/* * cabinet.h * * Copyright 2002 Greg Turner * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef __WINE_CABINET_H #define __WINE_CABINET_H #include "winnt.h" #include "fdi.h" #include "fci.h" /* from msvcrt/sys/stat.h */ #define _S_IWRITE 0x0080 #define _S_IREAD 0x0100 #define CAB_SPLITMAX (10) #define CAB_SEARCH_SIZE (32*1024) typedef unsigned char cab_UBYTE; /* 8 bits */ typedef UINT16 cab_UWORD; /* 16 bits */ typedef UINT32 cab_ULONG; /* 32 bits */ typedef INT32 cab_LONG; /* 32 bits */ typedef UINT32 cab_off_t; /* number of bits in a ULONG */ #ifndef CHAR_BIT # define CHAR_BIT (8) #endif #define CAB_ULONG_BITS (sizeof(cab_ULONG) * CHAR_BIT) /* structure offsets */ #define cfhead_Signature (0x00) #define cfhead_CabinetSize (0x08) #define cfhead_FileOffset (0x10) #define cfhead_MinorVersion (0x18) #define cfhead_MajorVersion (0x19) #define cfhead_NumFolders (0x1A) #define cfhead_NumFiles (0x1C) #define cfhead_Flags (0x1E) #define cfhead_SetID (0x20) #define cfhead_CabinetIndex (0x22) #define cfhead_SIZEOF (0x24) #define cfheadext_HeaderReserved (0x00) #define cfheadext_FolderReserved (0x02) #define cfheadext_DataReserved (0x03) #define cfheadext_SIZEOF (0x04) #define cffold_DataOffset (0x00) #define cffold_NumBlocks (0x04) #define cffold_CompType (0x06) #define cffold_SIZEOF (0x08) #define cffile_UncompressedSize (0x00) #define cffile_FolderOffset (0x04) #define cffile_FolderIndex (0x08) #define cffile_Date (0x0A) #define cffile_Time (0x0C) #define cffile_Attribs (0x0E) #define cffile_SIZEOF (0x10) #define cfdata_CheckSum (0x00) #define cfdata_CompressedSize (0x04) #define cfdata_UncompressedSize (0x06) #define cfdata_SIZEOF (0x08) /* flags */ #define cffoldCOMPTYPE_MASK (0x000f) #define cffoldCOMPTYPE_NONE (0x0000) #define cffoldCOMPTYPE_MSZIP (0x0001) #define cffoldCOMPTYPE_QUANTUM (0x0002) #define cffoldCOMPTYPE_LZX (0x0003) #define cfheadPREV_CABINET (0x0001) #define cfheadNEXT_CABINET (0x0002) #define cfheadRESERVE_PRESENT (0x0004) #define cffileCONTINUED_FROM_PREV (0xFFFD) #define cffileCONTINUED_TO_NEXT (0xFFFE) #define cffileCONTINUED_PREV_AND_NEXT (0xFFFF) #define cffile_A_RDONLY (0x01) #define cffile_A_HIDDEN (0x02) #define cffile_A_SYSTEM (0x04) #define cffile_A_ARCH (0x20) #define cffile_A_EXEC (0x40) #define cffile_A_NAME_IS_UTF (0x80) /****************************************************************************/ /* our archiver information / state */ /* MSZIP stuff */ #define ZIPWSIZE 0x8000 /* window size */ #define ZIPLBITS 9 /* bits in base literal/length lookup table */ #define ZIPDBITS 6 /* bits in base distance lookup table */ #define ZIPBMAX 16 /* maximum bit length of any code */ #define ZIPN_MAX 288 /* maximum number of codes in any set */ struct Ziphuft { cab_UBYTE e; /* number of extra bits or operation */ cab_UBYTE b; /* number of bits in this code or subcode */ union { cab_UWORD n; /* literal, length base, or distance base */ struct Ziphuft *t; /* pointer to next level of table */ } v; }; struct ZIPstate { cab_ULONG window_posn; /* current offset within the window */ cab_ULONG bb; /* bit buffer */ cab_ULONG bk; /* bits in bit buffer */ cab_ULONG ll[288+32]; /* literal/length and distance code lengths */ cab_ULONG c[ZIPBMAX+1]; /* bit length count table */ cab_LONG lx[ZIPBMAX+1]; /* memory for l[-1..ZIPBMAX-1] */ struct Ziphuft *u[ZIPBMAX]; /* table stack */ cab_ULONG v[ZIPN_MAX]; /* values in order of bit length */ cab_ULONG x[ZIPBMAX+1]; /* bit offsets, then code stack */ cab_UBYTE *inpos; }; /* Quantum stuff */ struct QTMmodelsym { cab_UWORD sym, cumfreq; }; struct QTMmodel { int shiftsleft, entries; struct QTMmodelsym *syms; cab_UWORD tabloc[256]; }; struct QTMstate { cab_UBYTE *window; /* the actual decoding window */ cab_ULONG window_size; /* window size (1Kb through 2Mb) */ cab_ULONG actual_size; /* window size when it was first allocated */ cab_ULONG window_posn; /* current offset within the window */ struct QTMmodel model7; struct QTMmodelsym m7sym[7+1]; struct QTMmodel model4, model5, model6pos, model6len; struct QTMmodelsym m4sym[0x18 + 1]; struct QTMmodelsym m5sym[0x24 + 1]; struct QTMmodelsym m6psym[0x2a + 1], m6lsym[0x1b + 1]; struct QTMmodel model00, model40, model80, modelC0; struct QTMmodelsym m00sym[0x40 + 1], m40sym[0x40 + 1]; struct QTMmodelsym m80sym[0x40 + 1], mC0sym[0x40 + 1]; }; /* LZX stuff */ /* some constants defined by the LZX specification */ #define LZX_MIN_MATCH (2) #define LZX_MAX_MATCH (257) #define LZX_NUM_CHARS (256) #define LZX_BLOCKTYPE_INVALID (0) /* also blocktypes 4-7 invalid */ #define LZX_BLOCKTYPE_VERBATIM (1) #define LZX_BLOCKTYPE_ALIGNED (2) #define LZX_BLOCKTYPE_UNCOMPRESSED (3) #define LZX_PRETREE_NUM_ELEMENTS (20) #define LZX_ALIGNED_NUM_ELEMENTS (8) /* aligned offset tree #elements */ #define LZX_NUM_PRIMARY_LENGTHS (7) /* this one missing from spec! */ #define LZX_NUM_SECONDARY_LENGTHS (249) /* length tree #elements */ /* LZX huffman defines: tweak tablebits as desired */ #define LZX_PRETREE_MAXSYMBOLS (LZX_PRETREE_NUM_ELEMENTS) #define LZX_PRETREE_TABLEBITS (6) #define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 50*8) #define LZX_MAINTREE_TABLEBITS (12) #define LZX_LENGTH_MAXSYMBOLS (LZX_NUM_SECONDARY_LENGTHS+1) #define LZX_LENGTH_TABLEBITS (12) #define LZX_ALIGNED_MAXSYMBOLS (LZX_ALIGNED_NUM_ELEMENTS) #define LZX_ALIGNED_TABLEBITS (7) #define LZX_LENTABLE_SAFETY (64) /* we allow length table decoding overruns */ #define LZX_DECLARE_TABLE(tbl) \ cab_UWORD tbl##_table[(1<pfnalloc) (size)) #define PFDI_FREE(hfdi, ptr) ((*PFDI_INT(hfdi)->pfnfree) (ptr)) #define PFDI_OPEN(hfdi, file, flag, mode) ((*PFDI_INT(hfdi)->pfnopen) (file, flag, mode)) #define PFDI_READ(hfdi, hf, pv, cb) ((*PFDI_INT(hfdi)->pfnread) (hf, pv, cb)) #define PFDI_WRITE(hfdi, hf, pv, cb) ((*PFDI_INT(hfdi)->pfnwrite) (hf, pv, cb)) #define PFDI_CLOSE(hfdi, hf) ((*PFDI_INT(hfdi)->pfnclose) (hf)) #define PFDI_SEEK(hfdi, hf, dist, type) ((*PFDI_INT(hfdi)->pfnseek) (hf, dist, type)) #define FCI_INT_MAGIC 0xfcfcfc05 #define FDI_INT_MAGIC 0xfdfdfd05 #define REALLY_IS_FCI(hfci) ( \ (((void *) hfci) != NULL) && \ (PFCI_INT(hfci)->FCI_Intmagic == FCI_INT_MAGIC) ) #define REALLY_IS_FDI(hfdi) ( \ (((void *) hfdi) != NULL) && \ (PFDI_INT(hfdi)->FDI_Intmagic == FDI_INT_MAGIC) ) /* * the rest of these are somewhat kludgy macros which are shared between fdi.c * and cabextract.c. */ #define ZIPNEEDBITS(n) {while(k<(n)){cab_LONG c=*(ZIP(inpos)++);\ b|=((cab_ULONG)c)<>=(n);k-=(n);} /* endian-neutral reading of little-endian data */ #define EndGetI32(a) ((((a)[3])<<24)|(((a)[2])<<16)|(((a)[1])<<8)|((a)[0])) #define EndGetI16(a) ((((a)[1])<<8)|((a)[0])) #define CAB(x) (decomp_state->x) #define ZIP(x) (decomp_state->methods.zip.x) #define QTM(x) (decomp_state->methods.qtm.x) #define LZX(x) (decomp_state->methods.lzx.x) #define DECR_OK (0) #define DECR_DATAFORMAT (1) #define DECR_ILLEGALDATA (2) #define DECR_NOMEMORY (3) #define DECR_CHECKSUM (4) #define DECR_INPUT (5) #define DECR_OUTPUT (6) #define DECR_USERABORT (7) /* Bitstream reading macros (Quantum / normal byte order) * * Q_INIT_BITSTREAM should be used first to set up the system * Q_READ_BITS(var,n) takes N bits from the buffer and puts them in var. * unlike LZX, this can loop several times to get the * requisite number of bits. * Q_FILL_BUFFER adds more data to the bit buffer, if there is room * for another 16 bits. * Q_PEEK_BITS(n) extracts (without removing) N bits from the bit * buffer * Q_REMOVE_BITS(n) removes N bits from the bit buffer * * These bit access routines work by using the area beyond the MSB and the * LSB as a free source of zeroes. This avoids having to mask any bits. * So we have to know the bit width of the bitbuffer variable. This is * defined as ULONG_BITS. * * ULONG_BITS should be at least 16 bits. Unlike LZX's Huffman decoding, * Quantum's arithmetic decoding only needs 1 bit at a time, it doesn't * need an assured number. Retrieving larger bitstrings can be done with * multiple reads and fills of the bitbuffer. The code should work fine * for machines where ULONG >= 32 bits. * * Also note that Quantum reads bytes in normal order; LZX is in * little-endian order. */ #define Q_INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0) #define Q_FILL_BUFFER do { \ if (bitsleft <= (CAB_ULONG_BITS - 16)) { \ bitbuf |= ((inpos[0]<<8)|inpos[1]) << (CAB_ULONG_BITS-16 - bitsleft); \ bitsleft += 16; inpos += 2; \ } \ } while (0) #define Q_PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n))) #define Q_REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n))) #define Q_READ_BITS(v,n) do { \ (v) = 0; \ for (bitsneed = (n); bitsneed; bitsneed -= bitrun) { \ Q_FILL_BUFFER; \ bitrun = (bitsneed > bitsleft) ? bitsleft : bitsneed; \ (v) = ((v) << bitrun) | Q_PEEK_BITS(bitrun); \ Q_REMOVE_BITS(bitrun); \ } \ } while (0) #define Q_MENTRIES(model) (QTM(model).entries) #define Q_MSYM(model,symidx) (QTM(model).syms[(symidx)].sym) #define Q_MSYMFREQ(model,symidx) (QTM(model).syms[(symidx)].cumfreq) /* GET_SYMBOL(model, var) fetches the next symbol from the stated model * and puts it in var. it may need to read the bitstream to do this. */ #define GET_SYMBOL(m, var) do { \ range = ((H - L) & 0xFFFF) + 1; \ symf = ((((C - L + 1) * Q_MSYMFREQ(m,0)) - 1) / range) & 0xFFFF; \ \ for (i=1; i < Q_MENTRIES(m); i++) { \ if (Q_MSYMFREQ(m,i) <= symf) break; \ } \ (var) = Q_MSYM(m,i-1); \ \ range = (H - L) + 1; \ H = L + ((Q_MSYMFREQ(m,i-1) * range) / Q_MSYMFREQ(m,0)) - 1; \ L = L + ((Q_MSYMFREQ(m,i) * range) / Q_MSYMFREQ(m,0)); \ while (1) { \ if ((L & 0x8000) != (H & 0x8000)) { \ if ((L & 0x4000) && !(H & 0x4000)) { \ /* underflow case */ \ C ^= 0x4000; L &= 0x3FFF; H |= 0x4000; \ } \ else break; \ } \ L <<= 1; H = (H << 1) | 1; \ Q_FILL_BUFFER; \ C = (C << 1) | Q_PEEK_BITS(1); \ Q_REMOVE_BITS(1); \ } \ \ QTMupdatemodel(&(QTM(m)), i); \ } while (0) /* Bitstream reading macros (LZX / intel little-endian byte order) * * INIT_BITSTREAM should be used first to set up the system * READ_BITS(var,n) takes N bits from the buffer and puts them in var * * ENSURE_BITS(n) ensures there are at least N bits in the bit buffer. * it can guarantee up to 17 bits (i.e. it can read in * 16 new bits when there is down to 1 bit in the buffer, * and it can read 32 bits when there are 0 bits in the * buffer). * PEEK_BITS(n) extracts (without removing) N bits from the bit buffer * REMOVE_BITS(n) removes N bits from the bit buffer * * These bit access routines work by using the area beyond the MSB and the * LSB as a free source of zeroes. This avoids having to mask any bits. * So we have to know the bit width of the bitbuffer variable. */ #define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0) /* Quantum reads bytes in normal order; LZX is little-endian order */ #define ENSURE_BITS(n) \ while (bitsleft < (n)) { \ bitbuf |= ((inpos[1]<<8)|inpos[0]) << (CAB_ULONG_BITS-16 - bitsleft); \ bitsleft += 16; inpos+=2; \ } #define PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n))) #define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n))) #define READ_BITS(v,n) do { \ if (n) { \ ENSURE_BITS(n); \ (v) = PEEK_BITS(n); \ REMOVE_BITS(n); \ } \ else { \ (v) = 0; \ } \ } while (0) /* Huffman macros */ #define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS) #define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS) #define SYMTABLE(tbl) (LZX(tbl##_table)) #define LENTABLE(tbl) (LZX(tbl##_len)) /* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths. * In reality, it just calls make_decode_table() with the appropriate * values - they're all fixed by some #defines anyway, so there's no point * writing each call out in full by hand. */ #define BUILD_TABLE(tbl) \ if (make_decode_table( \ MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \ )) { return DECR_ILLEGALDATA; } /* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the * bitstream using the stated table and puts it in var. */ #define READ_HUFFSYM(tbl,var) do { \ ENSURE_BITS(16); \ hufftbl = SYMTABLE(tbl); \ if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \ j = 1 << (CAB_ULONG_BITS - TABLEBITS(tbl)); \ do { \ j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \ if (!j) { return DECR_ILLEGALDATA; } \ } while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \ } \ j = LENTABLE(tbl)[(var) = i]; \ REMOVE_BITS(j); \ } while (0) /* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols * first to last in the given table. The code lengths are stored in their * own special LZX way. */ #define READ_LENGTHS(tbl,first,last,fn) do { \ lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \ if (fn(LENTABLE(tbl),(first),(last),&lb,decomp_state)) { \ return DECR_ILLEGALDATA; \ } \ bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \ } while (0) /* Tables for deflate from PKZIP's appnote.txt. */ #define THOSE_ZIP_CONSTS \ static const cab_UBYTE Zipborder[] = /* Order of the bit length code lengths */ \ { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; \ static const cab_UWORD Zipcplens[] = /* Copy lengths for literal codes 257..285 */ \ { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, \ 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; \ static const cab_UWORD Zipcplext[] = /* Extra bits for literal codes 257..285 */ \ { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, \ 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ \ static const cab_UWORD Zipcpdist[] = /* Copy offsets for distance codes 0..29 */ \ { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, \ 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; \ static const cab_UWORD Zipcpdext[] = /* Extra bits for distance codes */ \ { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, \ 10, 11, 11, 12, 12, 13, 13}; \ /* And'ing with Zipmask[n] masks the lower n bits */ \ static const cab_UWORD Zipmask[17] = { \ 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, \ 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff \ } /* from cabextract.c */ BOOL process_cabinet(LPCSTR cabname, LPCSTR dir, BOOL fix, BOOL lower); void QTMupdatemodel(struct QTMmodel *model, int sym); int make_decode_table(cab_ULONG nsyms, cab_ULONG nbits, cab_UBYTE *length, cab_UWORD *table); cab_ULONG checksum(cab_UBYTE *data, cab_UWORD bytes, cab_ULONG csum); #endif /* __WINE_CABINET_H */