/* * Preloader for ld.so * * Copyright (C) 1995,96,97,98,99,2000,2001,2002 Free Software Foundation, Inc. * Copyright (C) 2004 Mike McCormack for CodeWeavers * Copyright (C) 2004 Alexandre Julliard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * Design notes * * The goal of this program is to be a workaround for exec-shield, as used * by the Linux kernel distributed with Fedora Core and other distros. * * To do this, we implement our own shared object loader that reserves memory * that is important to Wine, and then loads the main binary and its ELF * interpreter. * * We will try to set up the stack and memory area so that the program that * loads after us (eg. the wine binary) never knows we were here, except that * areas of memory it needs are already magically reserved. * * The following memory areas are important to Wine: * 0x00000000 - 0x00110000 the DOS area * 0x80000000 - 0x81000000 the shared heap * ??? - ??? the PE binary load address (usually starting at 0x00400000) * * If this program is used as the shared object loader, the only difference * that the loaded programs should see is that this loader will be mapped * into memory when it starts. */ /* * References (things I consulted to understand how ELF loading works): * * glibc 2.3.2 elf/dl-load.c * http://www.gnu.org/directory/glibc.html * * Linux 2.6.4 fs/binfmt_elf.c * ftp://ftp.kernel.org/pub/linux/kernel/v2.6/linux-2.6.4.tar.bz2 * * Userland exec, by * http://cert.uni-stuttgart.de/archive/bugtraq/2004/01/msg00002.html * * The ELF specification: * http://www.linuxbase.org/spec/booksets/LSB-Embedded/LSB-Embedded/book387.html */ #include "config.h" #include "wine/port.h" #include #include #include #include #include #include #include #ifdef HAVE_SYS_MMAN_H # include #endif #ifdef HAVE_SYS_SYSCALL_H # include #endif #ifdef HAVE_UNISTD_H # include #endif #ifdef HAVE_ELF_H # include #endif #ifdef HAVE_LINK_H # include #endif #ifdef HAVE_SYS_LINK_H # include #endif #include "main.h" /* ELF definitions */ #define ELF_PREFERRED_ADDRESS(loader, maplength, mapstartpref) (mapstartpref) #define ELF_FIXED_ADDRESS(loader, mapstart) ((void) 0) #define MAP_BASE_ADDR(l) 0 #ifndef MAP_COPY #define MAP_COPY MAP_PRIVATE #endif #ifndef MAP_NORESERVE #define MAP_NORESERVE 0 #endif static struct wine_preload_info preload_info[] = { { (void *)0x00000000, 0x00110000 }, /* DOS area */ { (void *)0x80000000, 0x01000000 }, /* shared heap */ { (void *)0x00110000, 0x0fef0000 }, /* default PE exe range (may be set with WINEPRELOADRESERVE) */ { 0, 0 } /* end of list */ }; /* debugging */ #undef DUMP_SEGMENTS #undef DUMP_AUX_INFO #undef DUMP_SYMS /* older systems may not define these */ #ifndef PT_TLS #define PT_TLS 7 #endif static unsigned int page_size, page_mask; static char *preloader_start, *preloader_end; struct wld_link_map { ElfW(Addr) l_addr; ElfW(Dyn) *l_ld; ElfW(Phdr)*l_phdr; ElfW(Addr) l_entry; ElfW(Half) l_ldnum; ElfW(Half) l_phnum; ElfW(Addr) l_map_start, l_map_end; ElfW(Addr) l_interp; }; /* * The _start function is the entry and exit point of this program * * It calls wld_start, passing a pointer to the args it receives * then jumps to the address wld_start returns. */ void _start(); extern char _end[]; __ASM_GLOBAL_FUNC(_start, "\tmovl %esp,%eax\n" "\tleal -128(%esp),%esp\n" /* allocate some space for extra aux values */ "\tpushl %eax\n" /* orig stack pointer */ "\tpushl %esp\n" /* ptr to orig stack pointer */ "\tcall wld_start\n" "\tpopl %ecx\n" /* remove ptr to stack pointer */ "\tpopl %esp\n" /* new stack pointer */ "\tpush %eax\n" /* ELF interpreter entry point */ "\txor %eax,%eax\n" "\txor %ecx,%ecx\n" "\txor %edx,%edx\n" "\tret\n") /* wrappers for Linux system calls */ #define SYSCALL_RET(ret) (((ret) < 0 && (ret) > -4096) ? -1 : (ret)) static inline __attribute__((noreturn)) void wld_exit( int code ) { for (;;) /* avoid warning */ __asm__ __volatile__( "int $0x80" : : "a" (SYS_exit), "b" (code) ); } static inline int wld_open( const char *name, int flags ) { int ret; __asm__ __volatile__( "int $0x80" : "=a" (ret) : "0" (SYS_open), "b" (name), "c" (flags) ); return SYSCALL_RET(ret); } static inline int wld_close( int fd ) { int ret; __asm__ __volatile__( "int $0x80" : "=a" (ret) : "0" (SYS_close), "b" (fd) ); return SYSCALL_RET(ret); } static inline ssize_t wld_read( int fd, void *buffer, size_t len ) { int ret; __asm__ __volatile__( "int $0x80" : "=a" (ret) : "0" (SYS_read), "b" (fd), "c" (buffer), "d" (len) : "memory" ); return SYSCALL_RET(ret); } static inline ssize_t wld_write( int fd, const void *buffer, size_t len ) { int ret; __asm__ __volatile__( "int $0x80" : "=a" (ret) : "0" (SYS_write), "b" (fd), "c" (buffer), "d" (len) ); return SYSCALL_RET(ret); } static inline int wld_mprotect( const void *addr, size_t len, int prot ) { int ret; __asm__ __volatile__( "int $0x80" : "=a" (ret) : "0" (SYS_mprotect), "b" (addr), "c" (len), "d" (prot) ); return SYSCALL_RET(ret); } static void *wld_mmap( void *start, size_t len, int prot, int flags, int fd, off_t offset ) { int ret; struct { void *addr; unsigned int length; unsigned int prot; unsigned int flags; unsigned int fd; unsigned int offset; } args; args.addr = start; args.length = len; args.prot = prot; args.flags = flags; args.fd = fd; args.offset = offset; __asm__ __volatile__( "int $0x80" : "=a" (ret) : "0" (SYS_mmap), "b" (&args) : "memory" ); return (void *)SYSCALL_RET(ret); } static inline uid_t wld_getuid(void) { uid_t ret; __asm__( "int $0x80" : "=a" (ret) : "0" (SYS_getuid) ); return ret; } static inline uid_t wld_geteuid(void) { uid_t ret; __asm__( "int $0x80" : "=a" (ret) : "0" (SYS_geteuid) ); return ret; } static inline gid_t wld_getgid(void) { gid_t ret; __asm__( "int $0x80" : "=a" (ret) : "0" (SYS_getgid) ); return ret; } static inline gid_t wld_getegid(void) { gid_t ret; __asm__( "int $0x80" : "=a" (ret) : "0" (SYS_getegid) ); return ret; } /* replacement for libc functions */ static int wld_strcmp( const char *str1, const char *str2 ) { while (*str1 && (*str1 == *str2)) { str1++; str2++; } return *str1 - *str2; } static int wld_strncmp( const char *str1, const char *str2, size_t len ) { if (len <= 0) return 0; while ((--len > 0) && *str1 && (*str1 == *str2)) { str1++; str2++; } return *str1 - *str2; } static inline void *wld_memset( void *dest, int val, size_t len ) { char *dst = dest; while (len--) *dst++ = val; return dest; } static inline void *wld_memmove( void *dest, const void *src, size_t len ) { const char *s = src; char *d = dest; int i; if (d < s) for (i = 0; i < len; i++) d[i] = s[i]; else for (i = len - 1; i >= 0; i--) d[i] = s[i]; return dest; } /* * wld_printf - just the basics * * %x prints a hex number * %s prints a string */ static void wld_vsprintf(char *str, const char *fmt, va_list args ) { static const char hex_chars[16] = "0123456789abcdef"; const char *p = fmt; while( *p ) { if( *p == '%' ) { p++; if( *p == 'x' ) { int i; unsigned int x = va_arg( args, unsigned int ); for(i=7; i>=0; i--) *str++ = hex_chars[(x>>(i*4))&0xf]; } else if( *p == 's' ) { char *s = va_arg( args, char * ); while(*s) *str++ = *s++; } else if( *p == 0 ) break; p++; } *str++ = *p++; } *str = 0; } static void wld_printf(const char *fmt, ... ) { va_list args; char buffer[256]; va_start( args, fmt ); wld_vsprintf(buffer, fmt, args ); va_end( args ); wld_write(2, buffer, strlen(buffer)); } static __attribute__((noreturn)) void fatal_error(const char *fmt, ... ) { va_list args; char buffer[256]; va_start( args, fmt ); wld_vsprintf(buffer, fmt, args ); va_end( args ); wld_write(2, buffer, strlen(buffer)); wld_exit(1); } #ifdef DUMP_AUX_INFO /* * Dump interesting bits of the ELF auxv_t structure that is passed * as the 4th parameter to the _start function */ static void dump_auxiliary( ElfW(auxv_t) *av ) { #define NAME(at) { at, #at } static const struct { int val; const char *name; } names[] = { NAME(AT_BASE), NAME(AT_CLKTCK), NAME(AT_EGID), NAME(AT_ENTRY), NAME(AT_EUID), NAME(AT_FLAGS), NAME(AT_GID), NAME(AT_HWCAP), NAME(AT_PAGESZ), NAME(AT_PHDR), NAME(AT_PHENT), NAME(AT_PHNUM), NAME(AT_PLATFORM), NAME(AT_UID), { 0, NULL } }; #undef NAME int i; for ( ; av->a_type != AT_NULL; av++) { for (i = 0; names[i].name; i++) if (names[i].val == av->a_type) break; if (names[i].name) wld_printf("%s = %x\n", names[i].name, av->a_un.a_val); else wld_printf( "%x = %x\n", av->a_type, av->a_un.a_val ); } } #endif /* * set_auxiliary_values * * Set the new auxiliary values */ static void set_auxiliary_values( ElfW(auxv_t) *av, const ElfW(auxv_t) *new_av, void **stack ) { int i, j, av_count = 0, new_count = 0; /* count how many aux values we have already */ while (av[av_count].a_type != AT_NULL) av_count++; /* count how many values we have in new_av that aren't in av */ for (j = 0; new_av[j].a_type != AT_NULL; j++) { for (i = 0; i < av_count; i++) if (av[i].a_type == new_av[j].a_type) break; if (i == av_count) new_count++; } if (new_count) /* need to make room for the extra values */ { char *new_stack = (char *)*stack - new_count * sizeof(*av); wld_memmove( new_stack, *stack, (char *)(av + av_count) - (char *)*stack ); *stack = new_stack; av -= new_count; } /* now set the values */ for (j = 0; new_av[j].a_type != AT_NULL; j++) { for (i = 0; i < av_count; i++) if (av[i].a_type == new_av[j].a_type) break; if (i < av_count) av[i].a_un.a_val = new_av[j].a_un.a_val; else { av[av_count].a_type = new_av[j].a_type; av[av_count].a_un.a_val = new_av[j].a_un.a_val; av_count++; } } #ifdef DUMP_AUX_INFO wld_printf("New auxiliary info:\n"); dump_auxiliary( av ); #endif } /* * get_auxiliary * * Get a field of the auxiliary structure */ static int get_auxiliary( ElfW(auxv_t) *av, int type, int def_val ) { for ( ; av->a_type != AT_NULL; av++) if( av->a_type == type ) return av->a_un.a_val; return def_val; } /* * map_so_lib * * modelled after _dl_map_object_from_fd() from glibc-2.3.1/elf/dl-load.c * * This function maps the segments from an ELF object, and optionally * stores information about the mapping into the auxv_t structure. */ static void map_so_lib( const char *name, struct wld_link_map *l) { int fd; unsigned char buf[0x800]; ElfW(Ehdr) *header = (ElfW(Ehdr)*)buf; ElfW(Phdr) *phdr, *ph; /* Scan the program header table, collecting its load commands. */ struct loadcmd { ElfW(Addr) mapstart, mapend, dataend, allocend; off_t mapoff; int prot; } loadcmds[16], *c; size_t nloadcmds = 0, maplength; fd = wld_open( name, O_RDONLY ); if (fd == -1) fatal_error("%s: could not open\n", name ); if (wld_read( fd, buf, sizeof(buf) ) != sizeof(buf)) fatal_error("%s: failed to read ELF header\n", name); phdr = (void*) (((unsigned char*)buf) + header->e_phoff); if( ( header->e_ident[0] != 0x7f ) || ( header->e_ident[1] != 'E' ) || ( header->e_ident[2] != 'L' ) || ( header->e_ident[3] != 'F' ) ) fatal_error( "%s: not an ELF binary... don't know how to load it\n", name ); if( header->e_machine != EM_386 ) fatal_error("%s: not an i386 ELF binary... don't know how to load it\n", name ); if (header->e_phnum > sizeof(loadcmds)/sizeof(loadcmds[0])) fatal_error( "%s: oops... not enough space for load commands\n", name ); maplength = header->e_phnum * sizeof (ElfW(Phdr)); if (header->e_phoff + maplength > sizeof(buf)) fatal_error( "%s: oops... not enough space for ELF headers\n", name ); l->l_ld = 0; l->l_addr = 0; l->l_phdr = 0; l->l_phnum = header->e_phnum; l->l_entry = header->e_entry; l->l_interp = 0; for (ph = phdr; ph < &phdr[l->l_phnum]; ++ph) { #ifdef DUMP_SEGMENTS wld_printf( "ph = %x\n", ph ); wld_printf( " p_type = %x\n", ph->p_type ); wld_printf( " p_flags = %x\n", ph->p_flags ); wld_printf( " p_offset = %x\n", ph->p_offset ); wld_printf( " p_vaddr = %x\n", ph->p_vaddr ); wld_printf( " p_paddr = %x\n", ph->p_paddr ); wld_printf( " p_filesz = %x\n", ph->p_filesz ); wld_printf( " p_memsz = %x\n", ph->p_memsz ); wld_printf( " p_align = %x\n", ph->p_align ); #endif switch (ph->p_type) { /* These entries tell us where to find things once the file's segments are mapped in. We record the addresses it says verbatim, and later correct for the run-time load address. */ case PT_DYNAMIC: l->l_ld = (void *) ph->p_vaddr; l->l_ldnum = ph->p_memsz / sizeof (Elf32_Dyn); break; case PT_PHDR: l->l_phdr = (void *) ph->p_vaddr; break; case PT_LOAD: { if ((ph->p_align & page_mask) != 0) fatal_error( "%s: ELF load command alignment not page-aligned\n", name ); if (((ph->p_vaddr - ph->p_offset) & (ph->p_align - 1)) != 0) fatal_error( "%s: ELF load command address/offset not properly aligned\n", name ); c = &loadcmds[nloadcmds++]; c->mapstart = ph->p_vaddr & ~(ph->p_align - 1); c->mapend = ((ph->p_vaddr + ph->p_filesz + page_mask) & ~page_mask); c->dataend = ph->p_vaddr + ph->p_filesz; c->allocend = ph->p_vaddr + ph->p_memsz; c->mapoff = ph->p_offset & ~(ph->p_align - 1); c->prot = 0; if (ph->p_flags & PF_R) c->prot |= PROT_READ; if (ph->p_flags & PF_W) c->prot |= PROT_WRITE; if (ph->p_flags & PF_X) c->prot |= PROT_EXEC; } break; case PT_INTERP: l->l_interp = ph->p_vaddr; break; case PT_TLS: /* * We don't need to set anything up because we're * emulating the kernel, not ld-linux.so.2 * The ELF loader will set up the TLS data itself. */ case PT_SHLIB: case PT_NOTE: default: break; } } /* Now process the load commands and map segments into memory. */ c = loadcmds; /* Length of the sections to be loaded. */ maplength = loadcmds[nloadcmds - 1].allocend - c->mapstart; if( header->e_type == ET_DYN ) { ElfW(Addr) mappref; mappref = (ELF_PREFERRED_ADDRESS (loader, maplength, c->mapstart) - MAP_BASE_ADDR (l)); /* Remember which part of the address space this object uses. */ l->l_map_start = (ElfW(Addr)) wld_mmap ((void *) mappref, maplength, c->prot, MAP_COPY | MAP_FILE, fd, c->mapoff); /* wld_printf("set : offset = %x\n", c->mapoff); */ /* wld_printf("l->l_map_start = %x\n", l->l_map_start); */ l->l_map_end = l->l_map_start + maplength; l->l_addr = l->l_map_start - c->mapstart; wld_mprotect ((caddr_t) (l->l_addr + c->mapend), loadcmds[nloadcmds - 1].allocend - c->mapend, PROT_NONE); goto postmap; } else { /* sanity check */ if ((char *)c->mapstart + maplength > preloader_start && (char *)c->mapstart <= preloader_end) fatal_error( "%s: binary overlaps preloader (%x-%x)\n", name, c->mapstart, (char *)c->mapstart + maplength ); ELF_FIXED_ADDRESS (loader, c->mapstart); } /* Remember which part of the address space this object uses. */ l->l_map_start = c->mapstart + l->l_addr; l->l_map_end = l->l_map_start + maplength; while (c < &loadcmds[nloadcmds]) { if (c->mapend > c->mapstart) /* Map the segment contents from the file. */ wld_mmap ((void *) (l->l_addr + c->mapstart), c->mapend - c->mapstart, c->prot, MAP_FIXED | MAP_COPY | MAP_FILE, fd, c->mapoff); postmap: if (l->l_phdr == 0 && (ElfW(Off)) c->mapoff <= header->e_phoff && ((size_t) (c->mapend - c->mapstart + c->mapoff) >= header->e_phoff + header->e_phnum * sizeof (ElfW(Phdr)))) /* Found the program header in this segment. */ l->l_phdr = (void *)(unsigned int) (c->mapstart + header->e_phoff - c->mapoff); if (c->allocend > c->dataend) { /* Extra zero pages should appear at the end of this segment, after the data mapped from the file. */ ElfW(Addr) zero, zeroend, zeropage; zero = l->l_addr + c->dataend; zeroend = l->l_addr + c->allocend; zeropage = (zero + page_mask) & ~page_mask; /* * This is different from the dl-load load... * ld-linux.so.2 relies on the whole page being zero'ed */ zeroend = (zeroend + page_mask) & ~page_mask; if (zeroend < zeropage) { /* All the extra data is in the last page of the segment. We can just zero it. */ zeropage = zeroend; } if (zeropage > zero) { /* Zero the final part of the last page of the segment. */ if ((c->prot & PROT_WRITE) == 0) { /* Dag nab it. */ wld_mprotect ((caddr_t) (zero & ~page_mask), page_size, c->prot|PROT_WRITE); } wld_memset ((void *) zero, '\0', zeropage - zero); if ((c->prot & PROT_WRITE) == 0) wld_mprotect ((caddr_t) (zero & ~page_mask), page_size, c->prot); } if (zeroend > zeropage) { /* Map the remaining zero pages in from the zero fill FD. */ caddr_t mapat; mapat = wld_mmap ((caddr_t) zeropage, zeroend - zeropage, c->prot, MAP_ANON|MAP_PRIVATE|MAP_FIXED, -1, 0); } } ++c; } if (l->l_phdr == NULL) fatal_error("no program header\n"); l->l_phdr = (void *)((ElfW(Addr))l->l_phdr + l->l_addr); l->l_entry += l->l_addr; wld_close( fd ); } /* * Find a symbol in the symbol table of the executable loaded */ static void *find_symbol( const ElfW(Phdr) *phdr, int num, char *var ) { const ElfW(Dyn) *dyn = NULL; const ElfW(Phdr) *ph; const ElfW(Sym) *symtab = NULL; const char *strings = NULL; uint32_t i, symtabend = 0; /* check the values */ #ifdef DUMP_SYMS wld_printf("%x %x\n", phdr, num ); #endif if( ( phdr == NULL ) || ( num == 0 ) ) { wld_printf("could not find PT_DYNAMIC header entry\n"); return NULL; } /* parse the (already loaded) ELF executable's header */ for (ph = phdr; ph < &phdr[num]; ++ph) { if( PT_DYNAMIC == ph->p_type ) { dyn = (void *) ph->p_vaddr; num = ph->p_memsz / sizeof (Elf32_Dyn); break; } } if( !dyn ) return NULL; while( dyn->d_tag ) { if( dyn->d_tag == DT_STRTAB ) strings = (const char*) dyn->d_un.d_ptr; if( dyn->d_tag == DT_SYMTAB ) symtab = (const ElfW(Sym) *)dyn->d_un.d_ptr; if( dyn->d_tag == DT_HASH ) symtabend = *((const uint32_t *)dyn->d_un.d_ptr + 1); #ifdef DUMP_SYMS wld_printf("%x %x\n", dyn->d_tag, dyn->d_un.d_ptr ); #endif dyn++; } if( (!symtab) || (!strings) ) return NULL; for (i = 0; i < symtabend; i++) { if( ( ELF32_ST_BIND(symtab[i].st_info) == STT_OBJECT ) && ( 0 == wld_strcmp( strings+symtab[i].st_name, var ) ) ) { #ifdef DUMP_SYMS wld_printf("Found %s -> %x\n", strings+symtab[i].st_name, symtab[i].st_value ); #endif return (void*)symtab[i].st_value; } } return NULL; } /* * preload_reserve * * Reserve a range specified in string format */ static void preload_reserve( const char *str ) { const char *p; unsigned long result = 0; void *start = NULL, *end = NULL; int first = 1; for (p = str; *p; p++) { if (*p >= '0' && *p <= '9') result = result * 16 + *p - '0'; else if (*p >= 'a' && *p <= 'f') result = result * 16 + *p - 'a' + 10; else if (*p >= 'A' && *p <= 'F') result = result * 16 + *p - 'A' + 10; else if (*p == '-') { if (!first) goto error; start = (void *)(result & ~page_mask); result = 0; first = 0; } else goto error; } if (!first) end = (void *)((result + page_mask) & ~page_mask); else if (result) goto error; /* single value '0' is allowed */ /* sanity checks */ if (end <= start) start = end = NULL; else if ((char *)end > preloader_start && (char *)start <= preloader_end) { wld_printf( "WINEPRELOADRESERVE range %x-%x overlaps preloader %x-%x\n", start, end, preloader_start, preloader_end ); start = end = NULL; } /* entry 2 is for the PE exe */ preload_info[2].addr = start; preload_info[2].size = (char *)end - (char *)start; return; error: fatal_error( "invalid WINEPRELOADRESERVE value '%s'\n", str ); } /* * wld_start * * Repeat the actions the kernel would do when loading a dynamically linked .so * Load the binary and then its ELF interpreter. * Note, we assume that the binary is a dynamically linked ELF shared object. */ void* wld_start( void **stack ) { int i, *pargc; char **argv, **p; char *interp, *reserve = NULL; ElfW(auxv_t) new_av[11], *av; struct wld_link_map main_binary_map, ld_so_map; struct wine_preload_info **wine_main_preload_info; pargc = *stack; argv = (char **)pargc + 1; if (*pargc < 2) fatal_error( "Usage: %s wine_binary [args]\n", argv[0] ); /* skip over the parameters */ p = argv + *pargc + 1; /* skip over the environment */ while (*p) { static const char res[] = "WINEPRELOADRESERVE="; if (!wld_strncmp( *p, res, sizeof(res)-1 )) reserve = *p + sizeof(res) - 1; p++; } av = (ElfW(auxv_t)*) (p+1); page_size = get_auxiliary( av, AT_PAGESZ, 4096 ); page_mask = page_size - 1; preloader_start = (char *)_start - ((unsigned int)_start & page_mask); preloader_end = (char *)((unsigned int)(_end + page_mask) & ~page_mask); #ifdef DUMP_AUX_INFO wld_printf( "stack = %x\n", *stack ); for( i = 0; i < *pargc; i++ ) wld_printf("argv[%x] = %s\n", i, argv[i]); dump_auxiliary( av ); #endif /* reserve memory that Wine needs */ if (reserve) preload_reserve( reserve ); for (i = 0; preload_info[i].size; i++) wld_mmap( preload_info[i].addr, preload_info[i].size, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, -1, 0 ); /* load the main binary */ map_so_lib( argv[1], &main_binary_map ); /* load the ELF interpreter */ interp = (char *)main_binary_map.l_addr + main_binary_map.l_interp; map_so_lib( interp, &ld_so_map ); /* store pointer to the preload info into the appropriate main binary variable */ wine_main_preload_info = find_symbol( main_binary_map.l_phdr, main_binary_map.l_phnum, "wine_main_preload_info" ); if (wine_main_preload_info) *wine_main_preload_info = preload_info; else wld_printf( "wine_main_preload_info not found\n" ); #define SET_NEW_AV(n,type,val) new_av[n].a_type = (type); new_av[n].a_un.a_val = (val); SET_NEW_AV( 0, AT_PHDR, (unsigned long)main_binary_map.l_phdr ); SET_NEW_AV( 1, AT_PHENT, sizeof(ElfW(Phdr)) ); SET_NEW_AV( 2, AT_PHNUM, main_binary_map.l_phnum ); SET_NEW_AV( 3, AT_PAGESZ, page_size ); SET_NEW_AV( 4, AT_BASE, ld_so_map.l_addr ); SET_NEW_AV( 5, AT_FLAGS, get_auxiliary( av, AT_FLAGS, 0 ) ); SET_NEW_AV( 6, AT_ENTRY, main_binary_map.l_entry ); SET_NEW_AV( 7, AT_UID, get_auxiliary( av, AT_UID, wld_getuid() ) ); SET_NEW_AV( 8, AT_EUID, get_auxiliary( av, AT_EUID, wld_geteuid() ) ); SET_NEW_AV( 9, AT_GID, get_auxiliary( av, AT_GID, wld_getgid() ) ); SET_NEW_AV(10, AT_EGID, get_auxiliary( av, AT_EGID, wld_getegid() ) ); #undef SET_NEW_AV /* get rid of first argument */ pargc[1] = pargc[0] - 1; *stack = pargc + 1; set_auxiliary_values( av, new_av, stack ); #ifdef DUMP_AUX_INFO wld_printf("new stack = %x\n", *stack); wld_printf("jumping to %x\n", ld_so_map.l_entry); #endif return (void *)ld_so_map.l_entry; }