/* * Graphics paths (BeginPath, EndPath etc.) * * Copyright 1997, 1998 Martin Boehme * 1999 Huw D M Davies * Copyright 2005 Dmitry Timoshkov * Copyright 2011 Alexandre Julliard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include "windef.h" #include "winbase.h" #include "wingdi.h" #include "winerror.h" #include "ntgdi_private.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(gdi); /* Notes on the implementation * * The implementation is based on dynamically resizable arrays of points and * flags. I dithered for a bit before deciding on this implementation, and * I had even done a bit of work on a linked list version before switching * to arrays. It's a bit of a tradeoff. When you use linked lists, the * implementation of FlattenPath is easier, because you can rip the * PT_BEZIERTO entries out of the middle of the list and link the * corresponding PT_LINETO entries in. However, when you use arrays, * PathToRegion becomes easier, since you can essentially just pass your array * of points to CreatePolyPolygonRgn. Also, if I'd used linked lists, I would * have had the extra effort of creating a chunk-based allocation scheme * in order to use memory effectively. That's why I finally decided to use * arrays. Note by the way that the array based implementation has the same * linear time complexity that linked lists would have since the arrays grow * exponentially. * * The points are stored in the path in device coordinates. This is * consistent with the way Windows does things (for instance, see the Win32 * SDK documentation for GetPath). * * The word "stroke" appears in several places (e.g. in the flag * GdiPath.newStroke). A stroke consists of a PT_MOVETO followed by one or * more PT_LINETOs or PT_BEZIERTOs, up to, but not including, the next * PT_MOVETO. Note that this is not the same as the definition of a figure; * a figure can contain several strokes. * * Martin Boehme */ #define NUM_ENTRIES_INITIAL 16 /* Initial size of points / flags arrays */ /* A floating point version of the POINT structure */ typedef struct tagFLOAT_POINT { double x, y; } FLOAT_POINT; struct gdi_path { POINT *points; BYTE *flags; int count; int allocated; BOOL newStroke; POINT pos; /* current cursor position */ POINT points_buf[NUM_ENTRIES_INITIAL]; BYTE flags_buf[NUM_ENTRIES_INITIAL]; }; struct path_physdev { struct gdi_physdev dev; struct gdi_path *path; }; static inline struct path_physdev *get_path_physdev( PHYSDEV dev ) { return CONTAINING_RECORD( dev, struct path_physdev, dev ); } void free_gdi_path( struct gdi_path *path ) { if (path->points != path->points_buf) HeapFree( GetProcessHeap(), 0, path->points ); HeapFree( GetProcessHeap(), 0, path ); } static struct gdi_path *alloc_gdi_path( int count ) { struct gdi_path *path = HeapAlloc( GetProcessHeap(), 0, sizeof(*path) ); if (!path) { SetLastError( ERROR_NOT_ENOUGH_MEMORY ); return NULL; } count = max( NUM_ENTRIES_INITIAL, count ); if (count > NUM_ENTRIES_INITIAL) { path->points = HeapAlloc( GetProcessHeap(), 0, count * (sizeof(path->points[0]) + sizeof(path->flags[0])) ); if (!path->points) { HeapFree( GetProcessHeap(), 0, path ); SetLastError( ERROR_NOT_ENOUGH_MEMORY ); return NULL; } path->flags = (BYTE *)(path->points + count); } else { path->points = path->points_buf; path->flags = path->flags_buf; } path->count = 0; path->allocated = count; path->newStroke = TRUE; path->pos.x = path->pos.y = 0; return path; } static struct gdi_path *copy_gdi_path( const struct gdi_path *src_path ) { struct gdi_path *path = alloc_gdi_path( src_path->count ); if (!path) return NULL; path->count = src_path->count; path->newStroke = src_path->newStroke; path->pos = src_path->pos; memcpy( path->points, src_path->points, path->count * sizeof(*path->points) ); memcpy( path->flags, src_path->flags, path->count * sizeof(*path->flags) ); return path; } /* Performs a world-to-viewport transformation on the specified point (which * is in floating point format). */ static inline void INTERNAL_LPTODP_FLOAT( DC *dc, FLOAT_POINT *point, int count ) { double x, y; while (count--) { x = point->x; y = point->y; point->x = x * dc->xformWorld2Vport.eM11 + y * dc->xformWorld2Vport.eM21 + dc->xformWorld2Vport.eDx; point->y = x * dc->xformWorld2Vport.eM12 + y * dc->xformWorld2Vport.eM22 + dc->xformWorld2Vport.eDy; point++; } } static inline INT int_from_fixed(FIXED f) { return (f.fract >= 0x8000) ? (f.value + 1) : f.value; } /* PATH_ReserveEntries * * Ensures that at least "numEntries" entries (for points and flags) have * been allocated; allocates larger arrays and copies the existing entries * to those arrays, if necessary. Returns TRUE if successful, else FALSE. */ static BOOL PATH_ReserveEntries(struct gdi_path *path, INT count) { POINT *pts_new; int size; assert(count>=0); /* Do we have to allocate more memory? */ if (count > path->allocated) { /* Find number of entries to allocate. We let the size of the array * grow exponentially, since that will guarantee linear time * complexity. */ count = max( path->allocated * 2, count ); size = count * (sizeof(path->points[0]) + sizeof(path->flags[0])); if (path->points == path->points_buf) { pts_new = HeapAlloc( GetProcessHeap(), 0, size ); if (!pts_new) return FALSE; memcpy( pts_new, path->points, path->count * sizeof(path->points[0]) ); memcpy( pts_new + count, path->flags, path->count * sizeof(path->flags[0]) ); } else { pts_new = HeapReAlloc( GetProcessHeap(), 0, path->points, size ); if (!pts_new) return FALSE; memmove( pts_new + count, pts_new + path->allocated, path->count * sizeof(path->flags[0]) ); } path->points = pts_new; path->flags = (BYTE *)(pts_new + count); path->allocated = count; } return TRUE; } /* PATH_AddEntry * * Adds an entry to the path. For "flags", pass either PT_MOVETO, PT_LINETO * or PT_BEZIERTO, optionally ORed with PT_CLOSEFIGURE. Returns TRUE if * successful, FALSE otherwise (e.g. if not enough memory was available). */ static BOOL PATH_AddEntry(struct gdi_path *pPath, const POINT *pPoint, BYTE flags) { /* FIXME: If newStroke is true, perhaps we want to check that we're * getting a PT_MOVETO */ TRACE("(%d,%d) - %d\n", pPoint->x, pPoint->y, flags); /* Reserve enough memory for an extra path entry */ if(!PATH_ReserveEntries(pPath, pPath->count+1)) return FALSE; /* Store information in path entry */ pPath->points[pPath->count]=*pPoint; pPath->flags[pPath->count]=flags; pPath->count++; return TRUE; } /* add a number of points, converting them to device coords */ /* return a pointer to the first type byte so it can be fixed up if necessary */ static BYTE *add_log_points( DC *dc, struct gdi_path *path, const POINT *points, DWORD count, BYTE type ) { BYTE *ret; if (!PATH_ReserveEntries( path, path->count + count )) return NULL; ret = &path->flags[path->count]; memcpy( &path->points[path->count], points, count * sizeof(*points) ); lp_to_dp( dc, &path->points[path->count], count ); memset( ret, type, count ); path->count += count; return ret; } /* add a number of points that are already in device coords */ /* return a pointer to the first type byte so it can be fixed up if necessary */ static BYTE *add_points( struct gdi_path *path, const POINT *points, DWORD count, BYTE type ) { BYTE *ret; if (!PATH_ReserveEntries( path, path->count + count )) return NULL; ret = &path->flags[path->count]; memcpy( &path->points[path->count], points, count * sizeof(*points) ); memset( ret, type, count ); path->count += count; return ret; } /* reverse the order of an array of points */ static void reverse_points( POINT *points, UINT count ) { UINT i; for (i = 0; i < count / 2; i++) { POINT pt = points[i]; points[i] = points[count - i - 1]; points[count - i - 1] = pt; } } /* start a new path stroke if necessary */ static BOOL start_new_stroke( struct gdi_path *path ) { if (!path->newStroke && path->count && !(path->flags[path->count - 1] & PT_CLOSEFIGURE) && path->points[path->count - 1].x == path->pos.x && path->points[path->count - 1].y == path->pos.y) return TRUE; path->newStroke = FALSE; return add_points( path, &path->pos, 1, PT_MOVETO ) != NULL; } /* set current position to the last point that was added to the path */ static void update_current_pos( struct gdi_path *path ) { assert( path->count ); path->pos = path->points[path->count - 1]; } /* close the current figure */ static void close_figure( struct gdi_path *path ) { assert( path->count ); path->flags[path->count - 1] |= PT_CLOSEFIGURE; } /* add a number of points, starting a new stroke if necessary */ static BOOL add_log_points_new_stroke( DC *dc, struct gdi_path *path, const POINT *points, DWORD count, BYTE type ) { if (!start_new_stroke( path )) return FALSE; if (!add_log_points( dc, path, points, count, type )) return FALSE; update_current_pos( path ); return TRUE; } /* convert a (flattened) path to a region */ static HRGN path_to_region( const struct gdi_path *path, int mode ) { int i, pos, polygons, *counts; HRGN hrgn; if (!path->count) return 0; if (!(counts = HeapAlloc( GetProcessHeap(), 0, (path->count / 2) * sizeof(*counts) ))) return 0; pos = polygons = 0; assert( path->flags[0] == PT_MOVETO ); for (i = 1; i < path->count; i++) { if (path->flags[i] != PT_MOVETO) continue; counts[polygons++] = i - pos; pos = i; } if (i > pos + 1) counts[polygons++] = i - pos; assert( polygons <= path->count / 2 ); hrgn = CreatePolyPolygonRgn( path->points, counts, polygons, mode ); HeapFree( GetProcessHeap(), 0, counts ); return hrgn; } /* PATH_CheckCorners * * Helper function for RoundRect() and Rectangle() */ static BOOL PATH_CheckCorners( DC *dc, POINT corners[], INT x1, INT y1, INT x2, INT y2 ) { INT temp; /* Convert points to device coordinates */ corners[0].x=x1; corners[0].y=y1; corners[1].x=x2; corners[1].y=y2; lp_to_dp( dc, corners, 2 ); /* Make sure first corner is top left and second corner is bottom right */ if(corners[0].x>corners[1].x) { temp=corners[0].x; corners[0].x=corners[1].x; corners[1].x=temp; } if(corners[0].y>corners[1].y) { temp=corners[0].y; corners[0].y=corners[1].y; corners[1].y=temp; } /* In GM_COMPATIBLE, don't include bottom and right edges */ if (dc->attr->graphics_mode == GM_COMPATIBLE) { if (corners[0].x == corners[1].x) return FALSE; if (corners[0].y == corners[1].y) return FALSE; corners[1].x--; corners[1].y--; } return TRUE; } /* PATH_AddFlatBezier */ static BOOL PATH_AddFlatBezier(struct gdi_path *pPath, POINT *pt, BOOL closed) { POINT *pts; BOOL ret; INT no; pts = GDI_Bezier( pt, 4, &no ); if(!pts) return FALSE; ret = (add_points( pPath, pts + 1, no - 1, PT_LINETO ) != NULL); if (ret && closed) close_figure( pPath ); HeapFree( GetProcessHeap(), 0, pts ); return ret; } /* PATH_FlattenPath * * Replaces Beziers with line segments * */ static struct gdi_path *PATH_FlattenPath(const struct gdi_path *pPath) { struct gdi_path *new_path; INT srcpt; if (!(new_path = alloc_gdi_path( pPath->count ))) return NULL; for(srcpt = 0; srcpt < pPath->count; srcpt++) { switch(pPath->flags[srcpt] & ~PT_CLOSEFIGURE) { case PT_MOVETO: case PT_LINETO: if (!PATH_AddEntry(new_path, &pPath->points[srcpt], pPath->flags[srcpt])) { free_gdi_path( new_path ); return NULL; } break; case PT_BEZIERTO: if (!PATH_AddFlatBezier(new_path, &pPath->points[srcpt-1], pPath->flags[srcpt+2] & PT_CLOSEFIGURE)) { free_gdi_path( new_path ); return NULL; } srcpt += 2; break; } } return new_path; } /* PATH_ScaleNormalizedPoint * * Scales a normalized point (x, y) with respect to the box whose corners are * passed in "corners". The point is stored in "*pPoint". The normalized * coordinates (-1.0, -1.0) correspond to corners[0], the coordinates * (1.0, 1.0) correspond to corners[1]. */ static void PATH_ScaleNormalizedPoint(FLOAT_POINT corners[], double x, double y, POINT *pPoint) { pPoint->x = GDI_ROUND( corners[0].x + (corners[1].x-corners[0].x)*0.5*(x+1.0) ); pPoint->y = GDI_ROUND( corners[0].y + (corners[1].y-corners[0].y)*0.5*(y+1.0) ); } /* PATH_NormalizePoint * * Normalizes a point with respect to the box whose corners are passed in * "corners". The normalized coordinates are stored in "*pX" and "*pY". */ static void PATH_NormalizePoint(FLOAT_POINT corners[], const FLOAT_POINT *pPoint, double *pX, double *pY) { *pX = (pPoint->x-corners[0].x)/(corners[1].x-corners[0].x) * 2.0 - 1.0; *pY = (pPoint->y-corners[0].y)/(corners[1].y-corners[0].y) * 2.0 - 1.0; } /* PATH_DoArcPart * * Creates a Bezier spline that corresponds to part of an arc and appends the * corresponding points to the path. The start and end angles are passed in * "angleStart" and "angleEnd"; these angles should span a quarter circle * at most. If "startEntryType" is non-zero, an entry of that type for the first * control point is added to the path; otherwise, it is assumed that the current * position is equal to the first control point. */ static BOOL PATH_DoArcPart(struct gdi_path *pPath, FLOAT_POINT corners[], double angleStart, double angleEnd, BYTE startEntryType) { double halfAngle, a; double xNorm[4], yNorm[4]; POINT points[4]; BYTE *type; int i, start; assert(fabs(angleEnd-angleStart)<=M_PI_2); /* FIXME: Is there an easier way of computing this? */ /* Compute control points */ halfAngle=(angleEnd-angleStart)/2.0; if(fabs(halfAngle)>1e-8) { a=4.0/3.0*(1-cos(halfAngle))/sin(halfAngle); xNorm[0]=cos(angleStart); yNorm[0]=sin(angleStart); xNorm[1]=xNorm[0] - a*yNorm[0]; yNorm[1]=yNorm[0] + a*xNorm[0]; xNorm[3]=cos(angleEnd); yNorm[3]=sin(angleEnd); xNorm[2]=xNorm[3] + a*yNorm[3]; yNorm[2]=yNorm[3] - a*xNorm[3]; } else for(i=0; i<4; i++) { xNorm[i]=cos(angleStart); yNorm[i]=sin(angleStart); } /* Add starting point to path if desired */ start = !startEntryType; for (i = start; i < 4; i++) PATH_ScaleNormalizedPoint(corners, xNorm[i], yNorm[i], &points[i]); if (!(type = add_points( pPath, points + start, 4 - start, PT_BEZIERTO ))) return FALSE; if (!start) type[0] = startEntryType; return TRUE; } /* retrieve a flattened path in device coordinates, and optionally its region */ /* the DC path is deleted; the returned data must be freed by caller using free_gdi_path() */ /* helper for stroke_and_fill_path in the DIB driver */ struct gdi_path *get_gdi_flat_path( DC *dc, HRGN *rgn ) { struct gdi_path *ret = NULL; if (dc->path) { ret = PATH_FlattenPath( dc->path ); free_gdi_path( dc->path ); dc->path = NULL; if (ret && rgn) *rgn = path_to_region( ret, dc->attr->poly_fill_mode ); } else SetLastError( ERROR_CAN_NOT_COMPLETE ); return ret; } int get_gdi_path_data( struct gdi_path *path, POINT **pts, BYTE **flags ) { *pts = path->points; *flags = path->flags; return path->count; } /*********************************************************************** * NtGdiBeginPath (win32u.@) */ BOOL WINAPI NtGdiBeginPath( HDC hdc ) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pBeginPath ); ret = physdev->funcs->pBeginPath( physdev ); release_dc_ptr( dc ); } return ret; } /*********************************************************************** * NtGdiEndPath (win32u.@) */ BOOL WINAPI NtGdiEndPath( HDC hdc ) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pEndPath ); ret = physdev->funcs->pEndPath( physdev ); release_dc_ptr( dc ); } return ret; } /****************************************************************************** * NtGdiAbortPath (win32u.@) */ BOOL WINAPI NtGdiAbortPath( HDC hdc ) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pAbortPath ); ret = physdev->funcs->pAbortPath( physdev ); release_dc_ptr( dc ); } return ret; } /*********************************************************************** * NtGdiCloseFigure (win32u.@) */ BOOL WINAPI NtGdiCloseFigure( HDC hdc ) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pCloseFigure ); ret = physdev->funcs->pCloseFigure( physdev ); release_dc_ptr( dc ); } return ret; } /*********************************************************************** * NtGdiGetPath (win32u.@) */ INT WINAPI NtGdiGetPath( HDC hdc, POINT *points, BYTE *types, INT size ) { INT ret = -1; DC *dc = get_dc_ptr( hdc ); if (!dc) return -1; if (!dc->path) { SetLastError( ERROR_CAN_NOT_COMPLETE ); } else if (size == 0) { ret = dc->path->count; } else if (size < dc->path->count) { SetLastError( ERROR_INVALID_PARAMETER ); } else { memcpy( points, dc->path->points, sizeof(POINT) * dc->path->count ); memcpy( types, dc->path->flags, sizeof(BYTE) * dc->path->count ); /* Convert the points to logical coordinates */ if (dp_to_lp( dc, points, dc->path->count )) ret = dc->path->count; else /* FIXME: Is this the correct value? */ SetLastError( ERROR_CAN_NOT_COMPLETE ); } release_dc_ptr( dc ); return ret; } /*********************************************************************** * NtGdiPathToRegion (win32u.@) */ HRGN WINAPI NtGdiPathToRegion( HDC hdc ) { HRGN ret = 0; DC *dc = get_dc_ptr( hdc ); if (!dc) return 0; if (dc->path) { struct gdi_path *path = PATH_FlattenPath( dc->path ); free_gdi_path( dc->path ); dc->path = NULL; if (path) { ret = path_to_region( path, dc->attr->poly_fill_mode ); free_gdi_path( path ); } } else SetLastError( ERROR_CAN_NOT_COMPLETE ); release_dc_ptr( dc ); return ret; } /*********************************************************************** * NtGdiFillPath (win32u.@) */ BOOL WINAPI NtGdiFillPath( HDC hdc ) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pFillPath ); ret = physdev->funcs->pFillPath( physdev ); release_dc_ptr( dc ); } return ret; } /*********************************************************************** * NtGdiSelectClipPath (win32u.@) */ BOOL WINAPI NtGdiSelectClipPath( HDC hdc, INT mode ) { BOOL ret = FALSE; HRGN rgn; if ((rgn = NtGdiPathToRegion( hdc ))) { ret = NtGdiExtSelectClipRgn( hdc, rgn, mode ) != ERROR; NtGdiDeleteObjectApp( rgn ); } return ret; } /*********************************************************************** * pathdrv_BeginPath */ static BOOL CDECL pathdrv_BeginPath( PHYSDEV dev ) { /* path already open, nothing to do */ return TRUE; } /*********************************************************************** * pathdrv_AbortPath */ static BOOL CDECL pathdrv_AbortPath( PHYSDEV dev ) { DC *dc = get_physdev_dc( dev ); path_driver.pDeleteDC( pop_dc_driver( dc, &path_driver )); return TRUE; } /*********************************************************************** * pathdrv_EndPath */ static BOOL CDECL pathdrv_EndPath( PHYSDEV dev ) { struct path_physdev *physdev = get_path_physdev( dev ); DC *dc = get_physdev_dc( dev ); dc->path = physdev->path; pop_dc_driver( dc, &path_driver ); HeapFree( GetProcessHeap(), 0, physdev ); return TRUE; } /*********************************************************************** * pathdrv_CreateDC */ static BOOL CDECL pathdrv_CreateDC( PHYSDEV *dev, LPCWSTR driver, LPCWSTR device, LPCWSTR output, const DEVMODEW *devmode ) { struct path_physdev *physdev = HeapAlloc( GetProcessHeap(), 0, sizeof(*physdev) ); if (!physdev) return FALSE; push_dc_driver( dev, &physdev->dev, &path_driver ); return TRUE; } /************************************************************* * pathdrv_DeleteDC */ static BOOL CDECL pathdrv_DeleteDC( PHYSDEV dev ) { struct path_physdev *physdev = get_path_physdev( dev ); free_gdi_path( physdev->path ); HeapFree( GetProcessHeap(), 0, physdev ); return TRUE; } BOOL PATH_SavePath( DC *dst, DC *src ) { PHYSDEV dev; if (src->path) { if (!(dst->path = copy_gdi_path( src->path ))) return FALSE; } else if ((dev = find_dc_driver( src, &path_driver ))) { struct path_physdev *physdev = get_path_physdev( dev ); if (!(dst->path = copy_gdi_path( physdev->path ))) return FALSE; dst->path_open = TRUE; } else dst->path = NULL; return TRUE; } BOOL PATH_RestorePath( DC *dst, DC *src ) { PHYSDEV dev; struct path_physdev *physdev; if ((dev = pop_dc_driver( dst, &path_driver ))) { physdev = get_path_physdev( dev ); free_gdi_path( physdev->path ); HeapFree( GetProcessHeap(), 0, physdev ); } if (src->path && src->path_open) { if (!path_driver.pCreateDC( &dst->physDev, NULL, NULL, NULL, NULL )) return FALSE; physdev = get_path_physdev( find_dc_driver( dst, &path_driver )); physdev->path = src->path; src->path_open = FALSE; src->path = NULL; } if (dst->path) free_gdi_path( dst->path ); dst->path = src->path; src->path = NULL; return TRUE; } /************************************************************* * pathdrv_MoveTo */ static BOOL CDECL pathdrv_MoveTo( PHYSDEV dev, INT x, INT y ) { struct path_physdev *physdev = get_path_physdev( dev ); DC *dc = get_physdev_dc( dev ); physdev->path->newStroke = TRUE; physdev->path->pos.x = x; physdev->path->pos.y = y; lp_to_dp( dc, &physdev->path->pos, 1 ); return TRUE; } /************************************************************* * pathdrv_LineTo */ static BOOL CDECL pathdrv_LineTo( PHYSDEV dev, INT x, INT y ) { struct path_physdev *physdev = get_path_physdev( dev ); DC *dc = get_physdev_dc( dev ); POINT point; point.x = x; point.y = y; return add_log_points_new_stroke( dc, physdev->path, &point, 1, PT_LINETO ); } /************************************************************* * pathdrv_Rectangle */ static BOOL CDECL pathdrv_Rectangle( PHYSDEV dev, INT x1, INT y1, INT x2, INT y2 ) { struct path_physdev *physdev = get_path_physdev( dev ); DC *dc = get_physdev_dc( dev ); POINT corners[2], points[4]; BYTE *type; if (!PATH_CheckCorners( dc, corners, x1, y1, x2, y2 )) return TRUE; points[0].x = corners[1].x; points[0].y = corners[0].y; points[1] = corners[0]; points[2].x = corners[0].x; points[2].y = corners[1].y; points[3] = corners[1]; if (dc->attr->arc_direction == AD_CLOCKWISE) reverse_points( points, 4 ); if (!(type = add_points( physdev->path, points, 4, PT_LINETO ))) return FALSE; type[0] = PT_MOVETO; close_figure( physdev->path ); return TRUE; } /************************************************************* * pathdrv_RoundRect */ static BOOL CDECL pathdrv_RoundRect( PHYSDEV dev, INT x1, INT y1, INT x2, INT y2, INT ell_width, INT ell_height ) { const double factor = 0.55428475; /* 4 / 3 * (sqrt(2) - 1) */ struct path_physdev *physdev = get_path_physdev( dev ); DC *dc = get_physdev_dc( dev ); POINT corners[2], ellipse[2], points[16]; BYTE *type; double width, height; if (!ell_width || !ell_height) return pathdrv_Rectangle( dev, x1, y1, x2, y2 ); if (!PATH_CheckCorners( dc, corners, x1, y1, x2, y2 )) return TRUE; ellipse[0].x = ellipse[0].y = 0; ellipse[1].x = ell_width; ellipse[1].y = ell_height; lp_to_dp( dc, (POINT *)&ellipse, 2 ); ell_width = min( abs( ellipse[1].x - ellipse[0].x ), corners[1].x - corners[0].x ); ell_height = min( abs( ellipse[1].y - ellipse[0].y ), corners[1].y - corners[0].y ); width = ell_width / 2.0; height = ell_height / 2.0; /* starting point */ points[0].x = corners[1].x; points[0].y = corners[0].y + GDI_ROUND( height ); /* first curve */ points[1].x = corners[1].x; points[1].y = corners[0].y + GDI_ROUND( height * (1 - factor) ); points[2].x = corners[1].x - GDI_ROUND( width * (1 - factor) ); points[2].y = corners[0].y; points[3].x = corners[1].x - GDI_ROUND( width ); points[3].y = corners[0].y; /* horizontal line */ points[4].x = corners[0].x + GDI_ROUND( width ); points[4].y = corners[0].y; /* second curve */ points[5].x = corners[0].x + GDI_ROUND( width * (1 - factor) ); points[5].y = corners[0].y; points[6].x = corners[0].x; points[6].y = corners[0].y + GDI_ROUND( height * (1 - factor) ); points[7].x = corners[0].x; points[7].y = corners[0].y + GDI_ROUND( height ); /* vertical line */ points[8].x = corners[0].x; points[8].y = corners[1].y - GDI_ROUND( height ); /* third curve */ points[9].x = corners[0].x; points[9].y = corners[1].y - GDI_ROUND( height * (1 - factor) ); points[10].x = corners[0].x + GDI_ROUND( width * (1 - factor) ); points[10].y = corners[1].y; points[11].x = corners[0].x + GDI_ROUND( width ); points[11].y = corners[1].y; /* horizontal line */ points[12].x = corners[1].x - GDI_ROUND( width ); points[12].y = corners[1].y; /* fourth curve */ points[13].x = corners[1].x - GDI_ROUND( width * (1 - factor) ); points[13].y = corners[1].y; points[14].x = corners[1].x; points[14].y = corners[1].y - GDI_ROUND( height * (1 - factor) ); points[15].x = corners[1].x; points[15].y = corners[1].y - GDI_ROUND( height ); if (dc->attr->arc_direction == AD_CLOCKWISE) reverse_points( points, 16 ); if (!(type = add_points( physdev->path, points, 16, PT_BEZIERTO ))) return FALSE; type[0] = PT_MOVETO; type[4] = type[8] = type[12] = PT_LINETO; close_figure( physdev->path ); return TRUE; } /************************************************************* * pathdrv_Ellipse */ static BOOL CDECL pathdrv_Ellipse( PHYSDEV dev, INT x1, INT y1, INT x2, INT y2 ) { const double factor = 0.55428475; /* 4 / 3 * (sqrt(2) - 1) */ struct path_physdev *physdev = get_path_physdev( dev ); DC *dc = get_physdev_dc( dev ); POINT corners[2], points[13]; BYTE *type; double width, height; if (!PATH_CheckCorners( dc, corners, x1, y1, x2, y2 )) return TRUE; width = (corners[1].x - corners[0].x) / 2.0; height = (corners[1].y - corners[0].y) / 2.0; /* starting point */ points[0].x = corners[1].x; points[0].y = corners[0].y + GDI_ROUND( height ); /* first curve */ points[1].x = corners[1].x; points[1].y = corners[0].y + GDI_ROUND( height * (1 - factor) ); points[2].x = corners[1].x - GDI_ROUND( width * (1 - factor) ); points[2].y = corners[0].y; points[3].x = corners[0].x + GDI_ROUND( width ); points[3].y = corners[0].y; /* second curve */ points[4].x = corners[0].x + GDI_ROUND( width * (1 - factor) ); points[4].y = corners[0].y; points[5].x = corners[0].x; points[5].y = corners[0].y + GDI_ROUND( height * (1 - factor) ); points[6].x = corners[0].x; points[6].y = corners[0].y + GDI_ROUND( height ); /* third curve */ points[7].x = corners[0].x; points[7].y = corners[1].y - GDI_ROUND( height * (1 - factor) ); points[8].x = corners[0].x + GDI_ROUND( width * (1 - factor) ); points[8].y = corners[1].y; points[9].x = corners[0].x + GDI_ROUND( width ); points[9].y = corners[1].y; /* fourth curve */ points[10].x = corners[1].x - GDI_ROUND( width * (1 - factor) ); points[10].y = corners[1].y; points[11].x = corners[1].x; points[11].y = corners[1].y - GDI_ROUND( height * (1 - factor) ); points[12].x = corners[1].x; points[12].y = corners[1].y - GDI_ROUND( height ); if (dc->attr->arc_direction == AD_CLOCKWISE) reverse_points( points, 13 ); if (!(type = add_points( physdev->path, points, 13, PT_BEZIERTO ))) return FALSE; type[0] = PT_MOVETO; close_figure( physdev->path ); return TRUE; } /* PATH_Arc * * Should be called when a call to Arc is performed on a DC that has * an open path. This adds up to five Bezier splines representing the arc * to the path. When 'lines' is 1, we add 1 extra line to get a chord, * when 'lines' is 2, we add 2 extra lines to get a pie, and when 'lines' is * -1 we add 1 extra line from the current DC position to the starting position * of the arc before drawing the arc itself (arcto). Returns TRUE if successful, * else FALSE. */ static BOOL PATH_Arc( PHYSDEV dev, INT x1, INT y1, INT x2, INT y2, INT xStart, INT yStart, INT xEnd, INT yEnd, int direction, int lines ) { DC *dc = get_physdev_dc( dev ); struct path_physdev *physdev = get_path_physdev( dev ); double angleStart, angleEnd, angleStartQuadrant, angleEndQuadrant=0.0; /* Initialize angleEndQuadrant to silence gcc's warning */ double x, y; FLOAT_POINT corners[2], pointStart, pointEnd; POINT centre; BOOL start, end; INT temp; /* FIXME: Do we have to respect newStroke? */ /* Check for zero height / width */ /* FIXME: Only in GM_COMPATIBLE? */ if(x1==x2 || y1==y2) return TRUE; /* Convert points to device coordinates */ corners[0].x = x1; corners[0].y = y1; corners[1].x = x2; corners[1].y = y2; pointStart.x = xStart; pointStart.y = yStart; pointEnd.x = xEnd; pointEnd.y = yEnd; INTERNAL_LPTODP_FLOAT(dc, corners, 2); INTERNAL_LPTODP_FLOAT(dc, &pointStart, 1); INTERNAL_LPTODP_FLOAT(dc, &pointEnd, 1); /* Make sure first corner is top left and second corner is bottom right */ if(corners[0].x>corners[1].x) { temp=corners[0].x; corners[0].x=corners[1].x; corners[1].x=temp; } if(corners[0].y>corners[1].y) { temp=corners[0].y; corners[0].y=corners[1].y; corners[1].y=temp; } /* Compute start and end angle */ PATH_NormalizePoint(corners, &pointStart, &x, &y); angleStart=atan2(y, x); PATH_NormalizePoint(corners, &pointEnd, &x, &y); angleEnd=atan2(y, x); /* Make sure the end angle is "on the right side" of the start angle */ if (direction == AD_CLOCKWISE) { if(angleEnd<=angleStart) { angleEnd+=2*M_PI; assert(angleEnd>=angleStart); } } else { if(angleEnd>=angleStart) { angleEnd-=2*M_PI; assert(angleEnd<=angleStart); } } /* In GM_COMPATIBLE, don't include bottom and right edges */ if (dc->attr->graphics_mode == GM_COMPATIBLE) { corners[1].x--; corners[1].y--; } /* arcto: Add a PT_MOVETO only if this is the first entry in a stroke */ if (lines == -1 && !start_new_stroke( physdev->path )) return FALSE; /* Add the arc to the path with one Bezier spline per quadrant that the * arc spans */ start=TRUE; end=FALSE; do { /* Determine the start and end angles for this quadrant */ if(start) { angleStartQuadrant=angleStart; if (direction == AD_CLOCKWISE) angleEndQuadrant=(floor(angleStart/M_PI_2)+1.0)*M_PI_2; else angleEndQuadrant=(ceil(angleStart/M_PI_2)-1.0)*M_PI_2; } else { angleStartQuadrant=angleEndQuadrant; if (direction == AD_CLOCKWISE) angleEndQuadrant+=M_PI_2; else angleEndQuadrant-=M_PI_2; } /* Have we reached the last part of the arc? */ if((direction == AD_CLOCKWISE && angleEndangleEndQuadrant)) { /* Adjust the end angle for this quadrant */ angleEndQuadrant=angleEnd; end=TRUE; } /* Add the Bezier spline to the path */ PATH_DoArcPart(physdev->path, corners, angleStartQuadrant, angleEndQuadrant, start ? (lines==-1 ? PT_LINETO : PT_MOVETO) : 0); start=FALSE; } while(!end); /* chord: close figure. pie: add line and close figure */ switch (lines) { case -1: update_current_pos( physdev->path ); break; case 1: close_figure( physdev->path ); break; case 2: centre.x = (corners[0].x+corners[1].x)/2; centre.y = (corners[0].y+corners[1].y)/2; if(!PATH_AddEntry(physdev->path, ¢re, PT_LINETO | PT_CLOSEFIGURE)) return FALSE; break; } return TRUE; } /************************************************************* * pathdrv_AngleArc */ static BOOL CDECL pathdrv_AngleArc( PHYSDEV dev, INT x, INT y, DWORD radius, FLOAT eStartAngle, FLOAT eSweepAngle) { int x1 = GDI_ROUND( x + cos(eStartAngle*M_PI/180) * radius ); int y1 = GDI_ROUND( y - sin(eStartAngle*M_PI/180) * radius ); int x2 = GDI_ROUND( x + cos((eStartAngle+eSweepAngle)*M_PI/180) * radius ); int y2 = GDI_ROUND( y - sin((eStartAngle+eSweepAngle)*M_PI/180) * radius ); return PATH_Arc( dev, x-radius, y-radius, x+radius, y+radius, x1, y1, x2, y2, eSweepAngle >= 0 ? AD_COUNTERCLOCKWISE : AD_CLOCKWISE, -1 ); } /************************************************************* * pathdrv_Arc */ static BOOL CDECL pathdrv_Arc( PHYSDEV dev, INT left, INT top, INT right, INT bottom, INT xstart, INT ystart, INT xend, INT yend ) { DC *dc = get_physdev_dc( dev ); return PATH_Arc( dev, left, top, right, bottom, xstart, ystart, xend, yend, dc->attr->arc_direction, 0 ); } /************************************************************* * pathdrv_ArcTo */ static BOOL CDECL pathdrv_ArcTo( PHYSDEV dev, INT left, INT top, INT right, INT bottom, INT xstart, INT ystart, INT xend, INT yend ) { DC *dc = get_physdev_dc( dev ); return PATH_Arc( dev, left, top, right, bottom, xstart, ystart, xend, yend, dc->attr->arc_direction, -1 ); } /************************************************************* * pathdrv_Chord */ static BOOL CDECL pathdrv_Chord( PHYSDEV dev, INT left, INT top, INT right, INT bottom, INT xstart, INT ystart, INT xend, INT yend ) { DC *dc = get_physdev_dc( dev ); return PATH_Arc( dev, left, top, right, bottom, xstart, ystart, xend, yend, dc->attr->arc_direction, 1 ); } /************************************************************* * pathdrv_Pie */ static BOOL CDECL pathdrv_Pie( PHYSDEV dev, INT left, INT top, INT right, INT bottom, INT xstart, INT ystart, INT xend, INT yend ) { DC *dc = get_physdev_dc( dev ); return PATH_Arc( dev, left, top, right, bottom, xstart, ystart, xend, yend, dc->attr->arc_direction, 2 ); } /************************************************************* * pathdrv_PolyBezierTo */ static BOOL CDECL pathdrv_PolyBezierTo( PHYSDEV dev, const POINT *pts, DWORD cbPoints ) { struct path_physdev *physdev = get_path_physdev( dev ); DC *dc = get_physdev_dc( dev ); return add_log_points_new_stroke( dc, physdev->path, pts, cbPoints, PT_BEZIERTO ); } /************************************************************* * pathdrv_PolyBezier */ static BOOL CDECL pathdrv_PolyBezier( PHYSDEV dev, const POINT *pts, DWORD cbPoints ) { struct path_physdev *physdev = get_path_physdev( dev ); DC *dc = get_physdev_dc( dev ); BYTE *type = add_log_points( dc, physdev->path, pts, cbPoints, PT_BEZIERTO ); if (!type) return FALSE; type[0] = PT_MOVETO; return TRUE; } /************************************************************* * pathdrv_PolyDraw */ static BOOL CDECL pathdrv_PolyDraw( PHYSDEV dev, const POINT *pts, const BYTE *types, DWORD cbPoints ) { struct path_physdev *physdev = get_path_physdev( dev ); struct gdi_path *path = physdev->path; DC *dc = get_physdev_dc( dev ); POINT orig_pos; INT i, lastmove = 0; for (i = 0; i < path->count; i++) if (path->flags[i] == PT_MOVETO) lastmove = i; orig_pos = path->pos; for(i = 0; i < cbPoints; i++) { switch (types[i]) { case PT_MOVETO: path->newStroke = TRUE; path->pos = pts[i]; lp_to_dp( dc, &path->pos, 1 ); lastmove = path->count; break; case PT_LINETO: case PT_LINETO | PT_CLOSEFIGURE: if (!add_log_points_new_stroke( dc, path, &pts[i], 1, PT_LINETO )) return FALSE; break; case PT_BEZIERTO: if ((i + 2 < cbPoints) && (types[i + 1] == PT_BEZIERTO) && (types[i + 2] & ~PT_CLOSEFIGURE) == PT_BEZIERTO) { if (!add_log_points_new_stroke( dc, path, &pts[i], 3, PT_BEZIERTO )) return FALSE; i += 2; break; } /* fall through */ default: /* restore original position */ path->pos = orig_pos; return FALSE; } if (types[i] & PT_CLOSEFIGURE) { close_figure( path ); path->pos = path->points[lastmove]; } } return TRUE; } /************************************************************* * pathdrv_PolylineTo */ static BOOL CDECL pathdrv_PolylineTo( PHYSDEV dev, const POINT *pts, INT count ) { struct path_physdev *physdev = get_path_physdev( dev ); DC *dc = get_physdev_dc( dev ); if (count < 1) return FALSE; return add_log_points_new_stroke( dc, physdev->path, pts, count, PT_LINETO ); } /************************************************************* * pathdrv_PolyPolygon */ static BOOL CDECL pathdrv_PolyPolygon( PHYSDEV dev, const POINT* pts, const INT* counts, UINT polygons ) { struct path_physdev *physdev = get_path_physdev( dev ); DC *dc = get_physdev_dc( dev ); UINT poly, count; BYTE *type; if (!polygons) return FALSE; for (poly = count = 0; poly < polygons; poly++) { if (counts[poly] < 2) return FALSE; count += counts[poly]; } type = add_log_points( dc, physdev->path, pts, count, PT_LINETO ); if (!type) return FALSE; /* make the first point of each polyline a PT_MOVETO, and close the last one */ for (poly = 0; poly < polygons; type += counts[poly++]) { type[0] = PT_MOVETO; type[counts[poly] - 1] = PT_LINETO | PT_CLOSEFIGURE; } return TRUE; } /************************************************************* * pathdrv_PolyPolyline */ static BOOL CDECL pathdrv_PolyPolyline( PHYSDEV dev, const POINT* pts, const DWORD* counts, DWORD polylines ) { struct path_physdev *physdev = get_path_physdev( dev ); DC *dc = get_physdev_dc( dev ); UINT poly, count; BYTE *type; if (!polylines) return FALSE; for (poly = count = 0; poly < polylines; poly++) { if (counts[poly] < 2) return FALSE; count += counts[poly]; } type = add_log_points( dc, physdev->path, pts, count, PT_LINETO ); if (!type) return FALSE; /* make the first point of each polyline a PT_MOVETO */ for (poly = 0; poly < polylines; type += counts[poly++]) *type = PT_MOVETO; return TRUE; } /********************************************************************** * PATH_BezierTo * * internally used by PATH_add_outline */ static void PATH_BezierTo(struct gdi_path *pPath, POINT *lppt, INT n) { if (n < 2) return; if (n == 2) { PATH_AddEntry(pPath, &lppt[1], PT_LINETO); } else if (n == 3) { add_points( pPath, lppt, 3, PT_BEZIERTO ); } else { POINT pt[3]; INT i = 0; pt[2] = lppt[0]; n--; while (n > 2) { pt[0] = pt[2]; pt[1] = lppt[i+1]; pt[2].x = (lppt[i+2].x + lppt[i+1].x) / 2; pt[2].y = (lppt[i+2].y + lppt[i+1].y) / 2; add_points( pPath, pt, 3, PT_BEZIERTO ); n--; i++; } pt[0] = pt[2]; pt[1] = lppt[i+1]; pt[2] = lppt[i+2]; add_points( pPath, pt, 3, PT_BEZIERTO ); } } static BOOL PATH_add_outline(struct path_physdev *physdev, INT x, INT y, TTPOLYGONHEADER *header, DWORD size) { TTPOLYGONHEADER *start; POINT pt; start = header; while ((char *)header < (char *)start + size) { TTPOLYCURVE *curve; if (header->dwType != TT_POLYGON_TYPE) { FIXME("Unknown header type %d\n", header->dwType); return FALSE; } pt.x = x + int_from_fixed(header->pfxStart.x); pt.y = y - int_from_fixed(header->pfxStart.y); PATH_AddEntry(physdev->path, &pt, PT_MOVETO); curve = (TTPOLYCURVE *)(header + 1); while ((char *)curve < (char *)header + header->cb) { /*TRACE("curve->wType %d\n", curve->wType);*/ switch(curve->wType) { case TT_PRIM_LINE: { WORD i; for (i = 0; i < curve->cpfx; i++) { pt.x = x + int_from_fixed(curve->apfx[i].x); pt.y = y - int_from_fixed(curve->apfx[i].y); PATH_AddEntry(physdev->path, &pt, PT_LINETO); } break; } case TT_PRIM_QSPLINE: case TT_PRIM_CSPLINE: { WORD i; POINTFX ptfx; POINT *pts = HeapAlloc(GetProcessHeap(), 0, (curve->cpfx + 1) * sizeof(POINT)); if (!pts) return FALSE; ptfx = *(POINTFX *)((char *)curve - sizeof(POINTFX)); pts[0].x = x + int_from_fixed(ptfx.x); pts[0].y = y - int_from_fixed(ptfx.y); for(i = 0; i < curve->cpfx; i++) { pts[i + 1].x = x + int_from_fixed(curve->apfx[i].x); pts[i + 1].y = y - int_from_fixed(curve->apfx[i].y); } PATH_BezierTo(physdev->path, pts, curve->cpfx + 1); HeapFree(GetProcessHeap(), 0, pts); break; } default: FIXME("Unknown curve type %04x\n", curve->wType); return FALSE; } curve = (TTPOLYCURVE *)&curve->apfx[curve->cpfx]; } header = (TTPOLYGONHEADER *)((char *)header + header->cb); } close_figure( physdev->path ); return TRUE; } /************************************************************* * pathdrv_ExtTextOut */ static BOOL CDECL pathdrv_ExtTextOut( PHYSDEV dev, INT x, INT y, UINT flags, const RECT *lprc, LPCWSTR str, UINT count, const INT *dx ) { struct path_physdev *physdev = get_path_physdev( dev ); unsigned int idx, ggo_flags = GGO_NATIVE; POINT offset = {0, 0}; if (!count) return TRUE; if (flags & ETO_GLYPH_INDEX) ggo_flags |= GGO_GLYPH_INDEX; for (idx = 0; idx < count; idx++) { static const MAT2 identity = { {0,1},{0,0},{0,0},{0,1} }; GLYPHMETRICS gm; DWORD dwSize; void *outline; dwSize = GetGlyphOutlineW(dev->hdc, str[idx], ggo_flags, &gm, 0, NULL, &identity); if (dwSize == GDI_ERROR) continue; /* add outline only if char is printable */ if(dwSize) { outline = HeapAlloc(GetProcessHeap(), 0, dwSize); if (!outline) return FALSE; GetGlyphOutlineW(dev->hdc, str[idx], ggo_flags, &gm, dwSize, outline, &identity); PATH_add_outline(physdev, x + offset.x, y + offset.y, outline, dwSize); HeapFree(GetProcessHeap(), 0, outline); } if (dx) { if(flags & ETO_PDY) { offset.x += dx[idx * 2]; offset.y += dx[idx * 2 + 1]; } else offset.x += dx[idx]; } else { offset.x += gm.gmCellIncX; offset.y += gm.gmCellIncY; } } return TRUE; } /************************************************************* * pathdrv_CloseFigure */ static BOOL CDECL pathdrv_CloseFigure( PHYSDEV dev ) { struct path_physdev *physdev = get_path_physdev( dev ); /* Set PT_CLOSEFIGURE on the last entry and start a new stroke */ /* It is not necessary to draw a line, PT_CLOSEFIGURE is a virtual closing line itself */ if (physdev->path->count) close_figure( physdev->path ); return TRUE; } /******************************************************************* * NtGdiFlattenPath (win32u.@) */ BOOL WINAPI NtGdiFlattenPath( HDC hdc ) { struct gdi_path *path; BOOL ret = FALSE; DC *dc; if (!(dc = get_dc_ptr( hdc ))) return FALSE; if (!dc->path) SetLastError( ERROR_CAN_NOT_COMPLETE ); else if ((path = PATH_FlattenPath( dc->path ))) { free_gdi_path( dc->path ); dc->path = path; ret = TRUE; } release_dc_ptr( dc ); return ret; } #define round(x) ((int)((x)>0?(x)+0.5:(x)-0.5)) static struct gdi_path *PATH_WidenPath(DC *dc) { INT i, j, numStrokes, penWidth, penWidthIn, penWidthOut, size, penStyle; struct gdi_path *flat_path, *pNewPath, **pStrokes = NULL, *pUpPath, *pDownPath; EXTLOGPEN *elp; BYTE *type; DWORD obj_type, joint, endcap, penType; size = GetObjectW( dc->hPen, 0, NULL ); if (!size) { SetLastError(ERROR_CAN_NOT_COMPLETE); return NULL; } elp = HeapAlloc( GetProcessHeap(), 0, size ); GetObjectW( dc->hPen, size, elp ); obj_type = GetObjectType(dc->hPen); if(obj_type == OBJ_PEN) { penStyle = ((LOGPEN*)elp)->lopnStyle; } else if(obj_type == OBJ_EXTPEN) { penStyle = elp->elpPenStyle; } else { SetLastError(ERROR_CAN_NOT_COMPLETE); HeapFree( GetProcessHeap(), 0, elp ); return NULL; } penWidth = elp->elpWidth; HeapFree( GetProcessHeap(), 0, elp ); endcap = (PS_ENDCAP_MASK & penStyle); joint = (PS_JOIN_MASK & penStyle); penType = (PS_TYPE_MASK & penStyle); /* The function cannot apply to cosmetic pens */ if(obj_type == OBJ_EXTPEN && penType == PS_COSMETIC) { SetLastError(ERROR_CAN_NOT_COMPLETE); return NULL; } if (!(flat_path = PATH_FlattenPath( dc->path ))) return NULL; penWidthIn = penWidth / 2; penWidthOut = penWidth / 2; if(penWidthIn + penWidthOut < penWidth) penWidthOut++; numStrokes = 0; for(i = 0, j = 0; i < flat_path->count; i++, j++) { POINT point; if((i == 0 || (flat_path->flags[i-1] & PT_CLOSEFIGURE)) && (flat_path->flags[i] != PT_MOVETO)) { ERR("Expected PT_MOVETO %s, got path flag %c\n", i == 0 ? "as first point" : "after PT_CLOSEFIGURE", flat_path->flags[i]); free_gdi_path( flat_path ); return NULL; } switch(flat_path->flags[i]) { case PT_MOVETO: numStrokes++; j = 0; if(numStrokes == 1) pStrokes = HeapAlloc(GetProcessHeap(), 0, sizeof(*pStrokes)); else pStrokes = HeapReAlloc(GetProcessHeap(), 0, pStrokes, numStrokes * sizeof(*pStrokes)); if(!pStrokes) { free_gdi_path(flat_path); return NULL; } pStrokes[numStrokes - 1] = alloc_gdi_path(0); /* fall through */ case PT_LINETO: case (PT_LINETO | PT_CLOSEFIGURE): point.x = flat_path->points[i].x; point.y = flat_path->points[i].y; PATH_AddEntry(pStrokes[numStrokes - 1], &point, flat_path->flags[i]); break; case PT_BEZIERTO: /* should never happen because of the FlattenPath call */ ERR("Should never happen\n"); break; default: ERR("Got path flag %c\n", flat_path->flags[i]); for(i = 0; i < numStrokes; i++) free_gdi_path(pStrokes[i]); HeapFree(GetProcessHeap(), 0, pStrokes); free_gdi_path(flat_path); return NULL; } } pNewPath = alloc_gdi_path( flat_path->count ); for(i = 0; i < numStrokes; i++) { pUpPath = alloc_gdi_path( pStrokes[i]->count ); pDownPath = alloc_gdi_path( pStrokes[i]->count ); for(j = 0; j < pStrokes[i]->count; j++) { /* Beginning or end of the path if not closed */ if((!(pStrokes[i]->flags[pStrokes[i]->count - 1] & PT_CLOSEFIGURE)) && (j == 0 || j == pStrokes[i]->count - 1) ) { /* Compute segment angle */ double xo, yo, xa, ya, theta; POINT pt; FLOAT_POINT corners[2]; if(j == 0) { xo = pStrokes[i]->points[j].x; yo = pStrokes[i]->points[j].y; xa = pStrokes[i]->points[1].x; ya = pStrokes[i]->points[1].y; } else { xa = pStrokes[i]->points[j - 1].x; ya = pStrokes[i]->points[j - 1].y; xo = pStrokes[i]->points[j].x; yo = pStrokes[i]->points[j].y; } theta = atan2( ya - yo, xa - xo ); switch(endcap) { case PS_ENDCAP_SQUARE : pt.x = xo + round(sqrt(2) * penWidthOut * cos(M_PI_4 + theta)); pt.y = yo + round(sqrt(2) * penWidthOut * sin(M_PI_4 + theta)); PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO) ); pt.x = xo + round(sqrt(2) * penWidthIn * cos(- M_PI_4 + theta)); pt.y = yo + round(sqrt(2) * penWidthIn * sin(- M_PI_4 + theta)); PATH_AddEntry(pUpPath, &pt, PT_LINETO); break; case PS_ENDCAP_FLAT : pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) ); pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) ); PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO)); pt.x = xo - round( penWidthIn * cos(theta + M_PI_2) ); pt.y = yo - round( penWidthIn * sin(theta + M_PI_2) ); PATH_AddEntry(pUpPath, &pt, PT_LINETO); break; case PS_ENDCAP_ROUND : default : corners[0].x = xo - penWidthIn; corners[0].y = yo - penWidthIn; corners[1].x = xo + penWidthOut; corners[1].y = yo + penWidthOut; PATH_DoArcPart(pUpPath ,corners, theta + M_PI_2 , theta + 3 * M_PI_4, (j == 0 ? PT_MOVETO : 0)); PATH_DoArcPart(pUpPath ,corners, theta + 3 * M_PI_4 , theta + M_PI, 0); PATH_DoArcPart(pUpPath ,corners, theta + M_PI, theta + 5 * M_PI_4, 0); PATH_DoArcPart(pUpPath ,corners, theta + 5 * M_PI_4 , theta + 3 * M_PI_2, 0); break; } } /* Corpse of the path */ else { /* Compute angle */ INT previous, next; double xa, ya, xb, yb, xo, yo; double alpha, theta, miterWidth; DWORD _joint = joint; POINT pt; struct gdi_path *pInsidePath, *pOutsidePath; if(j > 0 && j < pStrokes[i]->count - 1) { previous = j - 1; next = j + 1; } else if (j == 0) { previous = pStrokes[i]->count - 1; next = j + 1; } else { previous = j - 1; next = 0; } xo = pStrokes[i]->points[j].x; yo = pStrokes[i]->points[j].y; xa = pStrokes[i]->points[previous].x; ya = pStrokes[i]->points[previous].y; xb = pStrokes[i]->points[next].x; yb = pStrokes[i]->points[next].y; theta = atan2( yo - ya, xo - xa ); alpha = atan2( yb - yo, xb - xo ) - theta; if (alpha > 0) alpha -= M_PI; else alpha += M_PI; if(_joint == PS_JOIN_MITER && dc->attr->miter_limit < fabs(1 / sin(alpha/2))) { _joint = PS_JOIN_BEVEL; } if(alpha > 0) { pInsidePath = pUpPath; pOutsidePath = pDownPath; } else if(alpha < 0) { pInsidePath = pDownPath; pOutsidePath = pUpPath; } else { continue; } /* Inside angle points */ if(alpha > 0) { pt.x = xo - round( penWidthIn * cos(theta + M_PI_2) ); pt.y = yo - round( penWidthIn * sin(theta + M_PI_2) ); } else { pt.x = xo + round( penWidthIn * cos(theta + M_PI_2) ); pt.y = yo + round( penWidthIn * sin(theta + M_PI_2) ); } PATH_AddEntry(pInsidePath, &pt, PT_LINETO); if(alpha > 0) { pt.x = xo + round( penWidthIn * cos(M_PI_2 + alpha + theta) ); pt.y = yo + round( penWidthIn * sin(M_PI_2 + alpha + theta) ); } else { pt.x = xo - round( penWidthIn * cos(M_PI_2 + alpha + theta) ); pt.y = yo - round( penWidthIn * sin(M_PI_2 + alpha + theta) ); } PATH_AddEntry(pInsidePath, &pt, PT_LINETO); /* Outside angle point */ switch(_joint) { case PS_JOIN_MITER : miterWidth = fabs(penWidthOut / cos(M_PI_2 - fabs(alpha) / 2)); pt.x = xo + round( miterWidth * cos(theta + alpha / 2) ); pt.y = yo + round( miterWidth * sin(theta + alpha / 2) ); PATH_AddEntry(pOutsidePath, &pt, PT_LINETO); break; case PS_JOIN_BEVEL : if(alpha > 0) { pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) ); pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) ); } else { pt.x = xo - round( penWidthOut * cos(theta + M_PI_2) ); pt.y = yo - round( penWidthOut * sin(theta + M_PI_2) ); } PATH_AddEntry(pOutsidePath, &pt, PT_LINETO); if(alpha > 0) { pt.x = xo - round( penWidthOut * cos(M_PI_2 + alpha + theta) ); pt.y = yo - round( penWidthOut * sin(M_PI_2 + alpha + theta) ); } else { pt.x = xo + round( penWidthOut * cos(M_PI_2 + alpha + theta) ); pt.y = yo + round( penWidthOut * sin(M_PI_2 + alpha + theta) ); } PATH_AddEntry(pOutsidePath, &pt, PT_LINETO); break; case PS_JOIN_ROUND : default : if(alpha > 0) { pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) ); pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) ); } else { pt.x = xo - round( penWidthOut * cos(theta + M_PI_2) ); pt.y = yo - round( penWidthOut * sin(theta + M_PI_2) ); } PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO); pt.x = xo + round( penWidthOut * cos(theta + alpha / 2) ); pt.y = yo + round( penWidthOut * sin(theta + alpha / 2) ); PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO); if(alpha > 0) { pt.x = xo - round( penWidthOut * cos(M_PI_2 + alpha + theta) ); pt.y = yo - round( penWidthOut * sin(M_PI_2 + alpha + theta) ); } else { pt.x = xo + round( penWidthOut * cos(M_PI_2 + alpha + theta) ); pt.y = yo + round( penWidthOut * sin(M_PI_2 + alpha + theta) ); } PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO); break; } } } type = add_points( pNewPath, pUpPath->points, pUpPath->count, PT_LINETO ); type[0] = PT_MOVETO; reverse_points( pDownPath->points, pDownPath->count ); type = add_points( pNewPath, pDownPath->points, pDownPath->count, PT_LINETO ); if (pStrokes[i]->flags[pStrokes[i]->count - 1] & PT_CLOSEFIGURE) type[0] = PT_MOVETO; free_gdi_path( pStrokes[i] ); free_gdi_path( pUpPath ); free_gdi_path( pDownPath ); } HeapFree(GetProcessHeap(), 0, pStrokes); free_gdi_path( flat_path ); return pNewPath; } /******************************************************************* * NtGdiStrokeAndFillPath (win32u.@) */ BOOL WINAPI NtGdiStrokeAndFillPath( HDC hdc ) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pStrokeAndFillPath ); ret = physdev->funcs->pStrokeAndFillPath( physdev ); release_dc_ptr( dc ); } return ret; } /******************************************************************* * NtGdiStrokePath (win32u.@) */ BOOL WINAPI NtGdiStrokePath( HDC hdc ) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pStrokePath ); ret = physdev->funcs->pStrokePath( physdev ); release_dc_ptr( dc ); } return ret; } /******************************************************************* * NtGdiWidenPath (win32u.@) */ BOOL WINAPI NtGdiWidenPath( HDC hdc ) { struct gdi_path *path; BOOL ret = FALSE; DC *dc; if (!(dc = get_dc_ptr( hdc ))) return FALSE; if (!dc->path) SetLastError( ERROR_CAN_NOT_COMPLETE ); else if ((path = PATH_WidenPath( dc ))) { free_gdi_path( dc->path ); dc->path = path; ret = TRUE; } release_dc_ptr( dc ); return ret; } /*********************************************************************** * null driver fallback implementations */ BOOL CDECL nulldrv_BeginPath( PHYSDEV dev ) { DC *dc = get_nulldrv_dc( dev ); struct path_physdev *physdev; struct gdi_path *path = alloc_gdi_path(0); if (!path) return FALSE; if (!path_driver.pCreateDC( &dc->physDev, NULL, NULL, NULL, NULL )) { free_gdi_path( path ); return FALSE; } physdev = get_path_physdev( find_dc_driver( dc, &path_driver )); physdev->path = path; path->pos = dc->attr->cur_pos; lp_to_dp( dc, &path->pos, 1 ); if (dc->path) free_gdi_path( dc->path ); dc->path = NULL; return TRUE; } BOOL CDECL nulldrv_EndPath( PHYSDEV dev ) { SetLastError( ERROR_CAN_NOT_COMPLETE ); return FALSE; } BOOL CDECL nulldrv_AbortPath( PHYSDEV dev ) { DC *dc = get_nulldrv_dc( dev ); if (dc->path) free_gdi_path( dc->path ); dc->path = NULL; return TRUE; } BOOL CDECL nulldrv_CloseFigure( PHYSDEV dev ) { SetLastError( ERROR_CAN_NOT_COMPLETE ); return FALSE; } BOOL CDECL nulldrv_FillPath( PHYSDEV dev ) { if (NtGdiGetPath( dev->hdc, NULL, NULL, 0 ) == -1) return FALSE; NtGdiAbortPath( dev->hdc ); return TRUE; } BOOL CDECL nulldrv_StrokeAndFillPath( PHYSDEV dev ) { if (NtGdiGetPath( dev->hdc, NULL, NULL, 0 ) == -1) return FALSE; NtGdiAbortPath( dev->hdc ); return TRUE; } BOOL CDECL nulldrv_StrokePath( PHYSDEV dev ) { if (NtGdiGetPath( dev->hdc, NULL, NULL, 0 ) == -1) return FALSE; NtGdiAbortPath( dev->hdc ); return TRUE; } const struct gdi_dc_funcs path_driver = { NULL, /* pAbortDoc */ pathdrv_AbortPath, /* pAbortPath */ NULL, /* pAlphaBlend */ pathdrv_AngleArc, /* pAngleArc */ pathdrv_Arc, /* pArc */ pathdrv_ArcTo, /* pArcTo */ pathdrv_BeginPath, /* pBeginPath */ NULL, /* pBlendImage */ pathdrv_Chord, /* pChord */ pathdrv_CloseFigure, /* pCloseFigure */ NULL, /* pCreateCompatibleDC */ pathdrv_CreateDC, /* pCreateDC */ pathdrv_DeleteDC, /* pDeleteDC */ NULL, /* pDeleteObject */ NULL, /* pDeviceCapabilities */ pathdrv_Ellipse, /* pEllipse */ NULL, /* pEndDoc */ NULL, /* pEndPage */ pathdrv_EndPath, /* pEndPath */ NULL, /* pEnumFonts */ NULL, /* pExtDeviceMode */ NULL, /* pExtEscape */ NULL, /* pExtFloodFill */ pathdrv_ExtTextOut, /* pExtTextOut */ NULL, /* pFillPath */ NULL, /* pFillRgn */ NULL, /* pFontIsLinked */ NULL, /* pFrameRgn */ NULL, /* pGetBoundsRect */ NULL, /* pGetCharABCWidths */ NULL, /* pGetCharABCWidthsI */ NULL, /* pGetCharWidth */ NULL, /* pGetCharWidthInfo */ NULL, /* pGetDeviceCaps */ NULL, /* pGetDeviceGammaRamp */ NULL, /* pGetFontData */ NULL, /* pGetFontRealizationInfo */ NULL, /* pGetFontUnicodeRanges */ NULL, /* pGetGlyphIndices */ NULL, /* pGetGlyphOutline */ NULL, /* pGetICMProfile */ NULL, /* pGetImage */ NULL, /* pGetKerningPairs */ NULL, /* pGetNearestColor */ NULL, /* pGetOutlineTextMetrics */ NULL, /* pGetPixel */ NULL, /* pGetSystemPaletteEntries */ NULL, /* pGetTextCharsetInfo */ NULL, /* pGetTextExtentExPoint */ NULL, /* pGetTextExtentExPointI */ NULL, /* pGetTextFace */ NULL, /* pGetTextMetrics */ NULL, /* pGradientFill */ NULL, /* pInvertRgn */ pathdrv_LineTo, /* pLineTo */ pathdrv_MoveTo, /* pMoveTo */ NULL, /* pPaintRgn */ NULL, /* pPatBlt */ pathdrv_Pie, /* pPie */ pathdrv_PolyBezier, /* pPolyBezier */ pathdrv_PolyBezierTo, /* pPolyBezierTo */ pathdrv_PolyDraw, /* pPolyDraw */ pathdrv_PolyPolygon, /* pPolyPolygon */ pathdrv_PolyPolyline, /* pPolyPolyline */ pathdrv_PolylineTo, /* pPolylineTo */ NULL, /* pPutImage */ NULL, /* pRealizeDefaultPalette */ NULL, /* pRealizePalette */ pathdrv_Rectangle, /* pRectangle */ NULL, /* pResetDC */ pathdrv_RoundRect, /* pRoundRect */ NULL, /* pSelectBitmap */ NULL, /* pSelectBrush */ NULL, /* pSelectFont */ NULL, /* pSelectPen */ NULL, /* pSetBkColor */ NULL, /* pSetBoundsRect */ NULL, /* pSetDCBrushColor */ NULL, /* pSetDCPenColor */ NULL, /* pSetDIBitsToDevice */ NULL, /* pSetDeviceClipping */ NULL, /* pSetDeviceGammaRamp */ NULL, /* pSetPixel */ NULL, /* pSetTextColor */ NULL, /* pStartDoc */ NULL, /* pStartPage */ NULL, /* pStretchBlt */ NULL, /* pStretchDIBits */ NULL, /* pStrokeAndFillPath */ NULL, /* pStrokePath */ NULL, /* pUnrealizePalette */ NULL, /* pD3DKMTCheckVidPnExclusiveOwnership */ NULL, /* pD3DKMTSetVidPnSourceOwner */ NULL, /* wine_get_wgl_driver */ NULL, /* wine_get_vulkan_driver */ GDI_PRIORITY_PATH_DRV /* priority */ };