDIPAPI GdipIsVisiblePathPointI(GpPath* path, INT x, INT y, GpGraphics *graphics, BOOL *result) { TRACE("(%p, %d, %d, %p, %p)\n", path, x, y, graphics, result); return GdipIsVisiblePathPoint(path, x, y, graphics, result); } /***************************************************************************** * GdipIsVisiblePathPoint [GDIPLUS.@] */ GpStatus WINGDIPAPI GdipIsVisiblePathPoint(GpPath* path, REAL x, REAL y, GpGraphics *graphics, BOOL *result) { GpRegion *region; HRGN hrgn; GpStatus status; if(!path || !result) return InvalidParameter; status = GdipCreateRegionPath(path, ®ion); if(status != Ok) return status; status = GdipGetRegionHRgn(region, graphics, &hrgn); if(status != Ok){ GdipDeleteRegion(region); return status; } *result = PtInRegion(hrgn, gdip_round(x), gdip_round(y)); DeleteObject(hrgn); GdipDeleteRegion(region); return Ok; } GpStatus WINGDIPAPI GdipStartPathFigure(GpPath *path) { TRACE("(%p)\n", path); if(!path) return InvalidParameter; path->newfigure = TRUE; return Ok; } GpStatus WINGDIPAPI GdipResetPath(GpPath *path) { TRACE("(%p)\n", path); if(!path) return InvalidParameter; path->pathdata.Count = 0; path->newfigure = TRUE; path->fill = FillModeAlternate; return Ok; } GpStatus WINGDIPAPI GdipSetPathFillMode(GpPath *path, GpFillMode fill) { TRACE("(%p, %d)\n", path, fill); if(!path) return InvalidParameter; path->fill = fill; return Ok; } GpStatus WINGDIPAPI GdipTransformPath(GpPath *path, GpMatrix *matrix) { TRACE("(%p, %p)\n", path, matrix); if(!path) return InvalidParameter; if(path->pathdata.Count == 0 || !matrix) return Ok; return GdipTransformMatrixPoints(matrix, path->pathdata.Points, path->pathdata.Count); } GpStatus WINGDIPAPI GdipWarpPath(GpPath *path, GpMatrix* matrix, GDIPCONST GpPointF *points, INT count, REAL x, REAL y, REAL width, REAL height, WarpMode warpmode, REAL flatness) { FIXME("(%p,%p,%p,%i,%0.2f,%0.2f,%0.2f,%0.2f,%i,%0.2f)\n", path, matrix, points, count, x, y, width, height, warpmode, flatness); return NotImplemented; } static void add_bevel_point(const GpPointF *endpoint, const GpPointF *nextpoint, REAL pen_width, int right_side, path_list_node_t **last_point) { REAL segment_dy = nextpoint->Y-endpoint->Y; REAL segment_dx = nextpoint->X-endpoint->X; REAL segment_length = sqrtf(segment_dy*segment_dy + segment_dx*segment_dx); REAL distance = pen_width / 2.0; REAL bevel_dx, bevel_dy; if (segment_length == 0.0) { *last_point = add_path_list_node(*last_point, endpoint->X, endpoint->Y, PathPointTypeLine); return; } if (right_side) { bevel_dx = -distance * segment_dy / segment_length; bevel_dy = distance * segment_dx / segment_length; } else { bevel_dx = distance * segment_dy / segment_length; bevel_dy = -distance * segment_dx / segment_length; } *last_point = add_path_list_node(*last_point, endpoint->X + bevel_dx, endpoint->Y + bevel_dy, PathPointTypeLine); } static void widen_joint(const GpPointF *p1, const GpPointF *p2, const GpPointF *p3, GpPen* pen, REAL pen_width, path_list_node_t **last_point) { switch (pen->join) { case LineJoinMiter: case LineJoinMiterClipped: if ((p2->X - p1->X) * (p3->Y - p1->Y) > (p2->Y - p1->Y) * (p3->X - p1->X)) { float distance = pen_width / 2.0; float length_0 = sqrtf((p2->X-p1->X)*(p2->X-p1->X)+(p2->Y-p1->Y)*(p2->Y-p1->Y)); float length_1 = sqrtf((p3->X-p2->X)*(p3->X-p2->X)+(p3->Y-p2->Y)*(p3->Y-p2->Y)); float dx0 = distance * (p2->X - p1->X) / length_0; float dy0 = distance * (p2->Y - p1->Y) / length_0; float dx1 = distance * (p3->X - p2->X) / length_1; float dy1 = distance * (p3->Y - p2->Y) / length_1; float det = (dy0*dx1 - dx0*dy1); float dx = (dx0*dx1*(dx0-dx1) + dy0*dy0*dx1 - dy1*dy1*dx0)/det; float dy = (dy0*dy1*(dy0-dy1) + dx0*dx0*dy1 - dx1*dx1*dy0)/det; if (dx*dx + dy*dy < pen->miterlimit*pen->miterlimit * distance*distance) { *last_point = add_path_list_node(*last_point, p2->X + dx, p2->Y + dy, PathPointTypeLine); break; } else if (pen->join == LineJoinMiter) { static int once; if (!once++) FIXME("should add a clipped corner\n"); } /* else fall-through */ } /* else fall-through */ default: case LineJoinBevel: add_bevel_point(p2, p1, pen_width, 1, last_point); add_bevel_point(p2, p3, pen_width, 0, last_point); break; } } static void widen_cap(const GpPointF *endpoint, const GpPointF *nextpoint, REAL pen_width, GpLineCap cap, GpCustomLineCap *custom, int add_first_points, int add_last_point, path_list_node_t **last_point) { switch (cap) { default: case LineCapFlat: if (add_first_points) add_bevel_point(endpoint, nextpoint, pen_width, 1, last_point); if (add_last_point) add_bevel_point(endpoint, nextpoint, pen_width, 0, last_point); break; case LineCapSquare: { REAL segment_dy = nextpoint->Y-endpoint->Y; REAL segment_dx = nextpoint->X-endpoint->X; REAL segment_length = sqrtf(segment_dy*segment_dy + segment_dx*segment_dx); REAL distance = pen_width / 2.0; REAL bevel_dx, bevel_dy; REAL extend_dx, extend_dy; extend_dx = -distance * segment_dx / segment_length; extend_dy = -distance * segment_dy / segment_length; bevel_dx = -distance * segment_dy / segment_length; bevel_dy = distance * segment_dx / segment_length; if (add_first_points) *last_point = add_path_list_node(*last_point, endpoint->X + extend_dx + bevel_dx, endpoint->Y + extend_dy + bevel_dy, PathPointTypeLine); if (add_last_point) *last_point = add_path_list_node(*last_point, endpoint->X + extend_dx - bevel_dx, endpoint->Y + extend_dy - bevel_dy, PathPointTypeLine); break; } case LineCapRound: { REAL segment_dy = nextpoint->Y-endpoint->Y; REAL segment_dx = nextpoint->X-endpoint->X; REAL segment_length = sqrtf(segment_dy*segment_dy + segment_dx*segment_dx); REAL distance = pen_width / 2.0; REAL dx, dy, dx2, dy2; const REAL control_point_distance = 0.5522847498307935; /* 4/3 * (sqrt(2) - 1) */ if (add_first_points) { dx = -distance * segment_dx / segment_length; dy = -distance * segment_dy / segment_length; dx2 = dx * control_point_distance; dy2 = dy * control_point_distance; /* first 90-degree arc */ *last_point = add_path_list_node(*last_point, endpoint->X + dy, endpoint->Y - dx, PathPointTypeLine); *last_point = add_path_list_node(*last_point, endpoint->X + dy + dx2, endpoint->Y - dx + dy2, PathPointTypeBezier); *last_point = add_path_list_node(*last_point, endpoint->X + dx + dy2, endpoint->Y + dy - dx2, PathPointTypeBezier); /* midpoint */ *last_point = add_path_list_node(*last_point, endpoint->X + dx, endpoint->Y + dy, PathPointTypeBezier); /* second 90-degree arc */ *last_point = add_path_list_node(*last_point, endpoint->X + dx - dy2, endpoint->Y + dy + dx2, PathPointTypeBezier); *last_point = add_path_list_node(*last_point, endpoint->X - dy + dx2, endpoint->Y + dx + dy2, PathPointTypeBezier); *last_point = add_path_list_node(*last_point, endpoint->X - dy, endpoint->Y + dx, PathPointTypeBezier); } else if (add_last_point) add_bevel_point(endpoint, nextpoint, pen_width, 0, last_point); break; } case LineCapTriangle: { REAL segment_dy = nextpoint->Y-endpoint->Y; REAL segment_dx = nextpoint->X-endpoint->X; REAL segment_length = sqrtf(segment_dy*segment_dy + segment_dx*segment_dx); REAL distance = pen_width / 2.0; REAL dx, dy; dx = distance * segment_dx / segment_length; dy = distance * segment_dy / segment_length; if (add_first_points) { add_bevel_point(endpoint, nextpoint, pen_width, 1, last_point); *last_point = add_path_list_node(*last_point, endpoint->X - dx, endpoint->Y - dy, PathPointTypeLine); } if (add_first_points || add_last_point) add_bevel_point(endpoint, nextpoint, pen_width, 0, last_point); break; } } } static void add_anchor(const GpPointF *endpoint, const GpPointF *nextpoint, REAL pen_width, GpLineCap cap, GpCustomLineCap *custom, path_list_node_t **last_point) { switch (cap) { default: case LineCapNoAnchor: return; case LineCapSquareAnchor: { REAL segment_dy = nextpoint->Y-endpoint->Y; REAL segment_dx = nextpoint->X-endpoint->X; REAL segment_length = sqrtf(segment_dy*segment_dy + segment_dx*segment_dx); REAL distance = pen_width / sqrtf(2.0); REAL par_dx, par_dy; REAL perp_dx, perp_dy; par_dx = -distance * segment_dx / segment_length; par_dy = -distance * segment_dy / segment_length; perp_dx = -distance * segment_dy / segment_length; perp_dy = distance * segment_dx / segment_length; *last_point = add_path_list_node(*last_point, endpoint->X - par_dx - perp_dx, endpoint->Y - par_dy - perp_dy, PathPointTypeStart); *last_point = add_path_list_node(*last_point, endpoint->X - par_dx + perp_dx, endpoint->Y - par_dy + perp_dy, PathPointTypeLine); *last_point = add_path_list_node(*last_point, endpoint->X + par_dx + perp_dx, endpoint->Y + par_dy + perp_dy, PathPointTypeLine); *last_point = add_path_list_node(*last_point, endpoint->X + par_dx - perp_dx, endpoint->Y + par_dy - perp_dy, PathPointTypeLine); break; } case LineCapRoundAnchor: { REAL segment_dy = nextpoint->Y-endpoint->Y; REAL segment_dx = nextpoint->X-endpoint->X; REAL segment_length = sqrtf(segment_dy*segment_dy + segment_dx*segment_dx); REAL dx, dy, dx2, dy2; const REAL control_point_distance = 0.55228475; /* 4/3 * (sqrt(2) - 1) */ dx = -pen_width * segment_dx / segment_length; dy = -pen_width * segment_dy / segment_length; dx2 = dx * control_point_distance; dy2 = dy * control_point_distance; /* starting point */ *last_point = add_path_list_node(*last_point, endpoint->X + dy, endpoint->Y - dx, PathPointTypeStart); /* first 90-degree arc */ *last_point = add_path_list_node(*last_point, endpoint->X + dy + dx2, endpoint->Y - dx + dy2, PathPointTypeBezier); *last_point = add_path_list_node(*last_point, endpoint->X + dx + dy2, endpoint->Y + dy - dx2, PathPointTypeBezier); *last_point = add_path_list_node(*last_point, endpoint->X + dx, endpoint->Y + dy, PathPointTypeBezier); /* second 90-degree arc */ *last_point = add_path_list_node(*last_point, endpoint->X + dx - dy2, endpoint->Y + dy + dx2, PathPointTypeBezier); *last_point = add_path_list_node(*last_point, endpoint->X - dy + dx2, endpoint->Y + dx + dy2, PathPointTypeBezier); *last_point = add_path_list_node(*last_point, endpoint->X - dy, endpoint->Y + dx, PathPointTypeBezier); /* third 90-degree arc */ *last_point = add_path_list_node(*last_point, endpoint->X - dy - dx2, endpoint->Y + dx - dy2, PathPointTypeBezier); *last_point = add_path_list_node(*last_point, endpoint->X - dx - dy2, endpoint->Y - dy + dx2, PathPointTypeBezier); *last_point = add_path_list_node(*last_point, endpoint->X - dx, endpoint->Y - dy, PathPointTypeBezier); /* fourth 90-degree arc */ *last_point = add_path_list_node(*last_point, endpoint->X - dx + dy2, endpoint->Y - dy - dx2, PathPointTypeBezier); *last_point = add_path_list_node(*last_point, endpoint->X + dy - dx2, endpoint->Y - dx - dy2, PathPointTypeBezier); *last_point = add_path_list_node(*last_point, endpoint->X + dy, endpoint->Y - dx, PathPointTypeBezier); break; } case LineCapDiamondAnchor: { REAL segment_dy = nextpoint->Y-endpoint->Y; REAL segment_dx = nextpoint->X-endpoint->X; REAL segment_length = sqrtf(segment_dy*segment_dy + segment_dx*segment_dx); REAL par_dx, par_dy; REAL perp_dx, perp_dy; par_dx = -pen_width * segment_dx / segment_length; par_dy = -pen_width * segment_dy / segment_length; perp_dx = -pen_width * segment_dy / segment_length; perp_dy = pen_width * segment_dx / segment_length; *last_point = add_path_list_node(*last_point, endpoint->X + par_dx, endpoint->Y + par_dy, PathPointTypeStart); *last_point = add_path_list_node(*last_point, endpoint->X - perp_dx, endpoint->Y - perp_dy, PathPointTypeLine); *last_point = add_path_list_node(*last_point, endpoint->X - par_dx, endpoint->Y - par_dy, PathPointTypeLine); *last_point = add_path_list_node(*last_point, endpoint->X + perp_dx, endpoint->Y + perp_dy, PathPointTypeLine); break; } } (*last_point)->type |= PathPointTypeCloseSubpath; } static void widen_open_figure(const GpPointF *points, int start, int end, GpPen *pen, REAL pen_width, GpLineCap start_cap, GpCustomLineCap *start_custom, GpLineCap end_cap, GpCustomLineCap *end_custom, path_list_node_t **last_point) { int i; path_list_node_t *prev_point; if (end <= start || pen_width == 0.0) return; prev_point = *last_point; widen_cap(&points[start], &points[start+1], pen_width, start_cap, start_custom, FALSE, TRUE, last_point); for (i=start+1; i<end; i++) widen_joint(&points[i-1], &points[i], &points[i+1], pen, pen_width, last_point); widen_cap(&points[end], &points[end-1], pen_width, end_cap, end_custom, TRUE, TRUE, last_point); for (i=end-1; i>start; i--) widen_joint(&points[i+1], &points[i], &points[i-1], pen, pen_width, last_point); widen_cap(&points[start], &points[start+1], pen_width, start_cap, start_custom, TRUE, FALSE, last_point); prev_point->next->type = PathPointTypeStart; (*last_point)->type |= PathPointTypeCloseSubpath; } static void widen_closed_figure(GpPath *path, int start, int end, GpPen *pen, REAL pen_width, path_list_node_t **last_point) { int i; path_list_node_t *prev_point; if (end <= start || pen_width == 0.0) return; /* left outline */ prev_point = *last_point; widen_joint(&path->pathdata.Points[end], &path->pathdata.Points[start], &path->pathdata.Points[start+1], pen, pen_width, last_point); for (i=start+1; i<end; i++) widen_joint(&path->pathdata.Points[i-1], &path->pathdata.Points[i], &path->pathdata.Points[i+1], pen, pen_width, last_point); widen_joint(&path->pathdata.Points[end-1], &path->pathdata.Points[end], &path->pathdata.Points[start], pen, pen_width, last_point); prev_point->next->type = PathPointTypeStart; (*last_point)->type |= PathPointTypeCloseSubpath; /* right outline */ prev_point = *last_point; widen_joint(&path->pathdata.Points[start], &path->pathdata.Points[end], &path->pathdata.Points[end-1], pen, pen_width, last_point); for (i=end-1; i>start; i--) widen_joint(&path->pathdata.Points[i+1], &path->pathdata.Points[i], &path->pathdata.Points[i-1], pen, pen_width, last_point); widen_joint(&path->pathdata.Points[start+1], &path->pathdata.Points[start], &path->pathdata.Points[end], pen, pen_width, last_point); prev_point->next->type = PathPointTypeStart; (*last_point)->type |= PathPointTypeCloseSubpath; } static void widen_dashed_figure(GpPath *path, int start, int end, int closed, GpPen *pen, REAL pen_width, path_list_node_t **last_point) { int i, j; REAL dash_pos=0.0; int dash_index=0; const REAL *dash_pattern; REAL *dash_pattern_scaled; int dash_count; GpPointF *tmp_points; REAL segment_dy; REAL segment_dx; REAL segment_length; REAL segment_pos; int num_tmp_points=0; int draw_start_cap=0; static const REAL dash_dot_dot[6] = { 3.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; if (end <= start || pen_width == 0.0) return; switch (pen->dash) { case DashStyleDash: default: dash_pattern = dash_dot_dot; dash_count = 2; break; case DashStyleDot: dash_pattern = &dash_dot_dot[2]; dash_count = 2; break; case DashStyleDashDot: dash_pattern = dash_dot_dot; dash_count = 4; break; case DashStyleDashDotDot: dash_pattern = dash_dot_dot; dash_count = 6; break; case DashStyleCustom: dash_pattern = pen->dashes; dash_count = pen->numdashes; break; } dash_pattern_scaled = heap_alloc(dash_count * sizeof(REAL)); if (!dash_pattern_scaled) return; for (i = 0; i < dash_count; i++) dash_pattern_scaled[i] = pen->width * dash_pattern[i]; tmp_points = heap_alloc_zero((end - start + 2) * sizeof(GpPoint)); if (!tmp_points) { heap_free(dash_pattern_scaled); return; /* FIXME */ } if (!closed) draw_start_cap = 1; for (j=start; j <= end; j++) { if (j == start) { if (closed) i = end; else continue; } else i = j-1; segment_dy = path->pathdata.Points[j].Y - path->pathdata.Points[i].Y; segment_dx = path->pathdata.Points[j].X - path->pathdata.Points[i].X; segment_length = sqrtf(segment_dy*segment_dy + segment_dx*segment_dx); segment_pos = 0.0; while (1) { if (dash_pos == 0.0) { if ((dash_index % 2) == 0) { /* start dash */ num_tmp_points = 1; tmp_points[0].X = path->pathdata.Points[i].X + segment_dx * segment_pos / segment_length; tmp_points[0].Y = path->pathdata.Points[i].Y + segment_dy * segment_pos / segment_length; } else { /* end dash */ tmp_points[num_tmp_points].X = path->pathdata.Points[i].X + segment_dx * segment_pos / segment_length; tmp_points[num_tmp_points].Y = path->pathdata.Points[i].Y + segment_dy * segment_pos / segment_length; widen_open_figure(tmp_points, 0, num_tmp_points, pen, pen_width, draw_start_cap ? pen->startcap : LineCapFlat, pen->customstart, LineCapFlat, NULL, last_point); draw_start_cap = 0; num_tmp_points = 0; } } if (dash_pattern_scaled[dash_index] - dash_pos > segment_length - segment_pos) { /* advance to next segment */ if ((dash_index % 2) == 0) { tmp_points[num_tmp_points] = path->pathdata.Points[j]; num_tmp_points++; } dash_pos += segment_length - segment_pos; break; } else { /* advance to next dash in pattern */ segment_pos += dash_pattern_scaled[dash_index] - dash_pos; dash_pos = 0.0; if (++dash_index == dash_count) dash_index = 0; continue; } } } if (dash_index % 2 == 0 && num_tmp_points != 0) { /* last dash overflows last segment */ widen_open_figure(tmp_points, 0, num_tmp_points-1, pen, pen_width, draw_start_cap ? pen->startcap : LineCapFlat, pen->customstart, closed ? LineCapFlat : pen->endcap, pen->customend, last_point); } heap_free(dash_pattern_scaled); heap_free(tmp_points); } GpStatus WINGDIPAPI GdipWidenPath(GpPath *path, GpPen *pen, GpMatrix *matrix, REAL flatness) { GpPath *flat_path=NULL; GpStatus status; path_list_node_t *points=NULL, *last_point=NULL; int i, subpath_start=0, new_length; TRACE("(%p,%p,%p,%0.2f)\n", path, pen, matrix, flatness); if (!path || !pen) return InvalidParameter; if (path->pathdata.Count <= 1) return OutOfMemory; status = GdipClonePath(path, &flat_path); if (status == Ok) status = GdipFlattenPath(flat_path, pen->unit == UnitPixel ? matrix : NULL, flatness); if (status == Ok && !init_path_list(&points, 314.0, 22.0)) status = OutOfMemory; if (status == Ok) { REAL anchor_pen_width = max(pen->width, 2.0); REAL pen_width = (pen->unit == UnitWorld) ? max(pen->width, 1.0) : pen->width; BYTE *types = flat_path->pathdata.Types; last_point = points; if (pen->endcap > LineCapDiamondAnchor) FIXME("unimplemented end cap %x\n", pen->endcap); if (pen->startcap > LineCapDiamondAnchor) FIXME("unimplemented start cap %x\n", pen->startcap); if (pen->dashcap != DashCapFlat) FIXME("unimplemented dash cap %d\n", pen->dashcap); if (pen->join == LineJoinRound) FIXME("unimplemented line join %d\n", pen->join); if (pen->align != PenAlignmentCenter) FIXME("unimplemented pen alignment %d\n", pen->align); for (i=0; i < flat_path->pathdata.Count; i++) { if ((types[i]&PathPointTypePathTypeMask) == PathPointTypeStart) subpath_start = i; if ((types[i]&PathPointTypeCloseSubpath) == PathPointTypeCloseSubpath) { if (pen->dash != DashStyleSolid) widen_dashed_figure(flat_path, subpath_start, i, 1, pen, pen_width, &last_point); else widen_closed_figure(flat_path, subpath_start, i, pen, pen_width, &last_point); } else if (i == flat_path->pathdata.Count-1 || (types[i+1]&PathPointTypePathTypeMask) == PathPointTypeStart) { if (pen->dash != DashStyleSolid) widen_dashed_figure(flat_path, subpath_start, i, 0, pen, pen_width, &last_point); else widen_open_figure(flat_path->pathdata.Points, subpath_start, i, pen, pen_width, pen->startcap, pen->customstart, pen->endcap, pen->customend, &last_point); } } for (i=0; i < flat_path->pathdata.Count; i++) { if ((types[i]&PathPointTypeCloseSubpath) == PathPointTypeCloseSubpath) continue; if ((types[i]&PathPointTypePathTypeMask) == PathPointTypeStart) subpath_start = i; if (i == flat_path->pathdata.Count-1 || (types[i+1]&PathPointTypePathTypeMask) == PathPointTypeStart) { if (pen->startcap & LineCapAnchorMask) add_anchor(&flat_path->pathdata.Points[subpath_start], &flat_path->pathdata.Points[subpath_start+1], anchor_pen_width, pen->startcap, pen->customstart, &last_point); if (pen->endcap & LineCapAnchorMask) add_anchor(&flat_path->pathdata.Points[i], &flat_path->pathdata.Points[i-1], anchor_pen_width, pen->endcap, pen->customend, &last_point); } } new_length = path_list_count(points)-1; if (!lengthen_path(path, new_length)) status = OutOfMemory; } if (status == Ok) { path->pathdata.Count = new_length; last_point = points->next; for (i = 0; i < new_length; i++) { path->pathdata.Points[i] = last_point->pt; path->pathdata.Types[i] = last_point->type; last_point = last_point->next; } path->fill = FillModeWinding; } free_path_list(points); GdipDeletePath(flat_path); if (status == Ok && pen->unit != UnitPixel) status = GdipTransformPath(path, matrix); return status; } GpStatus WINGDIPAPI GdipAddPathRectangle(GpPath *path, REAL x, REAL y, REAL width, REAL height) { GpPath *backup; GpPointF ptf[2]; GpStatus retstat; BOOL old_new; TRACE("(%p, %.2f, %.2f, %.2f, %.2f)\n", path, x, y, width, height); if(!path) return InvalidParameter; if (width <= 0.0 || height <= 0.0) return Ok; /* make a backup copy of path data */ if((retstat = GdipClonePath(path, &backup)) != Ok) return retstat; /* rectangle should start as new path */ old_new = path->newfigure; path->newfigure = TRUE; if((retstat = GdipAddPathLine(path,x,y,x+width,y)) != Ok){ path->newfigure = old_new; goto fail; } ptf[0].X = x+width; ptf[0].Y = y+height; ptf[1].X = x; ptf[1].Y = y+height; if((retstat = GdipAddPathLine2(path, ptf, 2)) != Ok) goto fail; path->pathdata.Types[path->pathdata.Count-1] |= PathPointTypeCloseSubpath; /* free backup */ GdipDeletePath(backup); return Ok; fail: /* reverting */ heap_free(path->pathdata.Points); heap_free(path->pathdata.Types); memcpy(path, backup, sizeof(*path)); heap_free(backup); return retstat; } GpStatus WINGDIPAPI GdipAddPathRectangleI(GpPath *path, INT x, INT y, INT width, INT height) { TRACE("(%p, %d, %d, %d, %d)\n", path, x, y, width, height); return GdipAddPathRectangle(path,(REAL)x,(REAL)y,(REAL)width,(REAL)height); } GpStatus WINGDIPAPI GdipAddPathRectangles(GpPath *path, GDIPCONST GpRectF *rects, INT count) { GpPath *backup; GpStatus retstat; INT i; TRACE("(%p, %p, %d)\n", path, rects, count); /* count == 0 - verified condition */ if(!path || !rects || count == 0) return InvalidParameter; if(count < 0) return OutOfMemory; /* make a backup copy */ if((retstat = GdipClonePath(path, &backup)) != Ok) return retstat; for(i = 0; i < count; i++){ if((retstat = GdipAddPathRectangle(path,rects[i].X,rects[i].Y,rects[i].Width,rects[i].Height)) != Ok) goto fail; } /* free backup */ GdipDeletePath(backup); return Ok; fail: /* reverting */ heap_free(path->pathdata.Points); heap_free(path->pathdata.Types); memcpy(path, backup, sizeof(*path)); heap_free(backup); return retstat; } GpStatus WINGDIPAPI GdipAddPathRectanglesI(GpPath *path, GDIPCONST GpRect *rects, INT count) { GpRectF *rectsF; GpStatus retstat; INT i; TRACE("(%p, %p, %d)\n", path, rects, count); if(!rects || count == 0) return InvalidParameter; if(count < 0) return OutOfMemory; rectsF = heap_alloc_zero(sizeof(GpRectF)*count); for(i = 0;i < count;i++){ rectsF[i].X = (REAL)rects[i].X; rectsF[i].Y = (REAL)rects[i].Y; rectsF[i].Width = (REAL)rects[i].Width; rectsF[i].Height = (REAL)rects[i].Height; } retstat = GdipAddPathRectangles(path, rectsF, count); heap_free(rectsF); return retstat; } GpStatus WINGDIPAPI GdipSetPathMarker(GpPath* path) { INT count; TRACE("(%p)\n", path); if(!path) return InvalidParameter; count = path->pathdata.Count; /* set marker flag */ if(count > 0) path->pathdata.Types[count-1] |= PathPointTypePathMarker; return Ok; } GpStatus WINGDIPAPI GdipClearPathMarkers(GpPath* path) { INT count; INT i; TRACE("(%p)\n", path); if(!path) return InvalidParameter; count = path->pathdata.Count; for(i = 0; i < count - 1; i++){ path->pathdata.Types[i] &= ~PathPointTypePathMarker; } return Ok; } GpStatus WINGDIPAPI GdipWindingModeOutline(GpPath *path, GpMatrix *matrix, REAL flatness) { FIXME("stub: %p, %p, %.2f\n", path, matrix, flatness); return NotImplemented; } #define FLAGS_INTPATH 0x4000 struct path_header { DWORD version; DWORD count; DWORD flags; }; /* Test to see if the path could be stored as an array of shorts */ static BOOL is_integer_path(const GpPath *path) { int i; if (!path->pathdata.Count) return FALSE; for (i = 0; i < path->pathdata.Count; i++) { short x, y; x = gdip_round(path->pathdata.Points[i].X); y = gdip_round(path->pathdata.Points[i].Y); if (path->pathdata.Points[i].X != (REAL)x || path->pathdata.Points[i].Y != (REAL)y) return FALSE; } return TRUE; } DWORD write_path_data(GpPath *path, void *data) { struct path_header *header = data; BOOL integer_path = is_integer_path(path); DWORD i, size; BYTE *types; size = sizeof(struct path_header) + path->pathdata.Count; if (integer_path) size += sizeof(short[2]) * path->pathdata.Count; else size += sizeof(float[2]) * path->pathdata.Count; size = (size + 3) & ~3; if (!data) return size; header->version = VERSION_MAGIC2; header->count = path->pathdata.Count; header->flags = integer_path ? FLAGS_INTPATH : 0; if (integer_path) { short *points = (short*)(header + 1); for (i = 0; i < path->pathdata.Count; i++) { points[2*i] = path->pathdata.Points[i].X; points[2*i + 1] = path->pathdata.Points[i].Y; } types = (BYTE*)(points + 2*i); } else { float *points = (float*)(header + 1); for (i = 0; i < path->pathdata.Count; i++) { points[2*i] = path->pathdata.Points[i].X; points[2*i + 1] = path->pathdata.Points[i].Y; } types = (BYTE*)(points + 2*i); } for (i=0; i<path->pathdata.Count; i++) types[i] = path->pathdata.Types[i]; memset(types + i, 0, ((path->pathdata.Count + 3) & ~3) - path->pathdata.Count); return size; }