/* * File stabs.c - read stabs information from the modules * * Copyright (C) 1996, Eric Youngdale. * 1999-2004, Eric Pouech * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * Maintenance Information * ----------------------- * * For documentation on the stabs format see for example * The "stabs" debug format * by Julia Menapace, Jim Kingdon, David Mackenzie * of Cygnus Support * available (hopefully) from http:\\sources.redhat.com\gdb\onlinedocs */ #include "config.h" #include #include #include #ifdef HAVE_SYS_MMAN_H #include #endif #include #include #include #ifdef HAVE_UNISTD_H # include #endif #include #ifndef PATH_MAX #define PATH_MAX MAX_PATH #endif #include #include #include "windef.h" #include "winbase.h" #include "winreg.h" #include "winnls.h" #include "dbghelp_private.h" #if defined(__svr4__) || defined(__sun) #define __ELF__ #endif #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(dbghelp_stabs); #ifndef N_UNDF #define N_UNDF 0x00 #endif #define N_GSYM 0x20 #define N_FUN 0x24 #define N_STSYM 0x26 #define N_LCSYM 0x28 #define N_MAIN 0x2a #define N_ROSYM 0x2c #define N_OPT 0x3c #define N_RSYM 0x40 #define N_SLINE 0x44 #define N_SO 0x64 #define N_LSYM 0x80 #define N_BINCL 0x82 #define N_SOL 0x84 #define N_PSYM 0xa0 #define N_EINCL 0xa2 #define N_LBRAC 0xc0 #define N_EXCL 0xc2 #define N_RBRAC 0xe0 struct stab_nlist { union { char* n_name; struct stab_nlist* n_next; long n_strx; } n_un; unsigned char n_type; char n_other; short n_desc; unsigned long n_value; }; static void stab_strcpy(char* dest, int sz, const char* source) { /* * A strcpy routine that stops when we hit the ':' character. * Faster than copying the whole thing, and then nuking the * ':'. */ while (*source != '\0' && *source != ':' && sz-- > 0) *dest++ = *source++; *dest = '\0'; assert(sz > 0); } typedef struct { char* name; unsigned long value; struct symt** vector; int nrofentries; } include_def; #define MAX_INCLUDES 5120 static include_def* include_defs = NULL; static int num_include_def = 0; static int num_alloc_include_def = 0; static int cu_include_stack[MAX_INCLUDES]; static int cu_include_stk_idx = 0; static struct symt** cu_vector = NULL; static int cu_nrofentries = 0; static struct symt_basic* stabs_basic[36]; static int stabs_new_include(const char* file, unsigned long val) { if (num_include_def == num_alloc_include_def) { num_alloc_include_def += 256; if (!include_defs) include_defs = HeapAlloc(GetProcessHeap(), 0, sizeof(include_defs[0]) * num_alloc_include_def); else include_defs = HeapReAlloc(GetProcessHeap(), 0, include_defs, sizeof(include_defs[0]) * num_alloc_include_def); memset(include_defs + num_include_def, 0, sizeof(include_defs[0]) * 256); } include_defs[num_include_def].name = strcpy(HeapAlloc(GetProcessHeap(), 0, strlen(file) + 1), file); include_defs[num_include_def].value = val; include_defs[num_include_def].vector = NULL; include_defs[num_include_def].nrofentries = 0; return num_include_def++; } static int stabs_find_include(const char* file, unsigned long val) { int i; for (i = 0; i < num_include_def; i++) { if (val == include_defs[i].value && strcmp(file, include_defs[i].name) == 0) return i; } return -1; } static int stabs_add_include(int idx) { assert(idx >= 0); cu_include_stk_idx++; /* if this happens, just bump MAX_INCLUDES */ /* we could also handle this as another dynarray */ assert(cu_include_stk_idx < MAX_INCLUDES); cu_include_stack[cu_include_stk_idx] = idx; return cu_include_stk_idx; } static void stabs_reset_includes(void) { /* * The struct symt:s that we would need to use are reset when * we start a new file. (at least the ones in filenr == 0) */ cu_include_stk_idx = 0;/* keep 0 as index for the .c file itself */ memset(cu_vector, 0, sizeof(cu_vector[0]) * cu_nrofentries); } static void stabs_free_includes(void) { int i; stabs_reset_includes(); for (i = 0; i < num_include_def; i++) { HeapFree(GetProcessHeap(), 0, include_defs[i].name); HeapFree(GetProcessHeap(), 0, include_defs[i].vector); } HeapFree(GetProcessHeap(), 0, include_defs); include_defs = NULL; num_include_def = 0; num_alloc_include_def = 0; HeapFree(GetProcessHeap(), 0, cu_vector); cu_vector = NULL; cu_nrofentries = 0; } static struct symt** stabs_find_ref(long filenr, long subnr) { struct symt** ret; /* FIXME: I could perhaps create a dummy include_def for each compilation * unit which would allow not to handle those two cases separately */ if (filenr == 0) { if (cu_nrofentries <= subnr) { if (!cu_vector) cu_vector = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(cu_vector[0]) * (subnr+1)); else cu_vector = HeapReAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, cu_vector, sizeof(cu_vector[0]) * (subnr+1)); cu_nrofentries = subnr + 1; } ret = &cu_vector[subnr]; } else { include_def* idef; assert(filenr <= cu_include_stk_idx); idef = &include_defs[cu_include_stack[filenr]]; if (idef->nrofentries <= subnr) { if (!idef->vector) idef->vector = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(idef->vector[0]) * (subnr+1)); else idef->vector = HeapReAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, idef->vector, sizeof(idef->vector[0]) * (subnr+1)); idef->nrofentries = subnr + 1; } ret = &idef->vector[subnr]; } TRACE("(%ld,%ld) => %p (%p)\n", filenr, subnr, ret, *ret); return ret; } static struct symt** stabs_read_type_enum(const char** x) { long filenr, subnr; if (**x == '(') { (*x)++; /* '(' */ filenr = strtol(*x, (char**)x, 10); /* */ (*x)++; /* ',' */ subnr = strtol(*x, (char**)x, 10); /* */ (*x)++; /* ')' */ } else { filenr = 0; subnr = strtol(*x, (char**)x, 10); /* */ } return stabs_find_ref(filenr, subnr); } #define PTS_DEBUG struct ParseTypedefData { const char* ptr; char buf[1024]; int idx; struct module* module; #ifdef PTS_DEBUG struct PTS_Error { const char* ptr; unsigned line; } errors[16]; int err_idx; #endif }; #ifdef PTS_DEBUG static void stabs_pts_push(struct ParseTypedefData* ptd, unsigned line) { assert(ptd->err_idx < sizeof(ptd->errors) / sizeof(ptd->errors[0])); ptd->errors[ptd->err_idx].line = line; ptd->errors[ptd->err_idx].ptr = ptd->ptr; ptd->err_idx++; } #define PTS_ABORTIF(ptd, t) do { if (t) { stabs_pts_push((ptd), __LINE__); return -1;} } while (0) #else #define PTS_ABORTIF(ptd, t) do { if (t) return -1; } while (0) #endif static int stabs_get_basic(struct ParseTypedefData* ptd, unsigned basic, struct symt** symt) { PTS_ABORTIF(ptd, basic >= sizeof(stabs_basic) / sizeof(stabs_basic[0])); if (!stabs_basic[basic]) { switch (basic) { case 1: stabs_basic[basic] = symt_new_basic(ptd->module, btInt, "int", 4); break; case 2: stabs_basic[basic] = symt_new_basic(ptd->module, btChar, "char", 1); break; case 3: stabs_basic[basic] = symt_new_basic(ptd->module, btInt, "short int", 2); break; case 4: stabs_basic[basic] = symt_new_basic(ptd->module, btInt, "long int", 4); break; case 5: stabs_basic[basic] = symt_new_basic(ptd->module, btUInt, "unsigned char", 1); break; case 6: stabs_basic[basic] = symt_new_basic(ptd->module, btInt, "signed char", 1); break; case 7: stabs_basic[basic] = symt_new_basic(ptd->module, btUInt, "unsigned short int", 2); break; case 8: stabs_basic[basic] = symt_new_basic(ptd->module, btUInt, "unsigned int", 4); break; case 9: stabs_basic[basic] = symt_new_basic(ptd->module, btUInt, "unsigned", 2); break; case 10: stabs_basic[basic] = symt_new_basic(ptd->module, btUInt, "unsigned long int", 2); break; case 11: stabs_basic[basic] = symt_new_basic(ptd->module, btVoid, "void", 0); break; case 12: stabs_basic[basic] = symt_new_basic(ptd->module, btFloat, "float", 4); break; case 13: stabs_basic[basic] = symt_new_basic(ptd->module, btFloat, "double", 8); break; case 14: stabs_basic[basic] = symt_new_basic(ptd->module, btFloat, "long double", 12); break; case 15: stabs_basic[basic] = symt_new_basic(ptd->module, btInt, "integer", 4); break; case 16: stabs_basic[basic] = symt_new_basic(ptd->module, btBool, "bool", 1); break; /* case 17: short real */ /* case 18: real */ case 25: stabs_basic[basic] = symt_new_basic(ptd->module, btComplex, "float complex", 8); break; case 26: stabs_basic[basic] = symt_new_basic(ptd->module, btComplex, "double complex", 16); break; case 30: stabs_basic[basic] = symt_new_basic(ptd->module, btWChar, "wchar_t", 2); break; case 31: stabs_basic[basic] = symt_new_basic(ptd->module, btInt, "long long int", 8); break; case 32: stabs_basic[basic] = symt_new_basic(ptd->module, btUInt, "long long unsigned", 8); break; /* starting at 35 are wine extensions (especially for R implementation) */ case 35: stabs_basic[basic] = symt_new_basic(ptd->module, btComplex, "long double complex", 24); break; default: PTS_ABORTIF(ptd, 1); } } *symt = &stabs_basic[basic]->symt; return 0; } static int stabs_pts_read_type_def(struct ParseTypedefData* ptd, const char* typename, struct symt** dt); static int stabs_pts_read_id(struct ParseTypedefData* ptd) { const char* first = ptd->ptr; unsigned int len; PTS_ABORTIF(ptd, (ptd->ptr = strchr(ptd->ptr, ':')) == NULL); len = ptd->ptr - first; PTS_ABORTIF(ptd, len >= sizeof(ptd->buf) - ptd->idx); memcpy(ptd->buf + ptd->idx, first, len); ptd->buf[ptd->idx + len] = '\0'; ptd->idx += len + 1; ptd->ptr++; /* ':' */ return 0; } static int stabs_pts_read_number(struct ParseTypedefData* ptd, long* v) { char* last; *v = strtol(ptd->ptr, &last, 10); PTS_ABORTIF(ptd, last == ptd->ptr); ptd->ptr = last; return 0; } static int stabs_pts_read_type_reference(struct ParseTypedefData* ptd, long* filenr, long* subnr) { if (*ptd->ptr == '(') { /* '(' ',' ')' */ ptd->ptr++; PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, filenr) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, subnr) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ')'); } else { *filenr = 0; PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, subnr) == -1); } return 0; } struct pts_range_value { unsigned long long val; int sign; }; static int stabs_pts_read_range_value(struct ParseTypedefData* ptd, struct pts_range_value* prv) { char* last; switch (*ptd->ptr) { case '0': while (*ptd->ptr == '0') ptd->ptr++; if (*ptd->ptr >= '1' && *ptd->ptr <= '7') { switch (ptd->ptr[1]) { case '0': PTS_ABORTIF(ptd, ptd->ptr[0] != '1'); prv->sign = -1; prv->val = 0; while (isdigit(*ptd->ptr)) prv->val = (prv->val << 3) + *ptd->ptr++ - '0'; break; case '7': prv->sign = 1; prv->val = 0; while (isdigit(*ptd->ptr)) prv->val = (prv->val << 3) + *ptd->ptr++ - '0'; break; default: PTS_ABORTIF(ptd, 1); break; } } else prv->sign = 0; break; case '-': prv->sign = -1; prv->val = strtoull(++ptd->ptr, &last, 10); ptd->ptr = last; break; case '+': default: prv->sign = 1; prv->val = strtoull(ptd->ptr, &last, 10); ptd->ptr = last; break; } return 0; } static int stabs_pts_read_range(struct ParseTypedefData* ptd, const char* typename, struct symt** dt) { struct symt* ref; struct pts_range_value lo; struct pts_range_value hi; unsigned size; enum BasicType bt; int i; unsigned long long v; /* type ';' ';' ';' */ PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &ref) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ PTS_ABORTIF(ptd, stabs_pts_read_range_value(ptd, &lo) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ PTS_ABORTIF(ptd, stabs_pts_read_range_value(ptd, &hi) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ /* basically, we don't use ref... in some cases, for example, float is declared * as a derivated type of int... which won't help us... so we guess the types * from the various formats */ if (lo.sign == 0 && hi.sign < 0) { bt = btUInt; size = hi.val; } else if (lo.sign < 0 && hi.sign == 0) { bt = btUInt; size = lo.val; } else if (lo.sign > 0 && hi.sign == 0) { bt = btFloat; size = lo.val; } else if (lo.sign < 0 && hi.sign > 0) { v = 1 << 7; for (i = 7; i < 64; i += 8) { if (lo.val == v && hi.val == v - 1) { bt = btInt; size = (i + 1) / 8; break; } v <<= 8; } PTS_ABORTIF(ptd, i >= 64); } else if (lo.sign == 0 && hi.sign > 0) { if (hi.val == 127) /* specific case for char... */ { bt = btChar; size = 1; } else { v = 1; for (i = 8; i <= 64; i += 8) { v <<= 8; if (hi.val + 1 == v) { bt = btUInt; size = (i + 1) / 8; break; } } PTS_ABORTIF(ptd, i > 64); } } else PTS_ABORTIF(ptd, 1); *dt = &symt_new_basic(ptd->module, bt, typename, size)->symt; return 0; } static inline int stabs_pts_read_method_info(struct ParseTypedefData* ptd) { struct symt* dt; char* tmp; char mthd; do { /* get type of return value */ PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &dt) == -1); if (*ptd->ptr == ';') ptd->ptr++; /* get types of parameters */ if (*ptd->ptr == ':') { PTS_ABORTIF(ptd, !(tmp = strchr(ptd->ptr + 1, ';'))); ptd->ptr = tmp + 1; } PTS_ABORTIF(ptd, !(*ptd->ptr >= '0' && *ptd->ptr <= '9')); ptd->ptr++; PTS_ABORTIF(ptd, !(ptd->ptr[0] >= 'A' && *ptd->ptr <= 'D')); mthd = *++ptd->ptr; PTS_ABORTIF(ptd, mthd != '.' && mthd != '?' && mthd != '*'); ptd->ptr++; if (mthd == '*') { long int ofs; struct symt* dt; PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &ofs) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); } } while (*ptd->ptr != ';'); ptd->ptr++; return 0; } static inline int stabs_pts_read_aggregate(struct ParseTypedefData* ptd, struct symt_udt* sdt) { long sz, ofs; struct symt* adt; struct symt* dt = NULL; int idx; int doadd; PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &sz) == -1); doadd = symt_set_udt_size(ptd->module, sdt, sz); if (*ptd->ptr == '!') /* C++ inheritence */ { long num_classes; ptd->ptr++; PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &num_classes) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); while (--num_classes >= 0) { ptd->ptr += 2; /* skip visibility and inheritence */ PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &ofs) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &adt) == -1); if (doadd) { char tmp[256]; WCHAR* name; DWORD size; symt_get_info(adt, TI_GET_SYMNAME, &name); strcmp(tmp, "__inherited_class_"); WideCharToMultiByte(CP_ACP, 0, name, -1, tmp + strlen(tmp), sizeof(tmp) - strlen(tmp), NULL, NULL); HeapFree(GetProcessHeap(), 0, name); /* FIXME: TI_GET_LENGTH will not always work, especially when adt * has just been seen as a forward definition and not the real stuff * yet. * As we don't use much the size of members in structs, this may not * be much of a problem */ symt_get_info(adt, TI_GET_LENGTH, &size); symt_add_udt_element(ptd->module, sdt, tmp, adt, ofs, size * 8); } PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); } } /* if the structure has already been filled, just redo the parsing * but don't store results into the struct * FIXME: there's a quite ugly memory leak in there... */ /* Now parse the individual elements of the structure/union. */ while (*ptd->ptr != ';') { /* agg_name : type ',' ',' */ idx = ptd->idx; if (ptd->ptr[0] == '$' && ptd->ptr[1] == 'v') { long x; if (ptd->ptr[2] == 'f') { /* C++ virtual method table */ ptd->ptr += 3; stabs_read_type_enum(&ptd->ptr); PTS_ABORTIF(ptd, *ptd->ptr++ != ':'); PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &x) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); ptd->idx = idx; continue; } else if (ptd->ptr[2] == 'b') { ptd->ptr += 3; PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ':'); PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &x) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); ptd->idx = idx; continue; } } PTS_ABORTIF(ptd, stabs_pts_read_id(ptd) == -1); /* Ref. TSDF R2.130 Section 7.4. When the field name is a method name * it is followed by two colons rather than one. */ if (*ptd->ptr == ':') { ptd->ptr++; stabs_pts_read_method_info(ptd); ptd->idx = idx; continue; } else { /* skip C++ member protection /0 /1 or /2 */ if (*ptd->ptr == '/') ptd->ptr += 2; } PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &adt) == -1); switch (*ptd->ptr++) { case ',': PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &ofs) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &sz) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); if (doadd) symt_add_udt_element(ptd->module, sdt, ptd->buf + idx, adt, ofs, sz); break; case ':': { char* tmp; /* method parameters... terminated by ';' */ PTS_ABORTIF(ptd, !(tmp = strchr(ptd->ptr, ';'))); ptd->ptr = tmp + 1; } break; default: PTS_ABORTIF(ptd, TRUE); } ptd->idx = idx; } PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); if (*ptd->ptr == '~') { ptd->ptr++; PTS_ABORTIF(ptd, *ptd->ptr++ != '%'); PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); } return 0; } static inline int stabs_pts_read_enum(struct ParseTypedefData* ptd, struct symt_enum* edt) { long value; int idx; while (*ptd->ptr != ';') { idx = ptd->idx; PTS_ABORTIF(ptd, stabs_pts_read_id(ptd) == -1); PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &value) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); symt_add_enum_element(ptd->module, edt, ptd->buf + idx, value); ptd->idx = idx; } ptd->ptr++; return 0; } static inline int stabs_pts_read_array(struct ParseTypedefData* ptd, struct symt** adt) { long lo, hi; struct symt* rdt; /* ar;;; */ PTS_ABORTIF(ptd, *ptd->ptr++ != 'r'); /* FIXME: range type is lost, always assume int */ PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &rdt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &lo) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &hi) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &rdt) == -1); *adt = &symt_new_array(ptd->module, lo, hi, rdt)->symt; return 0; } static int stabs_pts_read_type_def(struct ParseTypedefData* ptd, const char* typename, struct symt** ret_dt) { int idx; long sz = -1; struct symt* new_dt = NULL; /* newly created data type */ struct symt* ref_dt; /* referenced data type (pointer...) */ long filenr1, subnr1, tmp; /* things are a bit complicated because of the way the typedefs are stored inside * the file, because addresses can change when realloc is done, so we must call * over and over stabs_find_ref() to keep the correct values around */ PTS_ABORTIF(ptd, stabs_pts_read_type_reference(ptd, &filenr1, &subnr1) == -1); while (*ptd->ptr == '=') { ptd->ptr++; PTS_ABORTIF(ptd, new_dt != btNoType); /* first handle attribute if any */ switch (*ptd->ptr) { case '@': if (*++ptd->ptr == 's') { ptd->ptr++; if (stabs_pts_read_number(ptd, &sz) == -1) { ERR("Not an attribute... NIY\n"); ptd->ptr -= 2; return -1; } PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); } break; } /* then the real definitions */ switch (*ptd->ptr++) { case '*': case '&': PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &ref_dt) == -1); new_dt = &symt_new_pointer(ptd->module, ref_dt)->symt; break; case 'k': /* 'const' modifier */ case 'B': /* 'volatile' modifier */ /* just kinda ignore the modifier, I guess -gmt */ PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, typename, &new_dt) == -1); break; case '(': ptd->ptr--; PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, typename, &new_dt) == -1); break; case 'a': PTS_ABORTIF(ptd, stabs_pts_read_array(ptd, &new_dt) == -1); break; case 'r': PTS_ABORTIF(ptd, stabs_pts_read_range(ptd, typename, &new_dt) == -1); assert(!*stabs_find_ref(filenr1, subnr1)); *stabs_find_ref(filenr1, subnr1) = new_dt; break; case 'f': PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &ref_dt) == -1); new_dt = &symt_new_function_signature(ptd->module, ref_dt)->symt; break; case 'e': new_dt = &symt_new_enum(ptd->module, typename)->symt; PTS_ABORTIF(ptd, stabs_pts_read_enum(ptd, (struct symt_enum*)new_dt) == -1); break; case 's': case 'u': { struct symt_udt* udt; enum UdtKind kind = (ptd->ptr[-1] == 's') ? UdtStruct : UdtUnion; /* udt can have been already defined in a forward definition */ udt = (struct symt_udt*)*stabs_find_ref(filenr1, subnr1); if (!udt) { udt = symt_new_udt(ptd->module, typename, 0, kind); /* we need to set it here, because a struct can hold a pointer * to itself */ new_dt = *stabs_find_ref(filenr1, subnr1) = &udt->symt; } else { if (udt->symt.tag != SymTagUDT) { ERR("Forward declaration (%p/%s) is not an aggregate (%u)\n", udt, symt_get_name(&udt->symt), udt->symt.tag); return -1; } /* should check typename is the same too */ new_dt = &udt->symt; } PTS_ABORTIF(ptd, stabs_pts_read_aggregate(ptd, udt) == -1); } break; case 'x': idx = ptd->idx; tmp = *ptd->ptr++; PTS_ABORTIF(ptd, stabs_pts_read_id(ptd) == -1); switch (tmp) { case 'e': new_dt = &symt_new_enum(ptd->module, ptd->buf + idx)->symt; break; case 's': new_dt = &symt_new_udt(ptd->module, ptd->buf + idx, 0, UdtStruct)->symt; break; case 'u': new_dt = &symt_new_udt(ptd->module, ptd->buf + idx, 0, UdtUnion)->symt; break; default: return -1; } ptd->idx = idx; break; case '-': { PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &tmp) == -1); PTS_ABORTIF(ptd, stabs_get_basic(ptd, tmp, &new_dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); } break; case '#': if (*ptd->ptr == '#') { ptd->ptr++; PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &ref_dt) == -1); new_dt = &symt_new_function_signature(ptd->module, ref_dt)->symt; } else { struct symt* cls_dt; struct symt* pmt_dt; PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &cls_dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &ref_dt) == -1); new_dt = &symt_new_function_signature(ptd->module, ref_dt)->symt; while (*ptd->ptr == ',') { ptd->ptr++; PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &pmt_dt) == -1); } } break; case 'R': { long type, len, unk; int basic; PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &type) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &len) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &unk) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ switch (type) /* see stabs_get_basic for the details */ { case 1: basic = 12; break; case 2: basic = 13; break; case 3: basic = 25; break; case 4: basic = 26; break; case 5: basic = 35; break; case 6: basic = 14; break; default: PTS_ABORTIF(ptd, 1); } PTS_ABORTIF(ptd, stabs_get_basic(ptd, basic, &new_dt) == -1); } break; default: ERR("Unknown type '%c'\n", ptd->ptr[-1]); return -1; } } if (!new_dt) { /* is it a forward declaration that has been filled ? */ new_dt = *stabs_find_ref(filenr1, subnr1); /* if not, this should be void (which is defined as a ref to itself, but we * don't correctly catch it) */ if (!new_dt && typename) { new_dt = &symt_new_basic(ptd->module, btVoid, typename, 0)->symt; PTS_ABORTIF(ptd, strcmp(typename, "void")); } } *stabs_find_ref(filenr1, subnr1) = *ret_dt = new_dt; TRACE("Adding (%ld,%ld) %s\n", filenr1, subnr1, typename); return 0; } static int stabs_parse_typedef(struct module* module, const char* ptr, const char* typename) { struct ParseTypedefData ptd; struct symt* dt; int ret = -1; /* check for already existing definition */ TRACE("%s\n", ptr); ptd.module = module; ptd.idx = 0; #ifdef PTS_DEBUG ptd.err_idx = 0; #endif for (ptd.ptr = ptr - 1; ;) { ptd.ptr = strchr(ptd.ptr + 1, ':'); if (ptd.ptr == NULL || *++ptd.ptr != ':') break; } if (ptd.ptr) { if (*ptd.ptr != '(') ptd.ptr++; /* most of type definitions take one char, except Tt */ if (*ptd.ptr != '(') ptd.ptr++; ret = stabs_pts_read_type_def(&ptd, typename, &dt); } if (ret == -1 || *ptd.ptr) { #ifdef PTS_DEBUG int i; TRACE("Failure on %s\n", ptr); if (ret == -1) { for (i = 0; i < ptd.err_idx; i++) { TRACE("[%d]: line %d => %s\n", i, ptd.errors[i].line, ptd.errors[i].ptr); } } else TRACE("[0]: => %s\n", ptd.ptr); #else ERR("Failure on %s at %s\n", ptr, ptd.ptr); #endif return FALSE; } return TRUE; } static struct symt* stabs_parse_type(const char* stab) { const char* c = stab - 1; /* * Look through the stab definition, and figure out what struct symt * this represents. If we have something we know about, assign the * type. * According to "The \"stabs\" debug format" (Rev 2.130) the name may be * a C++ name and contain double colons e.g. foo::bar::baz:t5=*6. */ do { if ((c = strchr(c + 1, ':')) == NULL) return NULL; } while (*++c == ':'); /* * The next characters say more about the type (i.e. data, function, etc) * of symbol. Skip them. (C++ for example may have Tt). * Actually this is a very weak description; I think Tt is the only * multiple combination we should see. */ while (*c && *c != '(' && !isdigit(*c)) c++; /* * The next is either an integer or a (integer,integer). * The stabs_read_type_enum() takes care that stab_types is large enough. */ return *stabs_read_type_enum(&c); } struct pending_loc_var { char name[256]; struct symt* type; unsigned offset; unsigned regno; }; static struct symt_public* lookup_public(const struct module* module, const struct symt_compiland* compiland, const char* name) { unsigned nfind = 0; struct symt_public* found = NULL; struct symt_public* xfound = NULL; struct symt_public* sym; const char* xname; const char* tmp; void* ptr; struct hash_table_iter hti; const char* in_src; const char* out_src; if (compiland && compiland->symt.tag == SymTagCompiland) in_src = source_get(module, compiland->source); else in_src = NULL; hash_table_iter_init(&module->ht_symbols, &hti, name); while ((ptr = hash_table_iter_up(&hti))) { sym = GET_ENTRY(ptr, struct symt_public, hash_elt); if (sym->symt.tag == SymTagPublicSymbol) { xname = symt_get_name(&sym->symt); if (!xname || strcmp(xname, name)) continue; if (sym->container && sym->container->tag == SymTagCompiland) out_src = source_get(module, ((struct symt_compiland*)sym->container)->source); else out_src = NULL; xfound = sym; if ((in_src && !out_src) || (!in_src && out_src)) continue; if (in_src) { if (strcmp(in_src, out_src) || (tmp = strrchr(in_src, '/')) == NULL || strcmp(tmp + 1, out_src)) continue; } /* we continue once found to insure uniqueness of public symbol's name */ if (nfind++) { FIXME("More than one public symbol (%s) in %s: [%u] %p {%lx,%lx} in %s\n", name, in_src, nfind, sym, sym->address, sym->size, out_src); } else found = sym; } } if (!nfind) { if (xfound) found = xfound; else FIXME("Couldn't locate %s in public symbols\n", name); } if (found) { if (found->container && found->container->tag == SymTagCompiland) out_src = source_get(module, ((struct symt_compiland*)found->container)->source); else out_src = NULL; TRACE("Found for %s in %s: %p {%lx,%lx} in %s\n", name, in_src, found, found->address, found->size, out_src); } return found; } SYM_TYPE stabs_parse(struct module* module, const char* addr, unsigned long load_offset, unsigned int staboff, int stablen, unsigned int strtaboff, int strtablen) { struct symt_function* curr_func = NULL; struct symt_block* block = NULL; struct symt_public* public; struct symt_compiland* compiland = NULL; char currpath[PATH_MAX]; int i, j; int nstab; const char* ptr; char* stabbuff; unsigned int stabbufflen; const struct stab_nlist* stab_ptr; const char* strs; int strtabinc; char symname[4096]; unsigned incl[32]; int incl_stk = -1; int source_idx = -1; struct pending_loc_var* pending_vars = NULL; unsigned num_pending_vars = 0; unsigned num_allocated_pending_vars = 0; nstab = stablen / sizeof(struct stab_nlist); stab_ptr = (struct stab_nlist*)(addr + staboff); strs = (char*)(addr + strtaboff); memset(currpath, 0, sizeof(currpath)); memset(stabs_basic, 0, sizeof(stabs_basic)); /* * Allocate a buffer into which we can build stab strings for cases * where the stab is continued over multiple lines. */ stabbufflen = 65536; stabbuff = HeapAlloc(GetProcessHeap(), 0, stabbufflen); strtabinc = 0; stabbuff[0] = '\0'; for (i = 0; i < nstab; i++, stab_ptr++) { ptr = strs + stab_ptr->n_un.n_strx; if (ptr[strlen(ptr) - 1] == '\\') { /* * Indicates continuation. Append this to the buffer, and go onto the * next record. Repeat the process until we find a stab without the * '/' character, as this indicates we have the whole thing. */ unsigned len = strlen(ptr); if (strlen(stabbuff) + len > stabbufflen) { stabbufflen += 65536; stabbuff = HeapReAlloc(GetProcessHeap(), 0, stabbuff, stabbufflen); } strncat(stabbuff, ptr, len - 1); continue; } else if (stabbuff[0] != '\0') { strcat(stabbuff, ptr); ptr = stabbuff; } if (strchr(ptr, '=') != NULL) { /* * The stabs aren't in writable memory, so copy it over so we are * sure we can scribble on it. */ if (ptr != stabbuff) { strcpy(stabbuff, ptr); ptr = stabbuff; } stab_strcpy(symname, sizeof(symname), ptr); if (!stabs_parse_typedef(module, ptr, symname)) { /* skip this definition */ stabbuff[0] = '\0'; continue; } } #if 0 const char* defs[] = {"","","","", /* 00 */ "","","","", /* 08 */ "","","","", /* 10 */ "","","","", /* 18 */ "gsym","","fun","stsym", /* 20 */ "lcsym","main","rosym","", /* 28 */ "","","","", /* 30 */ "","","opt","", /* 38 */ "rsym","","sline","", /* 40 */ "","","","", /* 48 */ "","","","", /* 50 */ "","","","", /* 58 */ "","","so","", /* 60 */ "","","","", /* 68 */ "","","","", /* 70 */ "","","","", /* 78 */ "lsym","bincl","sol","", /* 80 */ "","","","", /* 88 */ "","","","", /* 90 */ "","","","", /* 98 */ "psym","eincl","","", /* a0 */ "","","","", /* a8 */ "","","","", /* b0 */ "","","","", /* b8 */ "lbrac","excl","","", /* c0 */ "","","","", /* c8 */ "","","","", /* d0 */ "","","","", /* d8 */ "rbrac","","","", /* e0 */ }; FIXME("Got %s<%u> %u/%lu (%s)\n", defs[stab_ptr->n_type / 2], stab_ptr->n_type, stab_ptr->n_desc, stab_ptr->n_value, debugstr_a(ptr)); #endif switch (stab_ptr->n_type) { case N_GSYM: /* * These are useless with ELF. They have no value, and you have to * read the normal symbol table to get the address. Thus we * ignore them, and when we process the normal symbol table * we should do the right thing. * * With a.out or mingw, they actually do make some amount of sense. */ stab_strcpy(symname, sizeof(symname), ptr); #ifdef __ELF__ if ((public = lookup_public(module, compiland, symname))) symt_new_global_variable(module, compiland, symname, TRUE /* FIXME */, public->address, public->size, stabs_parse_type(ptr)); #else symt_new_global_variable(module, compiland, symname, TRUE /* FIXME */, load_offset + stab_ptr->n_value, 0, stabs_parse_type(ptr)); #endif break; case N_LCSYM: case N_STSYM: /* These are static symbols and BSS symbols. */ stab_strcpy(symname, sizeof(symname), ptr); symt_new_global_variable(module, compiland, symname, TRUE /* FIXME */, load_offset + stab_ptr->n_value, 0, stabs_parse_type(ptr)); break; case N_LBRAC: block = symt_open_func_block(module, curr_func, block, stab_ptr->n_value); for (j = 0; j < num_pending_vars; j++) { symt_add_func_local(module, curr_func, pending_vars[j].regno, pending_vars[j].offset, block, pending_vars[j].type, pending_vars[j].name); } num_pending_vars = 0; break; case N_RBRAC: block = symt_close_func_block(module, curr_func, block, stab_ptr->n_value); break; case N_PSYM: /* These are function parameters. */ if (curr_func != NULL) { stab_strcpy(symname, sizeof(symname), ptr); symt_add_func_local(module, curr_func, 0, stab_ptr->n_value, NULL, stabs_parse_type(ptr), symname); } break; case N_RSYM: /* These are registers (as local variables) */ if (curr_func != NULL) { unsigned reg; if (num_pending_vars == num_allocated_pending_vars) { num_allocated_pending_vars += 8; if (!pending_vars) pending_vars = HeapAlloc(GetProcessHeap(), 0, num_allocated_pending_vars * sizeof(pending_vars[0])); else pending_vars = HeapReAlloc(GetProcessHeap(), 0, pending_vars, num_allocated_pending_vars * sizeof(pending_vars[0])); } switch (stab_ptr->n_value) { case 0: reg = CV_REG_EAX; break; case 1: reg = CV_REG_ECX; break; case 2: reg = CV_REG_EDX; break; case 3: reg = CV_REG_EBX; break; case 4: reg = CV_REG_ESP; break; case 5: reg = CV_REG_EBP; break; case 6: reg = CV_REG_ESI; break; case 7: reg = CV_REG_EDI; break; case 11: case 12: case 13: case 14: case 15: case 16: case 17: case 18: case 19: reg = CV_REG_ST0 + stab_ptr->n_value - 12; break; default: FIXME("Unknown register value (%lu)\n", stab_ptr->n_value); reg = CV_REG_NONE; break; } stab_strcpy(pending_vars[num_pending_vars].name, sizeof(pending_vars[num_pending_vars].name), ptr); pending_vars[num_pending_vars].type = stabs_parse_type(ptr); pending_vars[num_pending_vars].offset = 0; pending_vars[num_pending_vars].regno = reg; num_pending_vars++; } break; case N_LSYM: /* These are local variables */ if (curr_func != NULL) { if (num_pending_vars == num_allocated_pending_vars) { num_allocated_pending_vars += 8; if (!pending_vars) pending_vars = HeapAlloc(GetProcessHeap(), 0, num_allocated_pending_vars * sizeof(pending_vars[0])); else pending_vars = HeapReAlloc(GetProcessHeap(), 0, pending_vars, num_allocated_pending_vars * sizeof(pending_vars[0])); } stab_strcpy(pending_vars[num_pending_vars].name, sizeof(pending_vars[num_pending_vars].name), ptr); pending_vars[num_pending_vars].type = stabs_parse_type(ptr); pending_vars[num_pending_vars].offset = stab_ptr->n_value; pending_vars[num_pending_vars].regno = 0; num_pending_vars++; } break; case N_SLINE: /* * This is a line number. These are always relative to the start * of the function (N_FUN), and this makes the lookup easier. */ if (curr_func != NULL) { assert(source_idx >= 0); #ifdef __ELF__ symt_add_func_line(module, curr_func, source_idx, stab_ptr->n_desc, stab_ptr->n_value); #else /* * This isn't right. The order of the stabs is different under * a.out, and as a result we would end up attaching the line * number to the wrong function. */ symt_add_func_line(module, curr_func, source_idx, stab_ptr->n_desc, stab_ptr->n_value - curr_func->addr); #endif } break; case N_FUN: /* First, clean up the previous function we were working on. */ symt_normalize_function(module, curr_func); /* * For now, just declare the various functions. Later * on, we will add the line number information and the * local symbols. */ /* * Copy the string to a temp buffer so we * can kill everything after the ':'. We do * it this way because otherwise we end up dirtying * all of the pages related to the stabs, and that * sucks up swap space like crazy. */ stab_strcpy(symname, sizeof(symname), ptr); if (*symname) { struct symt_function_signature* func_type; func_type = symt_new_function_signature(module, stabs_parse_type(ptr)); #ifdef __ELF__ if ((public = lookup_public(module, compiland, symname))) curr_func = symt_new_function(module, compiland, symname, public->address, public->size, stabs_parse_type(ptr)); #else curr_func = symt_new_function(module, compiland, symname, load_offset + stab_ptr->n_value, 0, stabs_parse_type(ptr)); #endif } else { /* some GCC seem to use a N_FUN "" to mark the end of a function */ curr_func = NULL; } break; case N_SO: /* * This indicates a new source file. Append the records * together, to build the correct path name. */ if (*ptr == '\0') /* end of N_SO file */ { /* Nuke old path. */ currpath[0] = '\0'; symt_normalize_function(module, curr_func); curr_func = NULL; source_idx = -1; incl_stk = -1; assert(block == NULL); compiland = NULL; } else { if (*ptr != '/') strcat(currpath, ptr); else strcpy(currpath, ptr); stabs_reset_includes(); compiland = symt_new_compiland(module, currpath); source_idx = source_new(module, currpath); } break; case N_SOL: strcpy(currpath, ptr); source_idx = source_new(module, currpath); break; case N_UNDF: strs += strtabinc; strtabinc = stab_ptr->n_value; symt_normalize_function(module, curr_func); curr_func = NULL; break; case N_OPT: /* Ignore this. We don't care what it points to. */ break; case N_BINCL: stabs_add_include(stabs_new_include(ptr, stab_ptr->n_value)); assert(incl_stk < (int)(sizeof(incl) / sizeof(incl[0])) - 1); source_idx = incl[++incl_stk] = source_new(module, ptr); break; case N_EINCL: assert(incl_stk > 0); source_idx = incl[--incl_stk]; break; case N_EXCL: stabs_add_include(stabs_find_include(ptr, stab_ptr->n_value)); break; case N_MAIN: /* Always ignore these. GCC doesn't even generate them. */ break; default: ERR("Unknown stab type 0x%02x\n", stab_ptr->n_type); break; } stabbuff[0] = '\0'; TRACE("0x%02x %lx %s\n", stab_ptr->n_type, stab_ptr->n_value, strs + stab_ptr->n_un.n_strx); } HeapFree(GetProcessHeap(), 0, stabbuff); stabs_free_includes(); if (pending_vars) HeapFree(GetProcessHeap(), 0, pending_vars); return SymSym; }