/* * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008) * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice including the dates of first publication and * either this permission notice or a reference to * http://oss.sgi.com/projects/FreeB/ * shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Except as contained in this notice, the name of Silicon Graphics, Inc. * shall not be used in advertising or otherwise to promote the sale, use or * other dealings in this Software without prior written authorization from * Silicon Graphics, Inc. */ /* ** Author: Eric Veach, July 1994. ** */ #include <stdarg.h> #include <assert.h> #include "windef.h" #include "winbase.h" #include "tess.h" static GLUvertex *allocVertex(void) { return HeapAlloc( GetProcessHeap(), 0, sizeof( GLUvertex )); } static GLUface *allocFace(void) { return HeapAlloc( GetProcessHeap(), 0, sizeof( GLUface )); } /************************ Utility Routines ************************/ /* Allocate and free half-edges in pairs for efficiency. * The *only* place that should use this fact is allocation/free. */ typedef struct { GLUhalfEdge e, eSym; } EdgePair; /* MakeEdge creates a new pair of half-edges which form their own loop. * No vertex or face structures are allocated, but these must be assigned * before the current edge operation is completed. */ static GLUhalfEdge *MakeEdge( GLUhalfEdge *eNext ) { GLUhalfEdge *e; GLUhalfEdge *eSym; GLUhalfEdge *ePrev; EdgePair *pair = HeapAlloc( GetProcessHeap(), 0, sizeof( EdgePair )); if (pair == NULL) return NULL; e = &pair->e; eSym = &pair->eSym; /* Make sure eNext points to the first edge of the edge pair */ if( eNext->Sym < eNext ) { eNext = eNext->Sym; } /* Insert in circular doubly-linked list before eNext. * Note that the prev pointer is stored in Sym->next. */ ePrev = eNext->Sym->next; eSym->next = ePrev; ePrev->Sym->next = e; e->next = eNext; eNext->Sym->next = eSym; e->Sym = eSym; e->Onext = e; e->Lnext = eSym; e->Org = NULL; e->Lface = NULL; e->winding = 0; e->activeRegion = NULL; eSym->Sym = e; eSym->Onext = eSym; eSym->Lnext = e; eSym->Org = NULL; eSym->Lface = NULL; eSym->winding = 0; eSym->activeRegion = NULL; return e; } /* Splice( a, b ) is best described by the Guibas/Stolfi paper or the * CS348a notes (see mesh.h). Basically it modifies the mesh so that * a->Onext and b->Onext are exchanged. This can have various effects * depending on whether a and b belong to different face or vertex rings. * For more explanation see __gl_meshSplice() below. */ static void Splice( GLUhalfEdge *a, GLUhalfEdge *b ) { GLUhalfEdge *aOnext = a->Onext; GLUhalfEdge *bOnext = b->Onext; aOnext->Sym->Lnext = b; bOnext->Sym->Lnext = a; a->Onext = bOnext; b->Onext = aOnext; } /* MakeVertex( newVertex, eOrig, vNext ) attaches a new vertex and makes it the * origin of all edges in the vertex loop to which eOrig belongs. "vNext" gives * a place to insert the new vertex in the global vertex list. We insert * the new vertex *before* vNext so that algorithms which walk the vertex * list will not see the newly created vertices. */ static void MakeVertex( GLUvertex *newVertex, GLUhalfEdge *eOrig, GLUvertex *vNext ) { GLUhalfEdge *e; GLUvertex *vPrev; GLUvertex *vNew = newVertex; assert(vNew != NULL); /* insert in circular doubly-linked list before vNext */ vPrev = vNext->prev; vNew->prev = vPrev; vPrev->next = vNew; vNew->next = vNext; vNext->prev = vNew; vNew->anEdge = eOrig; vNew->data = NULL; /* leave coords, s, t undefined */ /* fix other edges on this vertex loop */ e = eOrig; do { e->Org = vNew; e = e->Onext; } while( e != eOrig ); } /* MakeFace( newFace, eOrig, fNext ) attaches a new face and makes it the left * face of all edges in the face loop to which eOrig belongs. "fNext" gives * a place to insert the new face in the global face list. We insert * the new face *before* fNext so that algorithms which walk the face * list will not see the newly created faces. */ static void MakeFace( GLUface *newFace, GLUhalfEdge *eOrig, GLUface *fNext ) { GLUhalfEdge *e; GLUface *fPrev; GLUface *fNew = newFace; assert(fNew != NULL); /* insert in circular doubly-linked list before fNext */ fPrev = fNext->prev; fNew->prev = fPrev; fPrev->next = fNew; fNew->next = fNext; fNext->prev = fNew; fNew->anEdge = eOrig; fNew->data = NULL; fNew->trail = NULL; fNew->marked = FALSE; /* The new face is marked "inside" if the old one was. This is a * convenience for the common case where a face has been split in two. */ fNew->inside = fNext->inside; /* fix other edges on this face loop */ e = eOrig; do { e->Lface = fNew; e = e->Lnext; } while( e != eOrig ); } /* KillEdge( eDel ) destroys an edge (the half-edges eDel and eDel->Sym), * and removes from the global edge list. */ static void KillEdge( GLUhalfEdge *eDel ) { GLUhalfEdge *ePrev, *eNext; /* Half-edges are allocated in pairs, see EdgePair above */ if( eDel->Sym < eDel ) { eDel = eDel->Sym; } /* delete from circular doubly-linked list */ eNext = eDel->next; ePrev = eDel->Sym->next; eNext->Sym->next = ePrev; ePrev->Sym->next = eNext; HeapFree( GetProcessHeap(), 0, eDel ); } /* KillVertex( vDel ) destroys a vertex and removes it from the global * vertex list. It updates the vertex loop to point to a given new vertex. */ static void KillVertex( GLUvertex *vDel, GLUvertex *newOrg ) { GLUhalfEdge *e, *eStart = vDel->anEdge; GLUvertex *vPrev, *vNext; /* change the origin of all affected edges */ e = eStart; do { e->Org = newOrg; e = e->Onext; } while( e != eStart ); /* delete from circular doubly-linked list */ vPrev = vDel->prev; vNext = vDel->next; vNext->prev = vPrev; vPrev->next = vNext; HeapFree( GetProcessHeap(), 0, vDel ); } /* KillFace( fDel ) destroys a face and removes it from the global face * list. It updates the face loop to point to a given new face. */ static void KillFace( GLUface *fDel, GLUface *newLface ) { GLUhalfEdge *e, *eStart = fDel->anEdge; GLUface *fPrev, *fNext; /* change the left face of all affected edges */ e = eStart; do { e->Lface = newLface; e = e->Lnext; } while( e != eStart ); /* delete from circular doubly-linked list */ fPrev = fDel->prev; fNext = fDel->next; fNext->prev = fPrev; fPrev->next = fNext; HeapFree( GetProcessHeap(), 0, fDel ); } /****************** Basic Edge Operations **********************/ /* __gl_meshMakeEdge creates one edge, two vertices, and a loop (face). * The loop consists of the two new half-edges. */ GLUhalfEdge *__gl_meshMakeEdge( GLUmesh *mesh ) { GLUvertex *newVertex1= allocVertex(); GLUvertex *newVertex2= allocVertex(); GLUface *newFace= allocFace(); GLUhalfEdge *e; /* if any one is null then all get freed */ if (newVertex1 == NULL || newVertex2 == NULL || newFace == NULL) { HeapFree( GetProcessHeap(), 0, newVertex1 ); HeapFree( GetProcessHeap(), 0, newVertex2 ); HeapFree( GetProcessHeap(), 0, newFace ); return NULL; } e = MakeEdge( &mesh->eHead ); if (e == NULL) { HeapFree( GetProcessHeap(), 0, newVertex1 ); HeapFree( GetProcessHeap(), 0, newVertex2 ); HeapFree( GetProcessHeap(), 0, newFace ); return NULL; } MakeVertex( newVertex1, e, &mesh->vHead ); MakeVertex( newVertex2, e->Sym, &mesh->vHead ); MakeFace( newFace, e, &mesh->fHead ); return e; } /* __gl_meshSplice( eOrg, eDst ) is the basic operation for changing the * mesh connectivity and topology. It changes the mesh so that * eOrg->Onext <- OLD( eDst->Onext ) * eDst->Onext <- OLD( eOrg->Onext ) * where OLD(...) means the value before the meshSplice operation. * * This can have two effects on the vertex structure: * - if eOrg->Org != eDst->Org, the two vertices are merged together * - if eOrg->Org == eDst->Org, the origin is split into two vertices * In both cases, eDst->Org is changed and eOrg->Org is untouched. * * Similarly (and independently) for the face structure, * - if eOrg->Lface == eDst->Lface, one loop is split into two * - if eOrg->Lface != eDst->Lface, two distinct loops are joined into one * In both cases, eDst->Lface is changed and eOrg->Lface is unaffected. * * Some special cases: * If eDst == eOrg, the operation has no effect. * If eDst == eOrg->Lnext, the new face will have a single edge. * If eDst == eOrg->Lprev, the old face will have a single edge. * If eDst == eOrg->Onext, the new vertex will have a single edge. * If eDst == eOrg->Oprev, the old vertex will have a single edge. */ int __gl_meshSplice( GLUhalfEdge *eOrg, GLUhalfEdge *eDst ) { int joiningLoops = FALSE; int joiningVertices = FALSE; if( eOrg == eDst ) return 1; if( eDst->Org != eOrg->Org ) { /* We are merging two disjoint vertices -- destroy eDst->Org */ joiningVertices = TRUE; KillVertex( eDst->Org, eOrg->Org ); } if( eDst->Lface != eOrg->Lface ) { /* We are connecting two disjoint loops -- destroy eDst->Lface */ joiningLoops = TRUE; KillFace( eDst->Lface, eOrg->Lface ); } /* Change the edge structure */ Splice( eDst, eOrg ); if( ! joiningVertices ) { GLUvertex *newVertex= allocVertex(); if (newVertex == NULL) return 0; /* We split one vertex into two -- the new vertex is eDst->Org. * Make sure the old vertex points to a valid half-edge. */ MakeVertex( newVertex, eDst, eOrg->Org ); eOrg->Org->anEdge = eOrg; } if( ! joiningLoops ) { GLUface *newFace= allocFace(); if (newFace == NULL) return 0; /* We split one loop into two -- the new loop is eDst->Lface. * Make sure the old face points to a valid half-edge. */ MakeFace( newFace, eDst, eOrg->Lface ); eOrg->Lface->anEdge = eOrg; } return 1; } /* __gl_meshDelete( eDel ) removes the edge eDel. There are several cases: * if (eDel->Lface != eDel->Rface), we join two loops into one; the loop * eDel->Lface is deleted. Otherwise, we are splitting one loop into two; * the newly created loop will contain eDel->Dst. If the deletion of eDel * would create isolated vertices, those are deleted as well. * * This function could be implemented as two calls to __gl_meshSplice * plus a few calls to memFree, but this would allocate and delete * unnecessary vertices and faces. */ int __gl_meshDelete( GLUhalfEdge *eDel ) { GLUhalfEdge *eDelSym = eDel->Sym; int joiningLoops = FALSE; /* First step: disconnect the origin vertex eDel->Org. We make all * changes to get a consistent mesh in this "intermediate" state. */ if( eDel->Lface != eDel->Rface ) { /* We are joining two loops into one -- remove the left face */ joiningLoops = TRUE; KillFace( eDel->Lface, eDel->Rface ); } if( eDel->Onext == eDel ) { KillVertex( eDel->Org, NULL ); } else { /* Make sure that eDel->Org and eDel->Rface point to valid half-edges */ eDel->Rface->anEdge = eDel->Oprev; eDel->Org->anEdge = eDel->Onext; Splice( eDel, eDel->Oprev ); if( ! joiningLoops ) { GLUface *newFace= allocFace(); if (newFace == NULL) return 0; /* We are splitting one loop into two -- create a new loop for eDel. */ MakeFace( newFace, eDel, eDel->Lface ); } } /* Claim: the mesh is now in a consistent state, except that eDel->Org * may have been deleted. Now we disconnect eDel->Dst. */ if( eDelSym->Onext == eDelSym ) { KillVertex( eDelSym->Org, NULL ); KillFace( eDelSym->Lface, NULL ); } else { /* Make sure that eDel->Dst and eDel->Lface point to valid half-edges */ eDel->Lface->anEdge = eDelSym->Oprev; eDelSym->Org->anEdge = eDelSym->Onext; Splice( eDelSym, eDelSym->Oprev ); } /* Any isolated vertices or faces have already been freed. */ KillEdge( eDel ); return 1; } /******************** Other Edge Operations **********************/ /* All these routines can be implemented with the basic edge * operations above. They are provided for convenience and efficiency. */ /* __gl_meshAddEdgeVertex( eOrg ) creates a new edge eNew such that * eNew == eOrg->Lnext, and eNew->Dst is a newly created vertex. * eOrg and eNew will have the same left face. */ GLUhalfEdge *__gl_meshAddEdgeVertex( GLUhalfEdge *eOrg ) { GLUhalfEdge *eNewSym; GLUhalfEdge *eNew = MakeEdge( eOrg ); if (eNew == NULL) return NULL; eNewSym = eNew->Sym; /* Connect the new edge appropriately */ Splice( eNew, eOrg->Lnext ); /* Set the vertex and face information */ eNew->Org = eOrg->Dst; { GLUvertex *newVertex= allocVertex(); if (newVertex == NULL) return NULL; MakeVertex( newVertex, eNewSym, eNew->Org ); } eNew->Lface = eNewSym->Lface = eOrg->Lface; return eNew; } /* __gl_meshSplitEdge( eOrg ) splits eOrg into two edges eOrg and eNew, * such that eNew == eOrg->Lnext. The new vertex is eOrg->Dst == eNew->Org. * eOrg and eNew will have the same left face. */ GLUhalfEdge *__gl_meshSplitEdge( GLUhalfEdge *eOrg ) { GLUhalfEdge *eNew; GLUhalfEdge *tempHalfEdge= __gl_meshAddEdgeVertex( eOrg ); if (tempHalfEdge == NULL) return NULL; eNew = tempHalfEdge->Sym; /* Disconnect eOrg from eOrg->Dst and connect it to eNew->Org */ Splice( eOrg->Sym, eOrg->Sym->Oprev ); Splice( eOrg->Sym, eNew ); /* Set the vertex and face information */ eOrg->Dst = eNew->Org; eNew->Dst->anEdge = eNew->Sym; /* may have pointed to eOrg->Sym */ eNew->Rface = eOrg->Rface; eNew->winding = eOrg->winding; /* copy old winding information */ eNew->Sym->winding = eOrg->Sym->winding; return eNew; } /* __gl_meshConnect( eOrg, eDst ) creates a new edge from eOrg->Dst * to eDst->Org, and returns the corresponding half-edge eNew. * If eOrg->Lface == eDst->Lface, this splits one loop into two, * and the newly created loop is eNew->Lface. Otherwise, two disjoint * loops are merged into one, and the loop eDst->Lface is destroyed. * * If (eOrg == eDst), the new face will have only two edges. * If (eOrg->Lnext == eDst), the old face is reduced to a single edge. * If (eOrg->Lnext->Lnext == eDst), the old face is reduced to two edges. */ GLUhalfEdge *__gl_meshConnect( GLUhalfEdge *eOrg, GLUhalfEdge *eDst ) { GLUhalfEdge *eNewSym; int joiningLoops = FALSE; GLUhalfEdge *eNew = MakeEdge( eOrg ); if (eNew == NULL) return NULL; eNewSym = eNew->Sym; if( eDst->Lface != eOrg->Lface ) { /* We are connecting two disjoint loops -- destroy eDst->Lface */ joiningLoops = TRUE; KillFace( eDst->Lface, eOrg->Lface ); } /* Connect the new edge appropriately */ Splice( eNew, eOrg->Lnext ); Splice( eNewSym, eDst ); /* Set the vertex and face information */ eNew->Org = eOrg->Dst; eNewSym->Org = eDst->Org; eNew->Lface = eNewSym->Lface = eOrg->Lface; /* Make sure the old face points to a valid half-edge */ eOrg->Lface->anEdge = eNewSym; if( ! joiningLoops ) { GLUface *newFace= allocFace(); if (newFace == NULL) return NULL; /* We split one loop into two -- the new loop is eNew->Lface */ MakeFace( newFace, eNew, eOrg->Lface ); } return eNew; } /******************** Other Operations **********************/ /* __gl_meshZapFace( fZap ) destroys a face and removes it from the * global face list. All edges of fZap will have a NULL pointer as their * left face. Any edges which also have a NULL pointer as their right face * are deleted entirely (along with any isolated vertices this produces). * An entire mesh can be deleted by zapping its faces, one at a time, * in any order. Zapped faces cannot be used in further mesh operations! */ void __gl_meshZapFace( GLUface *fZap ) { GLUhalfEdge *eStart = fZap->anEdge; GLUhalfEdge *e, *eNext, *eSym; GLUface *fPrev, *fNext; /* walk around face, deleting edges whose right face is also NULL */ eNext = eStart->Lnext; do { e = eNext; eNext = e->Lnext; e->Lface = NULL; if( e->Rface == NULL ) { /* delete the edge -- see __gl_MeshDelete above */ if( e->Onext == e ) { KillVertex( e->Org, NULL ); } else { /* Make sure that e->Org points to a valid half-edge */ e->Org->anEdge = e->Onext; Splice( e, e->Oprev ); } eSym = e->Sym; if( eSym->Onext == eSym ) { KillVertex( eSym->Org, NULL ); } else { /* Make sure that eSym->Org points to a valid half-edge */ eSym->Org->anEdge = eSym->Onext; Splice( eSym, eSym->Oprev ); } KillEdge( e ); } } while( e != eStart ); /* delete from circular doubly-linked list */ fPrev = fZap->prev; fNext = fZap->next; fNext->prev = fPrev; fPrev->next = fNext; HeapFree( GetProcessHeap(), 0, fZap ); } /* __gl_meshNewMesh() creates a new mesh with no edges, no vertices, * and no loops (what we usually call a "face"). */ GLUmesh *__gl_meshNewMesh( void ) { GLUvertex *v; GLUface *f; GLUhalfEdge *e; GLUhalfEdge *eSym; GLUmesh *mesh = HeapAlloc( GetProcessHeap(), 0, sizeof( GLUmesh )); if (mesh == NULL) { return NULL; } v = &mesh->vHead; f = &mesh->fHead; e = &mesh->eHead; eSym = &mesh->eHeadSym; v->next = v->prev = v; v->anEdge = NULL; v->data = NULL; f->next = f->prev = f; f->anEdge = NULL; f->data = NULL; f->trail = NULL; f->marked = FALSE; f->inside = FALSE; e->next = e; e->Sym = eSym; e->Onext = NULL; e->Lnext = NULL; e->Org = NULL; e->Lface = NULL; e->winding = 0; e->activeRegion = NULL; eSym->next = eSym; eSym->Sym = e; eSym->Onext = NULL; eSym->Lnext = NULL; eSym->Org = NULL; eSym->Lface = NULL; eSym->winding = 0; eSym->activeRegion = NULL; return mesh; } /* __gl_meshUnion( mesh1, mesh2 ) forms the union of all structures in * both meshes, and returns the new mesh (the old meshes are destroyed). */ GLUmesh *__gl_meshUnion( GLUmesh *mesh1, GLUmesh *mesh2 ) { GLUface *f1 = &mesh1->fHead; GLUvertex *v1 = &mesh1->vHead; GLUhalfEdge *e1 = &mesh1->eHead; GLUface *f2 = &mesh2->fHead; GLUvertex *v2 = &mesh2->vHead; GLUhalfEdge *e2 = &mesh2->eHead; /* Add the faces, vertices, and edges of mesh2 to those of mesh1 */ if( f2->next != f2 ) { f1->prev->next = f2->next; f2->next->prev = f1->prev; f2->prev->next = f1; f1->prev = f2->prev; } if( v2->next != v2 ) { v1->prev->next = v2->next; v2->next->prev = v1->prev; v2->prev->next = v1; v1->prev = v2->prev; } if( e2->next != e2 ) { e1->Sym->next->Sym->next = e2->next; e2->next->Sym->next = e1->Sym->next; e2->Sym->next->Sym->next = e1; e1->Sym->next = e2->Sym->next; } HeapFree( GetProcessHeap(), 0, mesh2 ); return mesh1; } #ifdef DELETE_BY_ZAPPING /* __gl_meshDeleteMesh( mesh ) will free all storage for any valid mesh. */ void __gl_meshDeleteMesh( GLUmesh *mesh ) { GLUface *fHead = &mesh->fHead; while( fHead->next != fHead ) { __gl_meshZapFace( fHead->next ); } assert( mesh->vHead.next == &mesh->vHead ); memFree( mesh ); } #else /* __gl_meshDeleteMesh( mesh ) will free all storage for any valid mesh. */ void __gl_meshDeleteMesh( GLUmesh *mesh ) { GLUface *f, *fNext; GLUvertex *v, *vNext; GLUhalfEdge *e, *eNext; for( f = mesh->fHead.next; f != &mesh->fHead; f = fNext ) { fNext = f->next; HeapFree( GetProcessHeap(), 0, f ); } for( v = mesh->vHead.next; v != &mesh->vHead; v = vNext ) { vNext = v->next; HeapFree( GetProcessHeap(), 0, v ); } for( e = mesh->eHead.next; e != &mesh->eHead; e = eNext ) { /* One call frees both e and e->Sym (see EdgePair above) */ eNext = e->next; HeapFree( GetProcessHeap(), 0, e ); } HeapFree( GetProcessHeap(), 0, mesh ); } #endif #ifndef NDEBUG /* __gl_meshCheckMesh( mesh ) checks a mesh for self-consistency. */ void __gl_meshCheckMesh( GLUmesh *mesh ) { GLUface *fHead = &mesh->fHead; GLUvertex *vHead = &mesh->vHead; GLUhalfEdge *eHead = &mesh->eHead; GLUface *f, *fPrev; GLUvertex *v, *vPrev; GLUhalfEdge *e, *ePrev; fPrev = fHead; for( fPrev = fHead ; (f = fPrev->next) != fHead; fPrev = f) { assert( f->prev == fPrev ); e = f->anEdge; do { assert( e->Sym != e ); assert( e->Sym->Sym == e ); assert( e->Lnext->Onext->Sym == e ); assert( e->Onext->Sym->Lnext == e ); assert( e->Lface == f ); e = e->Lnext; } while( e != f->anEdge ); } assert( f->prev == fPrev && f->anEdge == NULL && f->data == NULL ); vPrev = vHead; for( vPrev = vHead ; (v = vPrev->next) != vHead; vPrev = v) { assert( v->prev == vPrev ); e = v->anEdge; do { assert( e->Sym != e ); assert( e->Sym->Sym == e ); assert( e->Lnext->Onext->Sym == e ); assert( e->Onext->Sym->Lnext == e ); assert( e->Org == v ); e = e->Onext; } while( e != v->anEdge ); } assert( v->prev == vPrev && v->anEdge == NULL && v->data == NULL ); ePrev = eHead; for( ePrev = eHead ; (e = ePrev->next) != eHead; ePrev = e) { assert( e->Sym->next == ePrev->Sym ); assert( e->Sym != e ); assert( e->Sym->Sym == e ); assert( e->Org != NULL ); assert( e->Dst != NULL ); assert( e->Lnext->Onext->Sym == e ); assert( e->Onext->Sym->Lnext == e ); } assert( e->Sym->next == ePrev->Sym && e->Sym == &mesh->eHeadSym && e->Sym->Sym == e && e->Org == NULL && e->Dst == NULL && e->Lface == NULL && e->Rface == NULL ); } #endif /* monotone region support (used to be in tessmono.c) */ /* __gl_meshTessellateMonoRegion( face ) tessellates a monotone region * (what else would it do??) The region must consist of a single * loop of half-edges (see mesh.h) oriented CCW. "Monotone" in this * case means that any vertical line intersects the interior of the * region in a single interval. * * Tessellation consists of adding interior edges (actually pairs of * half-edges), to split the region into non-overlapping triangles. * * The basic idea is explained in Preparata and Shamos (which I don''t * have handy right now), although their implementation is more * complicated than this one. The are two edge chains, an upper chain * and a lower chain. We process all vertices from both chains in order, * from right to left. * * The algorithm ensures that the following invariant holds after each * vertex is processed: the untessellated region consists of two * chains, where one chain (say the upper) is a single edge, and * the other chain is concave. The left vertex of the single edge * is always to the left of all vertices in the concave chain. * * Each step consists of adding the rightmost unprocessed vertex to one * of the two chains, and forming a fan of triangles from the rightmost * of two chain endpoints. Determining whether we can add each triangle * to the fan is a simple orientation test. By making the fan as large * as possible, we restore the invariant (check it yourself). */ static int __gl_meshTessellateMonoRegion( GLUface *face ) { GLUhalfEdge *up, *lo; /* All edges are oriented CCW around the boundary of the region. * First, find the half-edge whose origin vertex is rightmost. * Since the sweep goes from left to right, face->anEdge should * be close to the edge we want. */ up = face->anEdge; assert( up->Lnext != up && up->Lnext->Lnext != up ); for( ; VertLeq( up->Dst, up->Org ); up = up->Lprev ) ; for( ; VertLeq( up->Org, up->Dst ); up = up->Lnext ) ; lo = up->Lprev; while( up->Lnext != lo ) { if( VertLeq( up->Dst, lo->Org )) { /* up->Dst is on the left. It is safe to form triangles from lo->Org. * The EdgeGoesLeft test guarantees progress even when some triangles * are CW, given that the upper and lower chains are truly monotone. */ while( lo->Lnext != up && (EdgeGoesLeft( lo->Lnext ) || EdgeSign( lo->Org, lo->Dst, lo->Lnext->Dst ) <= 0 )) { GLUhalfEdge *tempHalfEdge= __gl_meshConnect( lo->Lnext, lo ); if (tempHalfEdge == NULL) return 0; lo = tempHalfEdge->Sym; } lo = lo->Lprev; } else { /* lo->Org is on the left. We can make CCW triangles from up->Dst. */ while( lo->Lnext != up && (EdgeGoesRight( up->Lprev ) || EdgeSign( up->Dst, up->Org, up->Lprev->Org ) >= 0 )) { GLUhalfEdge *tempHalfEdge= __gl_meshConnect( up, up->Lprev ); if (tempHalfEdge == NULL) return 0; up = tempHalfEdge->Sym; } up = up->Lnext; } } /* Now lo->Org == up->Dst == the leftmost vertex. The remaining region * can be tessellated in a fan from this leftmost vertex. */ assert( lo->Lnext != up ); while( lo->Lnext->Lnext != up ) { GLUhalfEdge *tempHalfEdge= __gl_meshConnect( lo->Lnext, lo ); if (tempHalfEdge == NULL) return 0; lo = tempHalfEdge->Sym; } return 1; } /* __gl_meshTessellateInterior( mesh ) tessellates each region of * the mesh which is marked "inside" the polygon. Each such region * must be monotone. */ int __gl_meshTessellateInterior( GLUmesh *mesh ) { GLUface *f, *next; /*LINTED*/ for( f = mesh->fHead.next; f != &mesh->fHead; f = next ) { /* Make sure we don''t try to tessellate the new triangles. */ next = f->next; if( f->inside ) { if ( !__gl_meshTessellateMonoRegion( f ) ) return 0; } } return 1; } /* __gl_meshDiscardExterior( mesh ) zaps (ie. sets to NULL) all faces * which are not marked "inside" the polygon. Since further mesh operations * on NULL faces are not allowed, the main purpose is to clean up the * mesh so that exterior loops are not represented in the data structure. */ void __gl_meshDiscardExterior( GLUmesh *mesh ) { GLUface *f, *next; /*LINTED*/ for( f = mesh->fHead.next; f != &mesh->fHead; f = next ) { /* Since f will be destroyed, save its next pointer. */ next = f->next; if( ! f->inside ) { __gl_meshZapFace( f ); } } } /* __gl_meshSetWindingNumber( mesh, value, keepOnlyBoundary ) resets the * winding numbers on all edges so that regions marked "inside" the * polygon have a winding number of "value", and regions outside * have a winding number of 0. * * If keepOnlyBoundary is TRUE, it also deletes all edges which do not * separate an interior region from an exterior one. */ int __gl_meshSetWindingNumber( GLUmesh *mesh, int value, GLboolean keepOnlyBoundary ) { GLUhalfEdge *e, *eNext; for( e = mesh->eHead.next; e != &mesh->eHead; e = eNext ) { eNext = e->next; if( e->Rface->inside != e->Lface->inside ) { /* This is a boundary edge (one side is interior, one is exterior). */ e->winding = (e->Lface->inside) ? value : -value; } else { /* Both regions are interior, or both are exterior. */ if( ! keepOnlyBoundary ) { e->winding = 0; } else { if ( !__gl_meshDelete( e ) ) return 0; } } } return 1; }