/* * Server-side file descriptor management * * Copyright (C) 2000, 2003 Alexandre Julliard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "config.h" #include "wine/port.h" #include <assert.h> #include <dirent.h> #include <errno.h> #include <fcntl.h> #include <limits.h> #include <signal.h> #include <stdarg.h> #include <stdio.h> #include <string.h> #include <stdlib.h> #ifdef HAVE_POLL_H #include <poll.h> #endif #ifdef HAVE_SYS_POLL_H #include <sys/poll.h> #endif #ifdef HAVE_LINUX_MAJOR_H #include <linux/major.h> #endif #ifdef HAVE_SYS_STATVFS_H #include <sys/statvfs.h> #endif #ifdef HAVE_SYS_VFS_H /* Work around a conflict with Solaris' system list defined in sys/list.h. */ #define list SYSLIST #define list_next SYSLIST_NEXT #define list_prev SYSLIST_PREV #define list_head SYSLIST_HEAD #define list_tail SYSLIST_TAIL #define list_move_tail SYSLIST_MOVE_TAIL #define list_remove SYSLIST_REMOVE #include <sys/vfs.h> #undef list #undef list_next #undef list_prev #undef list_head #undef list_tail #undef list_move_tail #undef list_remove #endif #ifdef HAVE_SYS_PARAM_H #include <sys/param.h> #endif #ifdef HAVE_SYS_MOUNT_H #include <sys/mount.h> #endif #ifdef HAVE_SYS_STATFS_H #include <sys/statfs.h> #endif #ifdef HAVE_SYS_SYSCTL_H #include <sys/sysctl.h> #endif #ifdef HAVE_SYS_EVENT_H #include <sys/event.h> #undef LIST_INIT #undef LIST_ENTRY #endif #ifdef HAVE_STDINT_H #include <stdint.h> #endif #include <sys/stat.h> #include <sys/time.h> #ifdef MAJOR_IN_MKDEV #include <sys/mkdev.h> #elif defined(MAJOR_IN_SYSMACROS) #include <sys/sysmacros.h> #endif #include <sys/types.h> #include <unistd.h> #ifdef HAVE_SYS_SYSCALL_H #include <sys/syscall.h> #endif #include "ntstatus.h" #define WIN32_NO_STATUS #include "object.h" #include "file.h" #include "handle.h" #include "process.h" #include "request.h" #include "winternl.h" #include "winioctl.h" #include "ddk/wdm.h" #if defined(HAVE_SYS_EPOLL_H) && defined(HAVE_EPOLL_CREATE) # include <sys/epoll.h> # define USE_EPOLL #elif defined(linux) && defined(__i386__) && defined(HAVE_STDINT_H) # define USE_EPOLL # define EPOLLIN POLLIN # define EPOLLOUT POLLOUT # define EPOLLERR POLLERR # define EPOLLHUP POLLHUP # define EPOLL_CTL_ADD 1 # define EPOLL_CTL_DEL 2 # define EPOLL_CTL_MOD 3 typedef union epoll_data { void *ptr; int fd; uint32_t u32; uint64_t u64; } epoll_data_t; struct epoll_event { uint32_t events; epoll_data_t data; }; static inline int epoll_create( int size ) { return syscall( 254 /*NR_epoll_create*/, size ); } static inline int epoll_ctl( int epfd, int op, int fd, const struct epoll_event *event ) { return syscall( 255 /*NR_epoll_ctl*/, epfd, op, fd, event ); } static inline int epoll_wait( int epfd, struct epoll_event *events, int maxevents, int timeout ) { return syscall( 256 /*NR_epoll_wait*/, epfd, events, maxevents, timeout ); } #endif /* linux && __i386__ && HAVE_STDINT_H */ #if defined(HAVE_PORT_H) && defined(HAVE_PORT_CREATE) # include <port.h> # define USE_EVENT_PORTS #endif /* HAVE_PORT_H && HAVE_PORT_CREATE */ /* Because of the stupid Posix locking semantics, we need to keep * track of all file descriptors referencing a given file, and not * close a single one until all the locks are gone (sigh). */ /* file descriptor object */ /* closed_fd is used to keep track of the unix fd belonging to a closed fd object */ struct closed_fd { struct list entry; /* entry in inode closed list */ int unix_fd; /* the unix file descriptor */ int unlink; /* whether to unlink on close: -1 - implicit FILE_DELETE_ON_CLOSE, 1 - explicit disposition */ char *unix_name; /* name to unlink on close, points to parent fd unix_name */ }; struct fd { struct object obj; /* object header */ const struct fd_ops *fd_ops; /* file descriptor operations */ struct inode *inode; /* inode that this fd belongs to */ struct list inode_entry; /* entry in inode fd list */ struct closed_fd *closed; /* structure to store the unix fd at destroy time */ struct object *user; /* object using this file descriptor */ struct list locks; /* list of locks on this fd */ unsigned int access; /* file access (FILE_READ_DATA etc.) */ unsigned int options; /* file options (FILE_DELETE_ON_CLOSE, FILE_SYNCHRONOUS...) */ unsigned int sharing; /* file sharing mode */ char *unix_name; /* unix file name */ WCHAR *nt_name; /* NT file name */ data_size_t nt_namelen; /* length of NT file name */ int unix_fd; /* unix file descriptor */ unsigned int no_fd_status;/* status to return when unix_fd is -1 */ unsigned int cacheable :1;/* can the fd be cached on the client side? */ unsigned int signaled :1; /* is the fd signaled? */ unsigned int fs_locks :1; /* can we use filesystem locks for this fd? */ int poll_index; /* index of fd in poll array */ struct async_queue read_q; /* async readers of this fd */ struct async_queue write_q; /* async writers of this fd */ struct async_queue wait_q; /* other async waiters of this fd */ struct completion *completion; /* completion object attached to this fd */ apc_param_t comp_key; /* completion key to set in completion events */ unsigned int comp_flags; /* completion flags */ }; static void fd_dump( struct object *obj, int verbose ); static void fd_destroy( struct object *obj ); static const struct object_ops fd_ops = { sizeof(struct fd), /* size */ &no_type, /* type */ fd_dump, /* dump */ no_add_queue, /* add_queue */ NULL, /* remove_queue */ NULL, /* signaled */ NULL, /* satisfied */ no_signal, /* signal */ no_get_fd, /* get_fd */ default_map_access, /* map_access */ default_get_sd, /* get_sd */ default_set_sd, /* set_sd */ no_get_full_name, /* get_full_name */ no_lookup_name, /* lookup_name */ no_link_name, /* link_name */ NULL, /* unlink_name */ no_open_file, /* open_file */ no_kernel_obj_list, /* get_kernel_obj_list */ no_close_handle, /* close_handle */ fd_destroy /* destroy */ }; /* device object */ #define DEVICE_HASH_SIZE 7 #define INODE_HASH_SIZE 17 struct device { struct object obj; /* object header */ struct list entry; /* entry in device hash list */ dev_t dev; /* device number */ int removable; /* removable device? (or -1 if unknown) */ struct list inode_hash[INODE_HASH_SIZE]; /* inodes hash table */ }; static void device_dump( struct object *obj, int verbose ); static void device_destroy( struct object *obj ); static const struct object_ops device_ops = { sizeof(struct device), /* size */ &no_type, /* type */ device_dump, /* dump */ no_add_queue, /* add_queue */ NULL, /* remove_queue */ NULL, /* signaled */ NULL, /* satisfied */ no_signal, /* signal */ no_get_fd, /* get_fd */ default_map_access, /* map_access */ default_get_sd, /* get_sd */ default_set_sd, /* set_sd */ no_get_full_name, /* get_full_name */ no_lookup_name, /* lookup_name */ no_link_name, /* link_name */ NULL, /* unlink_name */ no_open_file, /* open_file */ no_kernel_obj_list, /* get_kernel_obj_list */ no_close_handle, /* close_handle */ device_destroy /* destroy */ }; /* inode object */ struct inode { struct object obj; /* object header */ struct list entry; /* inode hash list entry */ struct device *device; /* device containing this inode */ ino_t ino; /* inode number */ struct list open; /* list of open file descriptors */ struct list locks; /* list of file locks */ struct list closed; /* list of file descriptors to close at destroy time */ }; static void inode_dump( struct object *obj, int verbose ); static void inode_destroy( struct object *obj ); static const struct object_ops inode_ops = { sizeof(struct inode), /* size */ &no_type, /* type */ inode_dump, /* dump */ no_add_queue, /* add_queue */ NULL, /* remove_queue */ NULL, /* signaled */ NULL, /* satisfied */ no_signal, /* signal */ no_get_fd, /* get_fd */ default_map_access, /* map_access */ default_get_sd, /* get_sd */ default_set_sd, /* set_sd */ no_get_full_name, /* get_full_name */ no_lookup_name, /* lookup_name */ no_link_name, /* link_name */ NULL, /* unlink_name */ no_open_file, /* open_file */ no_kernel_obj_list, /* get_kernel_obj_list */ no_close_handle, /* close_handle */ inode_destroy /* destroy */ }; /* file lock object */ struct file_lock { struct object obj; /* object header */ struct fd *fd; /* fd owning this lock */ struct list fd_entry; /* entry in list of locks on a given fd */ struct list inode_entry; /* entry in inode list of locks */ int shared; /* shared lock? */ file_pos_t start; /* locked region is interval [start;end) */ file_pos_t end; struct process *process; /* process owning this lock */ struct list proc_entry; /* entry in list of locks owned by the process */ }; static void file_lock_dump( struct object *obj, int verbose ); static int file_lock_signaled( struct object *obj, struct wait_queue_entry *entry ); static const struct object_ops file_lock_ops = { sizeof(struct file_lock), /* size */ &no_type, /* type */ file_lock_dump, /* dump */ add_queue, /* add_queue */ remove_queue, /* remove_queue */ file_lock_signaled, /* signaled */ no_satisfied, /* satisfied */ no_signal, /* signal */ no_get_fd, /* get_fd */ default_map_access, /* map_access */ default_get_sd, /* get_sd */ default_set_sd, /* set_sd */ no_get_full_name, /* get_full_name */ no_lookup_name, /* lookup_name */ no_link_name, /* link_name */ NULL, /* unlink_name */ no_open_file, /* open_file */ no_kernel_obj_list, /* get_kernel_obj_list */ no_close_handle, /* close_handle */ no_destroy /* destroy */ }; #define OFF_T_MAX (~((file_pos_t)1 << (8*sizeof(off_t)-1))) #define FILE_POS_T_MAX (~(file_pos_t)0) static file_pos_t max_unix_offset = OFF_T_MAX; #define DUMP_LONG_LONG(val) do { \ if (sizeof(val) > sizeof(unsigned long) && (val) > ~0UL) \ fprintf( stderr, "%lx%08lx", (unsigned long)((unsigned long long)(val) >> 32), (unsigned long)(val) ); \ else \ fprintf( stderr, "%lx", (unsigned long)(val) ); \ } while (0) /****************************************************************/ /* timeouts support */ struct timeout_user { struct list entry; /* entry in sorted timeout list */ abstime_t when; /* timeout expiry */ timeout_callback callback; /* callback function */ void *private; /* callback private data */ }; static struct list abs_timeout_list = LIST_INIT(abs_timeout_list); /* sorted absolute timeouts list */ static struct list rel_timeout_list = LIST_INIT(rel_timeout_list); /* sorted relative timeouts list */ timeout_t current_time; timeout_t monotonic_time; struct _KUSER_SHARED_DATA *user_shared_data = NULL; static const int user_shared_data_timeout = 16; static void set_user_shared_data_time(void) { timeout_t tick_count = monotonic_time / 10000; /* on X86 there should be total store order guarantees, so volatile is enough * to ensure the stores aren't reordered by the compiler, and then they will * always be seen in-order from other CPUs. On other archs, we need atomic * intrinsics to guarantee that. */ #if defined(__i386__) || defined(__x86_64__) user_shared_data->SystemTime.High2Time = current_time >> 32; user_shared_data->SystemTime.LowPart = current_time; user_shared_data->SystemTime.High1Time = current_time >> 32; user_shared_data->InterruptTime.High2Time = monotonic_time >> 32; user_shared_data->InterruptTime.LowPart = monotonic_time; user_shared_data->InterruptTime.High1Time = monotonic_time >> 32; user_shared_data->TickCount.High2Time = tick_count >> 32; user_shared_data->TickCount.LowPart = tick_count; user_shared_data->TickCount.High1Time = tick_count >> 32; *(volatile ULONG *)&user_shared_data->TickCountLowDeprecated = tick_count; #else __atomic_store_n(&user_shared_data->SystemTime.High2Time, current_time >> 32, __ATOMIC_SEQ_CST); __atomic_store_n(&user_shared_data->SystemTime.LowPart, current_time, __ATOMIC_SEQ_CST); __atomic_store_n(&user_shared_data->SystemTime.High1Time, current_time >> 32, __ATOMIC_SEQ_CST); __atomic_store_n(&user_shared_data->InterruptTime.High2Time, monotonic_time >> 32, __ATOMIC_SEQ_CST); __atomic_store_n(&user_shared_data->InterruptTime.LowPart, monotonic_time, __ATOMIC_SEQ_CST); __atomic_store_n(&user_shared_data->InterruptTime.High1Time, monotonic_time >> 32, __ATOMIC_SEQ_CST); __atomic_store_n(&user_shared_data->TickCount.High2Time, tick_count >> 32, __ATOMIC_SEQ_CST); __atomic_store_n(&user_shared_data->TickCount.LowPart, tick_count, __ATOMIC_SEQ_CST); __atomic_store_n(&user_shared_data->TickCount.High1Time, tick_count >> 32, __ATOMIC_SEQ_CST); __atomic_store_n(&user_shared_data->TickCountLowDeprecated, tick_count, __ATOMIC_SEQ_CST); #endif } void set_current_time(void) { static const timeout_t ticks_1601_to_1970 = (timeout_t)86400 * (369 * 365 + 89) * TICKS_PER_SEC; struct timeval now; gettimeofday( &now, NULL ); current_time = (timeout_t)now.tv_sec * TICKS_PER_SEC + now.tv_usec * 10 + ticks_1601_to_1970; monotonic_time = monotonic_counter(); if (user_shared_data) set_user_shared_data_time(); } /* add a timeout user */ struct timeout_user *add_timeout_user( timeout_t when, timeout_callback func, void *private ) { struct timeout_user *user; struct list *ptr; if (!(user = mem_alloc( sizeof(*user) ))) return NULL; user->when = timeout_to_abstime( when ); user->callback = func; user->private = private; /* Now insert it in the linked list */ if (user->when > 0) { LIST_FOR_EACH( ptr, &abs_timeout_list ) { struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry ); if (timeout->when >= user->when) break; } } else { LIST_FOR_EACH( ptr, &rel_timeout_list ) { struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry ); if (timeout->when <= user->when) break; } } list_add_before( ptr, &user->entry ); return user; } /* remove a timeout user */ void remove_timeout_user( struct timeout_user *user ) { list_remove( &user->entry ); free( user ); } /* return a text description of a timeout for debugging purposes */ const char *get_timeout_str( timeout_t timeout ) { static char buffer[64]; long secs, nsecs; if (!timeout) return "0"; if (timeout == TIMEOUT_INFINITE) return "infinite"; if (timeout < 0) /* relative */ { secs = -timeout / TICKS_PER_SEC; nsecs = -timeout % TICKS_PER_SEC; sprintf( buffer, "+%ld.%07ld", secs, nsecs ); } else /* absolute */ { secs = (timeout - current_time) / TICKS_PER_SEC; nsecs = (timeout - current_time) % TICKS_PER_SEC; if (nsecs < 0) { nsecs += TICKS_PER_SEC; secs--; } if (secs >= 0) sprintf( buffer, "%x%08x (+%ld.%07ld)", (unsigned int)(timeout >> 32), (unsigned int)timeout, secs, nsecs ); else sprintf( buffer, "%x%08x (-%ld.%07ld)", (unsigned int)(timeout >> 32), (unsigned int)timeout, -(secs + 1), TICKS_PER_SEC - nsecs ); } return buffer; } /****************************************************************/ /* poll support */ static struct fd **poll_users; /* users array */ static struct pollfd *pollfd; /* poll fd array */ static int nb_users; /* count of array entries actually in use */ static int active_users; /* current number of active users */ static int allocated_users; /* count of allocated entries in the array */ static struct fd **freelist; /* list of free entries in the array */ static int get_next_timeout(void); static inline void fd_poll_event( struct fd *fd, int event ) { fd->fd_ops->poll_event( fd, event ); } #ifdef USE_EPOLL static int epoll_fd = -1; static inline void init_epoll(void) { epoll_fd = epoll_create( 128 ); } /* set the events that epoll waits for on this fd; helper for set_fd_events */ static inline void set_fd_epoll_events( struct fd *fd, int user, int events ) { struct epoll_event ev; int ctl; if (epoll_fd == -1) return; if (events == -1) /* stop waiting on this fd completely */ { if (pollfd[user].fd == -1) return; /* already removed */ ctl = EPOLL_CTL_DEL; } else if (pollfd[user].fd == -1) { if (pollfd[user].events) return; /* stopped waiting on it, don't restart */ ctl = EPOLL_CTL_ADD; } else { if (pollfd[user].events == events) return; /* nothing to do */ ctl = EPOLL_CTL_MOD; } ev.events = events; memset(&ev.data, 0, sizeof(ev.data)); ev.data.u32 = user; if (epoll_ctl( epoll_fd, ctl, fd->unix_fd, &ev ) == -1) { if (errno == ENOMEM) /* not enough memory, give up on epoll */ { close( epoll_fd ); epoll_fd = -1; } else perror( "epoll_ctl" ); /* should not happen */ } } static inline void remove_epoll_user( struct fd *fd, int user ) { if (epoll_fd == -1) return; if (pollfd[user].fd != -1) { struct epoll_event dummy; epoll_ctl( epoll_fd, EPOLL_CTL_DEL, fd->unix_fd, &dummy ); } } static inline void main_loop_epoll(void) { int i, ret, timeout; struct epoll_event events[128]; assert( POLLIN == EPOLLIN ); assert( POLLOUT == EPOLLOUT ); assert( POLLERR == EPOLLERR ); assert( POLLHUP == EPOLLHUP ); if (epoll_fd == -1) return; while (active_users) { timeout = get_next_timeout(); if (!active_users) break; /* last user removed by a timeout */ if (epoll_fd == -1) break; /* an error occurred with epoll */ ret = epoll_wait( epoll_fd, events, ARRAY_SIZE( events ), timeout ); set_current_time(); /* put the events into the pollfd array first, like poll does */ for (i = 0; i < ret; i++) { int user = events[i].data.u32; pollfd[user].revents = events[i].events; } /* read events from the pollfd array, as set_fd_events may modify them */ for (i = 0; i < ret; i++) { int user = events[i].data.u32; if (pollfd[user].revents) fd_poll_event( poll_users[user], pollfd[user].revents ); } } } #elif defined(HAVE_KQUEUE) static int kqueue_fd = -1; static inline void init_epoll(void) { #ifdef __APPLE__ /* kqueue support is broken in Mac OS < 10.5 */ int mib[2]; char release[32]; size_t len = sizeof(release); mib[0] = CTL_KERN; mib[1] = KERN_OSRELEASE; if (sysctl( mib, 2, release, &len, NULL, 0 ) == -1) return; if (atoi(release) < 9) return; #endif kqueue_fd = kqueue(); } static inline void set_fd_epoll_events( struct fd *fd, int user, int events ) { struct kevent ev[2]; if (kqueue_fd == -1) return; EV_SET( &ev[0], fd->unix_fd, EVFILT_READ, 0, NOTE_LOWAT, 1, (void *)(long)user ); EV_SET( &ev[1], fd->unix_fd, EVFILT_WRITE, 0, NOTE_LOWAT, 1, (void *)(long)user ); if (events == -1) /* stop waiting on this fd completely */ { if (pollfd[user].fd == -1) return; /* already removed */ ev[0].flags |= EV_DELETE; ev[1].flags |= EV_DELETE; } else if (pollfd[user].fd == -1) { if (pollfd[user].events) return; /* stopped waiting on it, don't restart */ ev[0].flags |= EV_ADD | ((events & POLLIN) ? EV_ENABLE : EV_DISABLE); ev[1].flags |= EV_ADD | ((events & POLLOUT) ? EV_ENABLE : EV_DISABLE); } else { if (pollfd[user].events == events) return; /* nothing to do */ ev[0].flags |= (events & POLLIN) ? EV_ENABLE : EV_DISABLE; ev[1].flags |= (events & POLLOUT) ? EV_ENABLE : EV_DISABLE; } if (kevent( kqueue_fd, ev, 2, NULL, 0, NULL ) == -1) { if (errno == ENOMEM) /* not enough memory, give up on kqueue */ { close( kqueue_fd ); kqueue_fd = -1; } else perror( "kevent" ); /* should not happen */ } } static inline void remove_epoll_user( struct fd *fd, int user ) { if (kqueue_fd == -1) return; if (pollfd[user].fd != -1) { struct kevent ev[2]; EV_SET( &ev[0], fd->unix_fd, EVFILT_READ, EV_DELETE, 0, 0, 0 ); EV_SET( &ev[1], fd->unix_fd, EVFILT_WRITE, EV_DELETE, 0, 0, 0 ); kevent( kqueue_fd, ev, 2, NULL, 0, NULL ); } } static inline void main_loop_epoll(void) { int i, ret, timeout; struct kevent events[128]; if (kqueue_fd == -1) return; while (active_users) { timeout = get_next_timeout(); if (!active_users) break; /* last user removed by a timeout */ if (kqueue_fd == -1) break; /* an error occurred with kqueue */ if (timeout != -1) { struct timespec ts; ts.tv_sec = timeout / 1000; ts.tv_nsec = (timeout % 1000) * 1000000; ret = kevent( kqueue_fd, NULL, 0, events, ARRAY_SIZE( events ), &ts ); } else ret = kevent( kqueue_fd, NULL, 0, events, ARRAY_SIZE( events ), NULL ); set_current_time(); /* put the events into the pollfd array first, like poll does */ for (i = 0; i < ret; i++) { long user = (long)events[i].udata; pollfd[user].revents = 0; } for (i = 0; i < ret; i++) { long user = (long)events[i].udata; if (events[i].filter == EVFILT_READ) pollfd[user].revents |= POLLIN; else if (events[i].filter == EVFILT_WRITE) pollfd[user].revents |= POLLOUT; if (events[i].flags & EV_EOF) pollfd[user].revents |= POLLHUP; if (events[i].flags & EV_ERROR) pollfd[user].revents |= POLLERR; } /* read events from the pollfd array, as set_fd_events may modify them */ for (i = 0; i < ret; i++) { long user = (long)events[i].udata; if (pollfd[user].revents) fd_poll_event( poll_users[user], pollfd[user].revents ); pollfd[user].revents = 0; } } } #elif defined(USE_EVENT_PORTS) static int port_fd = -1; static inline void init_epoll(void) { port_fd = port_create(); } static inline void set_fd_epoll_events( struct fd *fd, int user, int events ) { int ret; if (port_fd == -1) return; if (events == -1) /* stop waiting on this fd completely */ { if (pollfd[user].fd == -1) return; /* already removed */ port_dissociate( port_fd, PORT_SOURCE_FD, fd->unix_fd ); } else if (pollfd[user].fd == -1) { if (pollfd[user].events) return; /* stopped waiting on it, don't restart */ ret = port_associate( port_fd, PORT_SOURCE_FD, fd->unix_fd, events, (void *)user ); } else { if (pollfd[user].events == events) return; /* nothing to do */ ret = port_associate( port_fd, PORT_SOURCE_FD, fd->unix_fd, events, (void *)user ); } if (ret == -1) { if (errno == ENOMEM) /* not enough memory, give up on port_associate */ { close( port_fd ); port_fd = -1; } else perror( "port_associate" ); /* should not happen */ } } static inline void remove_epoll_user( struct fd *fd, int user ) { if (port_fd == -1) return; if (pollfd[user].fd != -1) { port_dissociate( port_fd, PORT_SOURCE_FD, fd->unix_fd ); } } static inline void main_loop_epoll(void) { int i, nget, ret, timeout; port_event_t events[128]; if (port_fd == -1) return; while (active_users) { timeout = get_next_timeout(); nget = 1; if (!active_users) break; /* last user removed by a timeout */ if (port_fd == -1) break; /* an error occurred with event completion */ if (timeout != -1) { struct timespec ts; ts.tv_sec = timeout / 1000; ts.tv_nsec = (timeout % 1000) * 1000000; ret = port_getn( port_fd, events, ARRAY_SIZE( events ), &nget, &ts ); } else ret = port_getn( port_fd, events, ARRAY_SIZE( events ), &nget, NULL ); if (ret == -1) break; /* an error occurred with event completion */ set_current_time(); /* put the events into the pollfd array first, like poll does */ for (i = 0; i < nget; i++) { long user = (long)events[i].portev_user; pollfd[user].revents = events[i].portev_events; } /* read events from the pollfd array, as set_fd_events may modify them */ for (i = 0; i < nget; i++) { long user = (long)events[i].portev_user; if (pollfd[user].revents) fd_poll_event( poll_users[user], pollfd[user].revents ); /* if we are still interested, reassociate the fd */ if (pollfd[user].fd != -1) { port_associate( port_fd, PORT_SOURCE_FD, pollfd[user].fd, pollfd[user].events, (void *)user ); } } } } #else /* HAVE_KQUEUE */ static inline void init_epoll(void) { } static inline void set_fd_epoll_events( struct fd *fd, int user, int events ) { } static inline void remove_epoll_user( struct fd *fd, int user ) { } static inline void main_loop_epoll(void) { } #endif /* USE_EPOLL */ /* add a user in the poll array and return its index, or -1 on failure */ static int add_poll_user( struct fd *fd ) { int ret; if (freelist) { ret = freelist - poll_users; freelist = (struct fd **)poll_users[ret]; } else { if (nb_users == allocated_users) { struct fd **newusers; struct pollfd *newpoll; int new_count = allocated_users ? (allocated_users + allocated_users / 2) : 16; if (!(newusers = realloc( poll_users, new_count * sizeof(*poll_users) ))) return -1; if (!(newpoll = realloc( pollfd, new_count * sizeof(*pollfd) ))) { if (allocated_users) poll_users = newusers; else free( newusers ); return -1; } poll_users = newusers; pollfd = newpoll; if (!allocated_users) init_epoll(); allocated_users = new_count; } ret = nb_users++; } pollfd[ret].fd = -1; pollfd[ret].events = 0; pollfd[ret].revents = 0; poll_users[ret] = fd; active_users++; return ret; } /* remove a user from the poll list */ static void remove_poll_user( struct fd *fd, int user ) { assert( user >= 0 ); assert( poll_users[user] == fd ); remove_epoll_user( fd, user ); pollfd[user].fd = -1; pollfd[user].events = 0; pollfd[user].revents = 0; poll_users[user] = (struct fd *)freelist; freelist = &poll_users[user]; active_users--; } /* process pending timeouts and return the time until the next timeout, in milliseconds */ static int get_next_timeout(void) { int ret = user_shared_data ? user_shared_data_timeout : -1; if (!list_empty( &abs_timeout_list ) || !list_empty( &rel_timeout_list )) { struct list expired_list, *ptr; /* first remove all expired timers from the list */ list_init( &expired_list ); while ((ptr = list_head( &abs_timeout_list )) != NULL) { struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry ); if (timeout->when <= current_time) { list_remove( &timeout->entry ); list_add_tail( &expired_list, &timeout->entry ); } else break; } while ((ptr = list_head( &rel_timeout_list )) != NULL) { struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry ); if (-timeout->when <= monotonic_time) { list_remove( &timeout->entry ); list_add_tail( &expired_list, &timeout->entry ); } else break; } /* now call the callback for all the removed timers */ while ((ptr = list_head( &expired_list )) != NULL) { struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry ); list_remove( &timeout->entry ); timeout->callback( timeout->private ); free( timeout ); } if ((ptr = list_head( &abs_timeout_list )) != NULL) { struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry ); timeout_t diff = (timeout->when - current_time + 9999) / 10000; if (diff > INT_MAX) diff = INT_MAX; else if (diff < 0) diff = 0; if (ret == -1 || diff < ret) ret = diff; } if ((ptr = list_head( &rel_timeout_list )) != NULL) { struct timeout_user *timeout = LIST_ENTRY( ptr, struct timeout_user, entry ); timeout_t diff = (-timeout->when - monotonic_time + 9999) / 10000; if (diff > INT_MAX) diff = INT_MAX; else if (diff < 0) diff = 0; if (ret == -1 || diff < ret) ret = diff; } } return ret; } /* server main poll() loop */ void main_loop(void) { int i, ret, timeout; set_current_time(); server_start_time = current_time; main_loop_epoll(); /* fall through to normal poll loop */ while (active_users) { timeout = get_next_timeout(); if (!active_users) break; /* last user removed by a timeout */ ret = poll( pollfd, nb_users, timeout ); set_current_time(); if (ret > 0) { for (i = 0; i < nb_users; i++) { if (pollfd[i].revents) { fd_poll_event( poll_users[i], pollfd[i].revents ); if (!--ret) break; } } } } } /****************************************************************/ /* device functions */ static struct list device_hash[DEVICE_HASH_SIZE]; static int is_device_removable( dev_t dev, int unix_fd ) { #if defined(linux) && defined(HAVE_FSTATFS) struct statfs stfs; /* check for floppy disk */ if (major(dev) == FLOPPY_MAJOR) return 1; if (fstatfs( unix_fd, &stfs ) == -1) return 0; return (stfs.f_type == 0x9660 || /* iso9660 */ stfs.f_type == 0x9fa1 || /* supermount */ stfs.f_type == 0x15013346); /* udf */ #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) || defined(__APPLE__) struct statfs stfs; if (fstatfs( unix_fd, &stfs ) == -1) return 0; return (!strcmp("cd9660", stfs.f_fstypename) || !strcmp("udf", stfs.f_fstypename)); #elif defined(__NetBSD__) struct statvfs stfs; if (fstatvfs( unix_fd, &stfs ) == -1) return 0; return (!strcmp("cd9660", stfs.f_fstypename) || !strcmp("udf", stfs.f_fstypename)); #elif defined(sun) # include <sys/dkio.h> # include <sys/vtoc.h> struct dk_cinfo dkinf; if (ioctl( unix_fd, DKIOCINFO, &dkinf ) == -1) return 0; return (dkinf.dki_ctype == DKC_CDROM || dkinf.dki_ctype == DKC_NCRFLOPPY || dkinf.dki_ctype == DKC_SMSFLOPPY || dkinf.dki_ctype == DKC_INTEL82072 || dkinf.dki_ctype == DKC_INTEL82077); #else return 0; #endif } /* retrieve the device object for a given fd, creating it if needed */ static struct device *get_device( dev_t dev, int unix_fd ) { struct device *device; unsigned int i, hash = dev % DEVICE_HASH_SIZE; if (device_hash[hash].next) { LIST_FOR_EACH_ENTRY( device, &device_hash[hash], struct device, entry ) if (device->dev == dev) return (struct device *)grab_object( device ); } else list_init( &device_hash[hash] ); /* not found, create it */ if (unix_fd == -1) return NULL; if ((device = alloc_object( &device_ops ))) { device->dev = dev; device->removable = is_device_removable( dev, unix_fd ); for (i = 0; i < INODE_HASH_SIZE; i++) list_init( &device->inode_hash[i] ); list_add_head( &device_hash[hash], &device->entry ); } return device; } static void device_dump( struct object *obj, int verbose ) { struct device *device = (struct device *)obj; fprintf( stderr, "Device dev=" ); DUMP_LONG_LONG( device->dev ); fprintf( stderr, "\n" ); } static void device_destroy( struct object *obj ) { struct device *device = (struct device *)obj; unsigned int i; for (i = 0; i < INODE_HASH_SIZE; i++) assert( list_empty(&device->inode_hash[i]) ); list_remove( &device->entry ); /* remove it from the hash table */ } /****************************************************************/ /* inode functions */ /* close all pending file descriptors in the closed list */ static void inode_close_pending( struct inode *inode, int keep_unlinks ) { struct list *ptr = list_head( &inode->closed ); while (ptr) { struct closed_fd *fd = LIST_ENTRY( ptr, struct closed_fd, entry ); struct list *next = list_next( &inode->closed, ptr ); if (fd->unix_fd != -1) { close( fd->unix_fd ); fd->unix_fd = -1; } if (!keep_unlinks || !fd->unlink) /* get rid of it unless there's an unlink pending on that file */ { list_remove( ptr ); free( fd->unix_name ); free( fd ); } ptr = next; } } static void inode_dump( struct object *obj, int verbose ) { struct inode *inode = (struct inode *)obj; fprintf( stderr, "Inode device=%p ino=", inode->device ); DUMP_LONG_LONG( inode->ino ); fprintf( stderr, "\n" ); } static void inode_destroy( struct object *obj ) { struct inode *inode = (struct inode *)obj; struct list *ptr; assert( list_empty(&inode->open) ); assert( list_empty(&inode->locks) ); list_remove( &inode->entry ); while ((ptr = list_head( &inode->closed ))) { struct closed_fd *fd = LIST_ENTRY( ptr, struct closed_fd, entry ); list_remove( ptr ); if (fd->unix_fd != -1) close( fd->unix_fd ); if (fd->unlink) { /* make sure it is still the same file */ struct stat st; if (!stat( fd->unix_name, &st ) && st.st_dev == inode->device->dev && st.st_ino == inode->ino) { if (S_ISDIR(st.st_mode)) rmdir( fd->unix_name ); else unlink( fd->unix_name ); } } free( fd->unix_name ); free( fd ); } release_object( inode->device ); } /* retrieve the inode object for a given fd, creating it if needed */ static struct inode *get_inode( dev_t dev, ino_t ino, int unix_fd ) { struct device *device; struct inode *inode; unsigned int hash = ino % INODE_HASH_SIZE; if (!(device = get_device( dev, unix_fd ))) return NULL; LIST_FOR_EACH_ENTRY( inode, &device->inode_hash[hash], struct inode, entry ) { if (inode->ino == ino) { release_object( device ); return (struct inode *)grab_object( inode ); } } /* not found, create it */ if ((inode = alloc_object( &inode_ops ))) { inode->device = device; inode->ino = ino; list_init( &inode->open ); list_init( &inode->locks ); list_init( &inode->closed ); list_add_head( &device->inode_hash[hash], &inode->entry ); } else release_object( device ); return inode; } /* add fd to the inode list of file descriptors to close */ static void inode_add_closed_fd( struct inode *inode, struct closed_fd *fd ) { if (!list_empty( &inode->locks )) { list_add_head( &inode->closed, &fd->entry ); } else if (fd->unlink) /* close the fd but keep the structure around for unlink */ { if (fd->unix_fd != -1) close( fd->unix_fd ); fd->unix_fd = -1; list_add_head( &inode->closed, &fd->entry ); } else /* no locks on this inode and no unlink, get rid of the fd */ { if (fd->unix_fd != -1) close( fd->unix_fd ); free( fd->unix_name ); free( fd ); } } /****************************************************************/ /* file lock functions */ static void file_lock_dump( struct object *obj, int verbose ) { struct file_lock *lock = (struct file_lock *)obj; fprintf( stderr, "Lock %s fd=%p proc=%p start=", lock->shared ? "shared" : "excl", lock->fd, lock->process ); DUMP_LONG_LONG( lock->start ); fprintf( stderr, " end=" ); DUMP_LONG_LONG( lock->end ); fprintf( stderr, "\n" ); } static int file_lock_signaled( struct object *obj, struct wait_queue_entry *entry ) { struct file_lock *lock = (struct file_lock *)obj; /* lock is signaled if it has lost its owner */ return !lock->process; } /* set (or remove) a Unix lock if possible for the given range */ static int set_unix_lock( struct fd *fd, file_pos_t start, file_pos_t end, int type ) { struct flock fl; if (!fd->fs_locks) return 1; /* no fs locks possible for this fd */ for (;;) { if (start == end) return 1; /* can't set zero-byte lock */ if (start > max_unix_offset) return 1; /* ignore it */ fl.l_type = type; fl.l_whence = SEEK_SET; fl.l_start = start; if (!end || end > max_unix_offset) fl.l_len = 0; else fl.l_len = end - start; if (fcntl( fd->unix_fd, F_SETLK, &fl ) != -1) return 1; switch(errno) { case EACCES: /* check whether locks work at all on this file system */ if (fcntl( fd->unix_fd, F_GETLK, &fl ) != -1) { set_error( STATUS_FILE_LOCK_CONFLICT ); return 0; } /* fall through */ case EIO: case ENOLCK: case ENOTSUP: /* no locking on this fs, just ignore it */ fd->fs_locks = 0; return 1; case EAGAIN: set_error( STATUS_FILE_LOCK_CONFLICT ); return 0; case EBADF: /* this can happen if we try to set a write lock on a read-only file */ /* try to at least grab a read lock */ if (fl.l_type == F_WRLCK) { type = F_RDLCK; break; /* retry */ } set_error( STATUS_ACCESS_DENIED ); return 0; #ifdef EOVERFLOW case EOVERFLOW: #endif case EINVAL: /* this can happen if off_t is 64-bit but the kernel only supports 32-bit */ /* in that case we shrink the limit and retry */ if (max_unix_offset > INT_MAX) { max_unix_offset = INT_MAX; break; /* retry */ } /* fall through */ default: file_set_error(); return 0; } } } /* check if interval [start;end) overlaps the lock */ static inline int lock_overlaps( struct file_lock *lock, file_pos_t start, file_pos_t end ) { if (lock->end && start >= lock->end) return 0; if (end && lock->start >= end) return 0; return 1; } /* remove Unix locks for all bytes in the specified area that are no longer locked */ static void remove_unix_locks( struct fd *fd, file_pos_t start, file_pos_t end ) { struct hole { struct hole *next; struct hole *prev; file_pos_t start; file_pos_t end; } *first, *cur, *next, *buffer; struct list *ptr; int count = 0; if (!fd->inode) return; if (!fd->fs_locks) return; if (start == end || start > max_unix_offset) return; if (!end || end > max_unix_offset) end = max_unix_offset + 1; /* count the number of locks overlapping the specified area */ LIST_FOR_EACH( ptr, &fd->inode->locks ) { struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, inode_entry ); if (lock->start == lock->end) continue; if (lock_overlaps( lock, start, end )) count++; } if (!count) /* no locks at all, we can unlock everything */ { set_unix_lock( fd, start, end, F_UNLCK ); return; } /* allocate space for the list of holes */ /* max. number of holes is number of locks + 1 */ if (!(buffer = malloc( sizeof(*buffer) * (count+1) ))) return; first = buffer; first->next = NULL; first->prev = NULL; first->start = start; first->end = end; next = first + 1; /* build a sorted list of unlocked holes in the specified area */ LIST_FOR_EACH( ptr, &fd->inode->locks ) { struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, inode_entry ); if (lock->start == lock->end) continue; if (!lock_overlaps( lock, start, end )) continue; /* go through all the holes touched by this lock */ for (cur = first; cur; cur = cur->next) { if (cur->end <= lock->start) continue; /* hole is before start of lock */ if (lock->end && cur->start >= lock->end) break; /* hole is after end of lock */ /* now we know that lock is overlapping hole */ if (cur->start >= lock->start) /* lock starts before hole, shrink from start */ { cur->start = lock->end; if (cur->start && cur->start < cur->end) break; /* done with this lock */ /* now hole is empty, remove it */ if (cur->next) cur->next->prev = cur->prev; if (cur->prev) cur->prev->next = cur->next; else if (!(first = cur->next)) goto done; /* no more holes at all */ } else if (!lock->end || cur->end <= lock->end) /* lock larger than hole, shrink from end */ { cur->end = lock->start; assert( cur->start < cur->end ); } else /* lock is in the middle of hole, split hole in two */ { next->prev = cur; next->next = cur->next; cur->next = next; next->start = lock->end; next->end = cur->end; cur->end = lock->start; assert( next->start < next->end ); assert( cur->end < next->start ); next++; break; /* done with this lock */ } } } /* clear Unix locks for all the holes */ for (cur = first; cur; cur = cur->next) set_unix_lock( fd, cur->start, cur->end, F_UNLCK ); done: free( buffer ); } /* create a new lock on a fd */ static struct file_lock *add_lock( struct fd *fd, int shared, file_pos_t start, file_pos_t end ) { struct file_lock *lock; if (!(lock = alloc_object( &file_lock_ops ))) return NULL; lock->shared = shared; lock->start = start; lock->end = end; lock->fd = fd; lock->process = current->process; /* now try to set a Unix lock */ if (!set_unix_lock( lock->fd, lock->start, lock->end, lock->shared ? F_RDLCK : F_WRLCK )) { release_object( lock ); return NULL; } list_add_tail( &fd->locks, &lock->fd_entry ); list_add_tail( &fd->inode->locks, &lock->inode_entry ); list_add_tail( &lock->process->locks, &lock->proc_entry ); return lock; } /* remove an existing lock */ static void remove_lock( struct file_lock *lock, int remove_unix ) { struct inode *inode = lock->fd->inode; list_remove( &lock->fd_entry ); list_remove( &lock->inode_entry ); list_remove( &lock->proc_entry ); if (remove_unix) remove_unix_locks( lock->fd, lock->start, lock->end ); if (list_empty( &inode->locks )) inode_close_pending( inode, 1 ); lock->process = NULL; wake_up( &lock->obj, 0 ); release_object( lock ); } /* remove all locks owned by a given process */ void remove_process_locks( struct process *process ) { struct list *ptr; while ((ptr = list_head( &process->locks ))) { struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, proc_entry ); remove_lock( lock, 1 ); /* this removes it from the list */ } } /* remove all locks on a given fd */ static void remove_fd_locks( struct fd *fd ) { file_pos_t start = FILE_POS_T_MAX, end = 0; struct list *ptr; while ((ptr = list_head( &fd->locks ))) { struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, fd_entry ); if (lock->start < start) start = lock->start; if (!lock->end || lock->end > end) end = lock->end - 1; remove_lock( lock, 0 ); } if (start < end) remove_unix_locks( fd, start, end + 1 ); } /* add a lock on an fd */ /* returns handle to wait on */ obj_handle_t lock_fd( struct fd *fd, file_pos_t start, file_pos_t count, int shared, int wait ) { struct list *ptr; file_pos_t end = start + count; if (!fd->inode) /* not a regular file */ { set_error( STATUS_INVALID_DEVICE_REQUEST ); return 0; } /* don't allow wrapping locks */ if (end && end < start) { set_error( STATUS_INVALID_PARAMETER ); return 0; } /* check if another lock on that file overlaps the area */ LIST_FOR_EACH( ptr, &fd->inode->locks ) { struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, inode_entry ); if (!lock_overlaps( lock, start, end )) continue; if (shared && (lock->shared || lock->fd == fd)) continue; /* found one */ if (!wait) { set_error( STATUS_FILE_LOCK_CONFLICT ); return 0; } set_error( STATUS_PENDING ); return alloc_handle( current->process, lock, SYNCHRONIZE, 0 ); } /* not found, add it */ if (add_lock( fd, shared, start, end )) return 0; if (get_error() == STATUS_FILE_LOCK_CONFLICT) { /* Unix lock conflict -> tell client to wait and retry */ if (wait) set_error( STATUS_PENDING ); } return 0; } /* remove a lock on an fd */ void unlock_fd( struct fd *fd, file_pos_t start, file_pos_t count ) { struct list *ptr; file_pos_t end = start + count; /* find an existing lock with the exact same parameters */ LIST_FOR_EACH( ptr, &fd->locks ) { struct file_lock *lock = LIST_ENTRY( ptr, struct file_lock, fd_entry ); if ((lock->start == start) && (lock->end == end)) { remove_lock( lock, 1 ); return; } } set_error( STATUS_FILE_LOCK_CONFLICT ); } /****************************************************************/ /* file descriptor functions */ static void fd_dump( struct object *obj, int verbose ) { struct fd *fd = (struct fd *)obj; fprintf( stderr, "Fd unix_fd=%d user=%p options=%08x", fd->unix_fd, fd->user, fd->options ); if (fd->inode) fprintf( stderr, " inode=%p unlink=%d", fd->inode, fd->closed->unlink ); fprintf( stderr, "\n" ); } static void fd_destroy( struct object *obj ) { struct fd *fd = (struct fd *)obj; free_async_queue( &fd->read_q ); free_async_queue( &fd->write_q ); free_async_queue( &fd->wait_q ); if (fd->completion) release_object( fd->completion ); remove_fd_locks( fd ); list_remove( &fd->inode_entry ); if (fd->poll_index != -1) remove_poll_user( fd, fd->poll_index ); free( fd->nt_name ); if (fd->inode) { inode_add_closed_fd( fd->inode, fd->closed ); release_object( fd->inode ); } else /* no inode, close it right away */ { if (fd->unix_fd != -1) close( fd->unix_fd ); free( fd->unix_name ); } } /* check if the desired access is possible without violating */ /* the sharing mode of other opens of the same file */ static unsigned int check_sharing( struct fd *fd, unsigned int access, unsigned int sharing, unsigned int open_flags, unsigned int options ) { /* only a few access bits are meaningful wrt sharing */ const unsigned int read_access = FILE_READ_DATA | FILE_EXECUTE; const unsigned int write_access = FILE_WRITE_DATA | FILE_APPEND_DATA; const unsigned int all_access = read_access | write_access | DELETE; unsigned int existing_sharing = FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE; unsigned int existing_access = 0; struct list *ptr; fd->access = access; fd->sharing = sharing; LIST_FOR_EACH( ptr, &fd->inode->open ) { struct fd *fd_ptr = LIST_ENTRY( ptr, struct fd, inode_entry ); if (fd_ptr != fd) { /* if access mode is 0, sharing mode is ignored */ if (fd_ptr->access & all_access) existing_sharing &= fd_ptr->sharing; existing_access |= fd_ptr->access; } } if (((access & read_access) && !(existing_sharing & FILE_SHARE_READ)) || ((access & write_access) && !(existing_sharing & FILE_SHARE_WRITE)) || ((access & DELETE) && !(existing_sharing & FILE_SHARE_DELETE))) return STATUS_SHARING_VIOLATION; if (((existing_access & FILE_MAPPING_WRITE) && !(sharing & FILE_SHARE_WRITE)) || ((existing_access & FILE_MAPPING_IMAGE) && (access & FILE_WRITE_DATA))) return STATUS_SHARING_VIOLATION; if ((existing_access & FILE_MAPPING_IMAGE) && (options & FILE_DELETE_ON_CLOSE)) return STATUS_CANNOT_DELETE; if ((existing_access & FILE_MAPPING_ACCESS) && (open_flags & O_TRUNC)) return STATUS_USER_MAPPED_FILE; if (!(access & all_access)) return 0; /* if access mode is 0, sharing mode is ignored (except for mappings) */ if (((existing_access & read_access) && !(sharing & FILE_SHARE_READ)) || ((existing_access & write_access) && !(sharing & FILE_SHARE_WRITE)) || ((existing_access & DELETE) && !(sharing & FILE_SHARE_DELETE))) return STATUS_SHARING_VIOLATION; return 0; } /* set the events that select waits for on this fd */ void set_fd_events( struct fd *fd, int events ) { int user = fd->poll_index; assert( poll_users[user] == fd ); set_fd_epoll_events( fd, user, events ); if (events == -1) /* stop waiting on this fd completely */ { pollfd[user].fd = -1; pollfd[user].events = POLLERR; pollfd[user].revents = 0; } else if (pollfd[user].fd != -1 || !pollfd[user].events) { pollfd[user].fd = fd->unix_fd; pollfd[user].events = events; } } /* prepare an fd for unmounting its corresponding device */ static inline void unmount_fd( struct fd *fd ) { assert( fd->inode ); async_wake_up( &fd->read_q, STATUS_VOLUME_DISMOUNTED ); async_wake_up( &fd->write_q, STATUS_VOLUME_DISMOUNTED ); if (fd->poll_index != -1) set_fd_events( fd, -1 ); if (fd->unix_fd != -1) close( fd->unix_fd ); fd->unix_fd = -1; fd->no_fd_status = STATUS_VOLUME_DISMOUNTED; fd->closed->unix_fd = -1; fd->closed->unlink = 0; /* stop using Unix locks on this fd (existing locks have been removed by close) */ fd->fs_locks = 0; } /* allocate an fd object, without setting the unix fd yet */ static struct fd *alloc_fd_object(void) { struct fd *fd = alloc_object( &fd_ops ); if (!fd) return NULL; fd->fd_ops = NULL; fd->user = NULL; fd->inode = NULL; fd->closed = NULL; fd->access = 0; fd->options = 0; fd->sharing = 0; fd->unix_fd = -1; fd->unix_name = NULL; fd->nt_name = NULL; fd->nt_namelen = 0; fd->cacheable = 0; fd->signaled = 1; fd->fs_locks = 1; fd->poll_index = -1; fd->completion = NULL; fd->comp_flags = 0; init_async_queue( &fd->read_q ); init_async_queue( &fd->write_q ); init_async_queue( &fd->wait_q ); list_init( &fd->inode_entry ); list_init( &fd->locks ); if ((fd->poll_index = add_poll_user( fd )) == -1) { release_object( fd ); return NULL; } return fd; } /* allocate a pseudo fd object, for objects that need to behave like files but don't have a unix fd */ struct fd *alloc_pseudo_fd( const struct fd_ops *fd_user_ops, struct object *user, unsigned int options ) { struct fd *fd = alloc_object( &fd_ops ); if (!fd) return NULL; fd->fd_ops = fd_user_ops; fd->user = user; fd->inode = NULL; fd->closed = NULL; fd->access = 0; fd->options = options; fd->sharing = 0; fd->unix_name = NULL; fd->nt_name = NULL; fd->nt_namelen = 0; fd->unix_fd = -1; fd->cacheable = 0; fd->signaled = 0; fd->fs_locks = 0; fd->poll_index = -1; fd->completion = NULL; fd->comp_flags = 0; fd->no_fd_status = STATUS_BAD_DEVICE_TYPE; init_async_queue( &fd->read_q ); init_async_queue( &fd->write_q ); init_async_queue( &fd->wait_q ); list_init( &fd->inode_entry ); list_init( &fd->locks ); return fd; } /* duplicate an fd object for a different user */ struct fd *dup_fd_object( struct fd *orig, unsigned int access, unsigned int sharing, unsigned int options ) { unsigned int err; struct fd *fd = alloc_fd_object(); if (!fd) return NULL; fd->options = options; fd->cacheable = orig->cacheable; if (orig->unix_name) { if (!(fd->unix_name = mem_alloc( strlen(orig->unix_name) + 1 ))) goto failed; strcpy( fd->unix_name, orig->unix_name ); } if (orig->nt_namelen) { if (!(fd->nt_name = memdup( orig->nt_name, orig->nt_namelen ))) goto failed; fd->nt_namelen = orig->nt_namelen; } if (orig->inode) { struct closed_fd *closed = mem_alloc( sizeof(*closed) ); if (!closed) goto failed; if ((fd->unix_fd = dup( orig->unix_fd )) == -1) { file_set_error(); free( closed ); goto failed; } closed->unix_fd = fd->unix_fd; closed->unlink = 0; closed->unix_name = fd->unix_name; fd->closed = closed; fd->inode = (struct inode *)grab_object( orig->inode ); list_add_head( &fd->inode->open, &fd->inode_entry ); if ((err = check_sharing( fd, access, sharing, 0, options ))) { set_error( err ); goto failed; } } else if ((fd->unix_fd = dup( orig->unix_fd )) == -1) { file_set_error(); goto failed; } return fd; failed: release_object( fd ); return NULL; } /* find an existing fd object that can be reused for a mapping */ struct fd *get_fd_object_for_mapping( struct fd *fd, unsigned int access, unsigned int sharing ) { struct fd *fd_ptr; if (!fd->inode) return NULL; LIST_FOR_EACH_ENTRY( fd_ptr, &fd->inode->open, struct fd, inode_entry ) if (fd_ptr->access == access && fd_ptr->sharing == sharing) return (struct fd *)grab_object( fd_ptr ); return NULL; } /* sets the user of an fd that previously had no user */ void set_fd_user( struct fd *fd, const struct fd_ops *user_ops, struct object *user ) { assert( fd->fd_ops == NULL ); fd->fd_ops = user_ops; fd->user = user; } char *dup_fd_name( struct fd *root, const char *name ) { char *ret; if (!root) return strdup( name ); if (!root->unix_name) return NULL; /* skip . prefix */ if (name[0] == '.' && (!name[1] || name[1] == '/')) name++; if ((ret = malloc( strlen(root->unix_name) + strlen(name) + 2 ))) { strcpy( ret, root->unix_name ); if (name[0] && name[0] != '/') strcat( ret, "/" ); strcat( ret, name ); } return ret; } static WCHAR *dup_nt_name( struct fd *root, struct unicode_str name, data_size_t *len ) { WCHAR *ret; data_size_t retlen; if (!root) { *len = name.len; if (!name.len) return NULL; return memdup( name.str, name.len ); } if (!root->nt_namelen) return NULL; retlen = root->nt_namelen; /* skip . prefix */ if (name.len && name.str[0] == '.' && (name.len == sizeof(WCHAR) || name.str[1] == '\\')) { name.str++; name.len -= sizeof(WCHAR); } if ((ret = malloc( retlen + name.len + 1 ))) { memcpy( ret, root->nt_name, root->nt_namelen ); if (name.len && name.str[0] != '\\' && root->nt_namelen && root->nt_name[root->nt_namelen / sizeof(WCHAR) - 1] != '\\') { ret[retlen / sizeof(WCHAR)] = '\\'; retlen += sizeof(WCHAR); } memcpy( ret + retlen / sizeof(WCHAR), name.str, name.len ); *len = retlen + name.len; } return ret; } void get_nt_name( struct fd *fd, struct unicode_str *name ) { name->str = fd->nt_name; name->len = fd->nt_namelen; } /* open() wrapper that returns a struct fd with no fd user set */ struct fd *open_fd( struct fd *root, const char *name, struct unicode_str nt_name, int flags, mode_t *mode, unsigned int access, unsigned int sharing, unsigned int options ) { struct stat st; struct closed_fd *closed_fd; struct fd *fd; int root_fd = -1; int rw_mode; char *path; if (((options & FILE_DELETE_ON_CLOSE) && !(access & DELETE)) || ((options & FILE_DIRECTORY_FILE) && (flags & O_TRUNC))) { set_error( STATUS_INVALID_PARAMETER ); return NULL; } if (!(fd = alloc_fd_object())) return NULL; fd->options = options; if (!(closed_fd = mem_alloc( sizeof(*closed_fd) ))) { release_object( fd ); return NULL; } if (root) { if ((root_fd = get_unix_fd( root )) == -1) goto error; if (fchdir( root_fd ) == -1) { file_set_error(); root_fd = -1; goto error; } } /* create the directory if needed */ if ((options & FILE_DIRECTORY_FILE) && (flags & O_CREAT)) { if (mkdir( name, *mode ) == -1) { if (errno != EEXIST || (flags & O_EXCL)) { file_set_error(); goto error; } } flags &= ~(O_CREAT | O_EXCL | O_TRUNC); } if ((access & FILE_UNIX_WRITE_ACCESS) && !(options & FILE_DIRECTORY_FILE)) { if (access & FILE_UNIX_READ_ACCESS) rw_mode = O_RDWR; else rw_mode = O_WRONLY; } else rw_mode = O_RDONLY; if ((fd->unix_fd = open( name, rw_mode | (flags & ~O_TRUNC), *mode )) == -1) { /* if we tried to open a directory for write access, retry read-only */ if (errno == EISDIR) { if ((access & FILE_UNIX_WRITE_ACCESS) || (flags & O_CREAT)) fd->unix_fd = open( name, O_RDONLY | (flags & ~(O_TRUNC | O_CREAT | O_EXCL)), *mode ); } if (fd->unix_fd == -1) { file_set_error(); goto error; } } fd->nt_name = dup_nt_name( root, nt_name, &fd->nt_namelen ); fd->unix_name = NULL; if ((path = dup_fd_name( root, name ))) { fd->unix_name = realpath( path, NULL ); free( path ); } closed_fd->unix_fd = fd->unix_fd; closed_fd->unlink = 0; closed_fd->unix_name = fd->unix_name; fstat( fd->unix_fd, &st ); *mode = st.st_mode; /* only bother with an inode for normal files and directories */ if (S_ISREG(st.st_mode) || S_ISDIR(st.st_mode)) { unsigned int err; struct inode *inode = get_inode( st.st_dev, st.st_ino, fd->unix_fd ); if (!inode) { /* we can close the fd because there are no others open on the same file, * otherwise we wouldn't have failed to allocate a new inode */ goto error; } fd->inode = inode; fd->closed = closed_fd; fd->cacheable = !inode->device->removable; list_add_head( &inode->open, &fd->inode_entry ); closed_fd = NULL; /* check directory options */ if ((options & FILE_DIRECTORY_FILE) && !S_ISDIR(st.st_mode)) { set_error( STATUS_NOT_A_DIRECTORY ); goto error; } if ((options & FILE_NON_DIRECTORY_FILE) && S_ISDIR(st.st_mode)) { set_error( STATUS_FILE_IS_A_DIRECTORY ); goto error; } if ((err = check_sharing( fd, access, sharing, flags, options ))) { set_error( err ); goto error; } /* can't unlink files if we don't have permission to access */ if ((options & FILE_DELETE_ON_CLOSE) && !(flags & O_CREAT) && !(st.st_mode & (S_IWUSR | S_IWGRP | S_IWOTH))) { set_error( STATUS_CANNOT_DELETE ); goto error; } fd->closed->unlink = (options & FILE_DELETE_ON_CLOSE) ? -1 : 0; if (flags & O_TRUNC) { if (S_ISDIR(st.st_mode)) { set_error( STATUS_OBJECT_NAME_COLLISION ); goto error; } ftruncate( fd->unix_fd, 0 ); } } else /* special file */ { if (options & FILE_DELETE_ON_CLOSE) /* we can't unlink special files */ { set_error( STATUS_INVALID_PARAMETER ); goto error; } free( closed_fd ); fd->cacheable = 1; } if (root_fd != -1) fchdir( server_dir_fd ); /* go back to the server dir */ return fd; error: release_object( fd ); free( closed_fd ); if (root_fd != -1) fchdir( server_dir_fd ); /* go back to the server dir */ return NULL; } /* create an fd for an anonymous file */ /* if the function fails the unix fd is closed */ struct fd *create_anonymous_fd( const struct fd_ops *fd_user_ops, int unix_fd, struct object *user, unsigned int options ) { struct fd *fd = alloc_fd_object(); if (fd) { set_fd_user( fd, fd_user_ops, user ); fd->unix_fd = unix_fd; fd->options = options; return fd; } close( unix_fd ); return NULL; } /* retrieve the object that is using an fd */ void *get_fd_user( struct fd *fd ) { return fd->user; } /* retrieve the opening options for the fd */ unsigned int get_fd_options( struct fd *fd ) { return fd->options; } /* check if fd is in overlapped mode */ int is_fd_overlapped( struct fd *fd ) { return !(fd->options & (FILE_SYNCHRONOUS_IO_ALERT | FILE_SYNCHRONOUS_IO_NONALERT)); } /* retrieve the unix fd for an object */ int get_unix_fd( struct fd *fd ) { if (fd->unix_fd == -1) set_error( fd->no_fd_status ); return fd->unix_fd; } /* check if two file descriptors point to the same file */ int is_same_file_fd( struct fd *fd1, struct fd *fd2 ) { return fd1->inode == fd2->inode; } /* allow the fd to be cached (can't be reset once set) */ void allow_fd_caching( struct fd *fd ) { fd->cacheable = 1; } /* check if fd is on a removable device */ int is_fd_removable( struct fd *fd ) { return (fd->inode && fd->inode->device->removable); } /* set or clear the fd signaled state */ void set_fd_signaled( struct fd *fd, int signaled ) { if (fd->comp_flags & FILE_SKIP_SET_EVENT_ON_HANDLE) return; fd->signaled = signaled; if (signaled) wake_up( fd->user, 0 ); } /* handler for close_handle that refuses to close fd-associated handles in other processes */ int fd_close_handle( struct object *obj, struct process *process, obj_handle_t handle ) { return (!current || current->process == process); } /* check if events are pending and if yes return which one(s) */ int check_fd_events( struct fd *fd, int events ) { struct pollfd pfd; if (fd->unix_fd == -1) return POLLERR; if (fd->inode) return events; /* regular files are always signaled */ pfd.fd = fd->unix_fd; pfd.events = events; if (poll( &pfd, 1, 0 ) <= 0) return 0; return pfd.revents; } /* default signaled() routine for objects that poll() on an fd */ int default_fd_signaled( struct object *obj, struct wait_queue_entry *entry ) { struct fd *fd = get_obj_fd( obj ); int ret = fd->signaled; release_object( fd ); return ret; } int default_fd_get_poll_events( struct fd *fd ) { int events = 0; if (async_waiting( &fd->read_q )) events |= POLLIN; if (async_waiting( &fd->write_q )) events |= POLLOUT; return events; } /* default handler for poll() events */ void default_poll_event( struct fd *fd, int event ) { if (event & (POLLIN | POLLERR | POLLHUP)) async_wake_up( &fd->read_q, STATUS_ALERTED ); if (event & (POLLOUT | POLLERR | POLLHUP)) async_wake_up( &fd->write_q, STATUS_ALERTED ); /* if an error occurred, stop polling this fd to avoid busy-looping */ if (event & (POLLERR | POLLHUP)) set_fd_events( fd, -1 ); else if (!fd->inode) set_fd_events( fd, fd->fd_ops->get_poll_events( fd ) ); } void fd_queue_async( struct fd *fd, struct async *async, int type ) { struct async_queue *queue; switch (type) { case ASYNC_TYPE_READ: queue = &fd->read_q; break; case ASYNC_TYPE_WRITE: queue = &fd->write_q; break; case ASYNC_TYPE_WAIT: queue = &fd->wait_q; break; default: queue = NULL; assert(0); } queue_async( queue, async ); if (type != ASYNC_TYPE_WAIT) { if (!fd->inode) set_fd_events( fd, fd->fd_ops->get_poll_events( fd ) ); else /* regular files are always ready for read and write */ async_wake_up( queue, STATUS_ALERTED ); } } void fd_async_wake_up( struct fd *fd, int type, unsigned int status ) { switch (type) { case ASYNC_TYPE_READ: async_wake_up( &fd->read_q, status ); break; case ASYNC_TYPE_WRITE: async_wake_up( &fd->write_q, status ); break; case ASYNC_TYPE_WAIT: async_wake_up( &fd->wait_q, status ); break; default: assert(0); } } void fd_reselect_async( struct fd *fd, struct async_queue *queue ) { fd->fd_ops->reselect_async( fd, queue ); } void no_fd_queue_async( struct fd *fd, struct async *async, int type, int count ) { set_error( STATUS_OBJECT_TYPE_MISMATCH ); } void default_fd_queue_async( struct fd *fd, struct async *async, int type, int count ) { fd_queue_async( fd, async, type ); set_error( STATUS_PENDING ); } /* default reselect_async() fd routine */ void default_fd_reselect_async( struct fd *fd, struct async_queue *queue ) { if (queue == &fd->read_q || queue == &fd->write_q) { int poll_events = fd->fd_ops->get_poll_events( fd ); int events = check_fd_events( fd, poll_events ); if (events) fd->fd_ops->poll_event( fd, events ); else set_fd_events( fd, poll_events ); } } static inline int is_valid_mounted_device( struct stat *st ) { #if defined(linux) || defined(__sun__) return S_ISBLK( st->st_mode ); #else /* disks are char devices on *BSD */ return S_ISCHR( st->st_mode ); #endif } /* close all Unix file descriptors on a device to allow unmounting it */ static void unmount_device( struct fd *device_fd ) { unsigned int i; struct stat st; struct device *device; struct inode *inode; struct fd *fd; int unix_fd = get_unix_fd( device_fd ); if (unix_fd == -1) return; if (fstat( unix_fd, &st ) == -1 || !is_valid_mounted_device( &st )) { set_error( STATUS_INVALID_PARAMETER ); return; } if (!(device = get_device( st.st_rdev, -1 ))) return; for (i = 0; i < INODE_HASH_SIZE; i++) { LIST_FOR_EACH_ENTRY( inode, &device->inode_hash[i], struct inode, entry ) { LIST_FOR_EACH_ENTRY( fd, &inode->open, struct fd, inode_entry ) { unmount_fd( fd ); } inode_close_pending( inode, 0 ); } } /* remove it from the hash table */ list_remove( &device->entry ); list_init( &device->entry ); release_object( device ); } /* default read() routine */ int no_fd_read( struct fd *fd, struct async *async, file_pos_t pos ) { set_error( STATUS_OBJECT_TYPE_MISMATCH ); return 0; } /* default write() routine */ int no_fd_write( struct fd *fd, struct async *async, file_pos_t pos ) { set_error( STATUS_OBJECT_TYPE_MISMATCH ); return 0; } /* default flush() routine */ int no_fd_flush( struct fd *fd, struct async *async ) { set_error( STATUS_OBJECT_TYPE_MISMATCH ); return 0; } /* default get_file_info() routine */ void no_fd_get_file_info( struct fd *fd, obj_handle_t handle, unsigned int info_class ) { set_error( STATUS_OBJECT_TYPE_MISMATCH ); } /* default get_file_info() routine */ void default_fd_get_file_info( struct fd *fd, obj_handle_t handle, unsigned int info_class ) { switch (info_class) { case FileAccessInformation: { FILE_ACCESS_INFORMATION info; if (get_reply_max_size() < sizeof(info)) { set_error( STATUS_INFO_LENGTH_MISMATCH ); return; } info.AccessFlags = get_handle_access( current->process, handle ); set_reply_data( &info, sizeof(info) ); break; } case FileModeInformation: { FILE_MODE_INFORMATION info; if (get_reply_max_size() < sizeof(info)) { set_error( STATUS_INFO_LENGTH_MISMATCH ); return; } info.Mode = fd->options & ( FILE_WRITE_THROUGH | FILE_SEQUENTIAL_ONLY | FILE_NO_INTERMEDIATE_BUFFERING | FILE_SYNCHRONOUS_IO_ALERT | FILE_SYNCHRONOUS_IO_NONALERT ); set_reply_data( &info, sizeof(info) ); break; } case FileIoCompletionNotificationInformation: { FILE_IO_COMPLETION_NOTIFICATION_INFORMATION info; if (get_reply_max_size() < sizeof(info)) { set_error( STATUS_INFO_LENGTH_MISMATCH ); return; } info.Flags = fd->comp_flags; set_reply_data( &info, sizeof(info) ); break; } default: set_error( STATUS_NOT_IMPLEMENTED ); } } /* default get_volume_info() routine */ int no_fd_get_volume_info( struct fd *fd, struct async *async, unsigned int info_class ) { set_error( STATUS_OBJECT_TYPE_MISMATCH ); return 0; } /* default ioctl() routine */ int no_fd_ioctl( struct fd *fd, ioctl_code_t code, struct async *async ) { set_error( STATUS_OBJECT_TYPE_MISMATCH ); return 0; } /* default ioctl() routine */ int default_fd_ioctl( struct fd *fd, ioctl_code_t code, struct async *async ) { switch(code) { case FSCTL_DISMOUNT_VOLUME: unmount_device( fd ); return 1; default: set_error( STATUS_NOT_SUPPORTED ); return 0; } } /* same as get_handle_obj but retrieve the struct fd associated to the object */ static struct fd *get_handle_fd_obj( struct process *process, obj_handle_t handle, unsigned int access ) { struct fd *fd = NULL; struct object *obj; if ((obj = get_handle_obj( process, handle, access, NULL ))) { fd = get_obj_fd( obj ); release_object( obj ); } return fd; } static int is_dir_empty( int fd ) { DIR *dir; int empty; struct dirent *de; if ((fd = dup( fd )) == -1) return -1; if (!(dir = fdopendir( fd ))) { close( fd ); return -1; } empty = 1; while (empty && (de = readdir( dir ))) { if (!strcmp( de->d_name, "." ) || !strcmp( de->d_name, ".." )) continue; empty = 0; } closedir( dir ); return empty; } /* set disposition for the fd */ static void set_fd_disposition( struct fd *fd, int unlink ) { struct stat st; if (!fd->inode) { set_error( STATUS_OBJECT_TYPE_MISMATCH ); return; } if (fd->unix_fd == -1) { set_error( fd->no_fd_status ); return; } if (unlink) { if (fstat( fd->unix_fd, &st ) == -1) { file_set_error(); return; } if (S_ISREG( st.st_mode )) /* can't unlink files we don't have permission to write */ { if (!(st.st_mode & (S_IWUSR | S_IWGRP | S_IWOTH))) { set_error( STATUS_CANNOT_DELETE ); return; } } else if (S_ISDIR( st.st_mode )) /* can't remove non-empty directories */ { switch (is_dir_empty( fd->unix_fd )) { case -1: file_set_error(); return; case 0: set_error( STATUS_DIRECTORY_NOT_EMPTY ); return; } } else /* can't unlink special files */ { set_error( STATUS_INVALID_PARAMETER ); return; } } fd->closed->unlink = unlink ? 1 : 0; if (fd->options & FILE_DELETE_ON_CLOSE) fd->closed->unlink = -1; } /* set new name for the fd */ static void set_fd_name( struct fd *fd, struct fd *root, const char *nameptr, data_size_t len, struct unicode_str nt_name, int create_link, int replace ) { struct inode *inode; struct stat st, st2; char *name; if (!fd->inode || !fd->unix_name) { set_error( STATUS_OBJECT_TYPE_MISMATCH ); return; } if (fd->unix_fd == -1) { set_error( fd->no_fd_status ); return; } if (!len || ((nameptr[0] == '/') ^ !root)) { set_error( STATUS_OBJECT_PATH_SYNTAX_BAD ); return; } if (!(name = mem_alloc( len + 1 ))) return; memcpy( name, nameptr, len ); name[len] = 0; if (root) { char *combined_name = dup_fd_name( root, name ); if (!combined_name) { set_error( STATUS_NO_MEMORY ); goto failed; } free( name ); name = combined_name; } /* when creating a hard link, source cannot be a dir */ if (create_link && !fstat( fd->unix_fd, &st ) && S_ISDIR( st.st_mode )) { set_error( STATUS_FILE_IS_A_DIRECTORY ); goto failed; } if (!stat( name, &st )) { if (!fstat( fd->unix_fd, &st2 ) && st.st_ino == st2.st_ino && st.st_dev == st2.st_dev) { if (create_link && !replace) set_error( STATUS_OBJECT_NAME_COLLISION ); free( name ); return; } if (!replace) { set_error( STATUS_OBJECT_NAME_COLLISION ); goto failed; } /* can't replace directories or special files */ if (!S_ISREG( st.st_mode )) { set_error( STATUS_ACCESS_DENIED ); goto failed; } /* can't replace an opened file */ if ((inode = get_inode( st.st_dev, st.st_ino, -1 ))) { int is_empty = list_empty( &inode->open ); release_object( inode ); if (!is_empty) { set_error( STATUS_ACCESS_DENIED ); goto failed; } } /* link() expects that the target doesn't exist */ /* rename() cannot replace files with directories */ if (create_link || S_ISDIR( st2.st_mode )) { if (unlink( name )) { file_set_error(); goto failed; } } } if (create_link) { if (link( fd->unix_name, name )) file_set_error(); free( name ); return; } if (rename( fd->unix_name, name )) { file_set_error(); goto failed; } if (is_file_executable( fd->unix_name ) != is_file_executable( name ) && !fstat( fd->unix_fd, &st )) { if (is_file_executable( name )) /* set executable bit where read bit is set */ st.st_mode |= (st.st_mode & 0444) >> 2; else st.st_mode &= ~0111; fchmod( fd->unix_fd, st.st_mode ); } free( fd->nt_name ); fd->nt_name = dup_nt_name( root, nt_name, &fd->nt_namelen ); free( fd->unix_name ); fd->closed->unix_name = fd->unix_name = realpath( name, NULL ); free( name ); if (!fd->unix_name) set_error( STATUS_NO_MEMORY ); return; failed: free( name ); } struct completion *fd_get_completion( struct fd *fd, apc_param_t *p_key ) { *p_key = fd->comp_key; return fd->completion ? (struct completion *)grab_object( fd->completion ) : NULL; } void fd_copy_completion( struct fd *src, struct fd *dst ) { assert( !dst->completion ); dst->completion = fd_get_completion( src, &dst->comp_key ); dst->comp_flags = src->comp_flags; } /* flush a file buffers */ DECL_HANDLER(flush) { struct fd *fd = get_handle_fd_obj( current->process, req->async.handle, 0 ); struct async *async; if (!fd) return; if ((async = create_request_async( fd, fd->comp_flags, &req->async ))) { reply->event = async_handoff( async, fd->fd_ops->flush( fd, async ), NULL, 1 ); release_object( async ); } release_object( fd ); } /* query file info */ DECL_HANDLER(get_file_info) { struct fd *fd = get_handle_fd_obj( current->process, req->handle, 0 ); if (fd) { fd->fd_ops->get_file_info( fd, req->handle, req->info_class ); release_object( fd ); } } /* query volume info */ DECL_HANDLER(get_volume_info) { struct fd *fd = get_handle_fd_obj( current->process, req->handle, 0 ); struct async *async; if (!fd) return; if ((async = create_request_async( fd, fd->comp_flags, &req->async ))) { reply->wait = async_handoff( async, fd->fd_ops->get_volume_info( fd, async, req->info_class ), NULL, 1 ); release_object( async ); } release_object( fd ); } /* open a file object */ DECL_HANDLER(open_file_object) { struct unicode_str name = get_req_unicode_str(); struct object *obj, *result, *root = NULL; if (req->rootdir && !(root = get_handle_obj( current->process, req->rootdir, 0, NULL ))) return; obj = open_named_object( root, NULL, &name, req->attributes ); if (root) release_object( root ); if (!obj) return; if ((result = obj->ops->open_file( obj, req->access, req->sharing, req->options ))) { reply->handle = alloc_handle( current->process, result, req->access, req->attributes ); release_object( result ); } release_object( obj ); } /* get the Unix name from a file handle */ DECL_HANDLER(get_handle_unix_name) { struct fd *fd; if ((fd = get_handle_fd_obj( current->process, req->handle, 0 ))) { if (fd->unix_name) { data_size_t name_len = strlen( fd->unix_name ); reply->name_len = name_len; if (name_len <= get_reply_max_size()) set_reply_data( fd->unix_name, name_len ); else set_error( STATUS_BUFFER_OVERFLOW ); } else set_error( STATUS_OBJECT_TYPE_MISMATCH ); release_object( fd ); } } /* get a Unix fd to access a file */ DECL_HANDLER(get_handle_fd) { struct fd *fd; if ((fd = get_handle_fd_obj( current->process, req->handle, 0 ))) { int unix_fd = get_unix_fd( fd ); reply->cacheable = fd->cacheable; if (unix_fd != -1) { reply->type = fd->fd_ops->get_fd_type( fd ); reply->options = fd->options; reply->access = get_handle_access( current->process, req->handle ); send_client_fd( current->process, unix_fd, req->handle ); } release_object( fd ); } } /* perform a read on a file object */ DECL_HANDLER(read) { struct fd *fd = get_handle_fd_obj( current->process, req->async.handle, FILE_READ_DATA ); struct async *async; if (!fd) return; if ((async = create_request_async( fd, fd->comp_flags, &req->async ))) { reply->wait = async_handoff( async, fd->fd_ops->read( fd, async, req->pos ), NULL, 0 ); reply->options = fd->options; release_object( async ); } release_object( fd ); } /* perform a write on a file object */ DECL_HANDLER(write) { struct fd *fd = get_handle_fd_obj( current->process, req->async.handle, FILE_WRITE_DATA ); struct async *async; if (!fd) return; if ((async = create_request_async( fd, fd->comp_flags, &req->async ))) { reply->wait = async_handoff( async, fd->fd_ops->write( fd, async, req->pos ), &reply->size, 0 ); reply->options = fd->options; release_object( async ); } release_object( fd ); } /* perform an ioctl on a file */ DECL_HANDLER(ioctl) { unsigned int access = (req->code >> 14) & (FILE_READ_DATA|FILE_WRITE_DATA); struct fd *fd = get_handle_fd_obj( current->process, req->async.handle, access ); struct async *async; if (!fd) return; if ((async = create_request_async( fd, fd->comp_flags, &req->async ))) { reply->wait = async_handoff( async, fd->fd_ops->ioctl( fd, req->code, async ), NULL, 0 ); reply->options = fd->options; release_object( async ); } release_object( fd ); } /* create / reschedule an async I/O */ DECL_HANDLER(register_async) { unsigned int access; struct async *async; struct fd *fd; switch(req->type) { case ASYNC_TYPE_READ: access = FILE_READ_DATA; break; case ASYNC_TYPE_WRITE: access = FILE_WRITE_DATA; break; default: set_error( STATUS_INVALID_PARAMETER ); return; } if ((fd = get_handle_fd_obj( current->process, req->async.handle, access ))) { if (get_unix_fd( fd ) != -1 && (async = create_async( fd, current, &req->async, NULL ))) { fd->fd_ops->queue_async( fd, async, req->type, req->count ); release_object( async ); } release_object( fd ); } } /* attach completion object to a fd */ DECL_HANDLER(set_completion_info) { struct fd *fd = get_handle_fd_obj( current->process, req->handle, 0 ); if (fd) { if (is_fd_overlapped( fd ) && !fd->completion) { fd->completion = get_completion_obj( current->process, req->chandle, IO_COMPLETION_MODIFY_STATE ); fd->comp_key = req->ckey; } else set_error( STATUS_INVALID_PARAMETER ); release_object( fd ); } } /* push new completion msg into a completion queue attached to the fd */ DECL_HANDLER(add_fd_completion) { struct fd *fd = get_handle_fd_obj( current->process, req->handle, 0 ); if (fd) { if (fd->completion && (req->async || !(fd->comp_flags & FILE_SKIP_COMPLETION_PORT_ON_SUCCESS))) add_completion( fd->completion, fd->comp_key, req->cvalue, req->status, req->information ); release_object( fd ); } } /* set fd completion information */ DECL_HANDLER(set_fd_completion_mode) { struct fd *fd = get_handle_fd_obj( current->process, req->handle, 0 ); if (fd) { if (is_fd_overlapped( fd )) { if (req->flags & FILE_SKIP_SET_EVENT_ON_HANDLE) set_fd_signaled( fd, 0 ); /* removing flags is not allowed */ fd->comp_flags |= req->flags & ( FILE_SKIP_COMPLETION_PORT_ON_SUCCESS | FILE_SKIP_SET_EVENT_ON_HANDLE | FILE_SKIP_SET_USER_EVENT_ON_FAST_IO ); } else set_error( STATUS_INVALID_PARAMETER ); release_object( fd ); } } /* set fd disposition information */ DECL_HANDLER(set_fd_disp_info) { struct fd *fd = get_handle_fd_obj( current->process, req->handle, DELETE ); if (fd) { set_fd_disposition( fd, req->unlink ); release_object( fd ); } } /* set fd name information */ DECL_HANDLER(set_fd_name_info) { struct fd *fd, *root_fd = NULL; struct unicode_str nt_name; if (req->namelen > get_req_data_size()) { set_error( STATUS_INVALID_PARAMETER ); return; } nt_name.str = get_req_data(); nt_name.len = (req->namelen / sizeof(WCHAR)) * sizeof(WCHAR); if (req->rootdir) { struct dir *root; if (!(root = get_dir_obj( current->process, req->rootdir, 0 ))) return; root_fd = get_obj_fd( (struct object *)root ); release_object( root ); if (!root_fd) return; } if ((fd = get_handle_fd_obj( current->process, req->handle, 0 ))) { set_fd_name( fd, root_fd, (const char *)get_req_data() + req->namelen, get_req_data_size() - req->namelen, nt_name, req->link, req->replace ); release_object( fd ); } if (root_fd) release_object( root_fd ); }