/* * based on Windows Sockets 1.1 specs * * Copyright (C) 1993,1994,1996,1997 John Brezak, Erik Bos, Alex Korobka. * Copyright (C) 2001 Stefan Leichter * Copyright (C) 2004 Hans Leidekker * Copyright (C) 2005 Marcus Meissner * Copyright (C) 2006-2008 Kai Blin * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA * * NOTE: If you make any changes to fix a particular app, make sure * they don't break something else like Netscape or telnet and ftp * clients and servers (www.winsite.com got a lot of those). */ #include "config.h" #include "wine/port.h" #include #include #include #include #include #ifdef HAVE_SYS_IPC_H # include #endif #ifdef HAVE_SYS_IOCTL_H # include #endif #ifdef HAVE_SYS_FILIO_H # include #endif #ifdef HAVE_SYS_SOCKIO_H # include #endif #if defined(__EMX__) # include #endif #ifdef HAVE_SYS_PARAM_H # include #endif #ifdef HAVE_SYS_MSG_H # include #endif #ifdef HAVE_SYS_WAIT_H # include #endif #ifdef HAVE_SYS_UIO_H # include #endif #ifdef HAVE_SYS_SOCKET_H #include #endif #ifdef HAVE_NETINET_IN_H # include #endif #ifdef HAVE_NETINET_TCP_H # include #endif #ifdef HAVE_ARPA_INET_H # include #endif #include #include #include #ifdef HAVE_NETDB_H #include #endif #ifdef HAVE_UNISTD_H # include #endif #include #ifdef HAVE_ARPA_NAMESER_H # include #endif #ifdef HAVE_RESOLV_H # include #endif #ifdef HAVE_NET_IF_H # include #endif #ifdef HAVE_LINUX_FILTER_H # include #endif #ifdef HAVE_NETIPX_IPX_H # include #elif defined(HAVE_LINUX_IPX_H) # ifdef HAVE_ASM_TYPES_H # include # endif # ifdef HAVE_LINUX_TYPES_H # include # endif # include #endif #if defined(SOL_IPX) || defined(SO_DEFAULT_HEADERS) # define HAS_IPX #endif #ifdef HAVE_LINUX_IRDA_H # ifdef HAVE_LINUX_TYPES_H # include # endif # include # define HAS_IRDA #endif #ifdef HAVE_POLL_H #include #endif #ifdef HAVE_SYS_POLL_H # include #endif #ifdef HAVE_SYS_TIME_H # include #endif #define NONAMELESSUNION #define NONAMELESSSTRUCT #include "ntstatus.h" #define WIN32_NO_STATUS #include "windef.h" #include "winbase.h" #include "wingdi.h" #include "winuser.h" #include "winerror.h" #include "winnls.h" #include "winsock2.h" #include "mswsock.h" #include "ws2tcpip.h" #include "ws2spi.h" #include "wsipx.h" #include "wsnwlink.h" #include "wshisotp.h" #include "mstcpip.h" #include "af_irda.h" #include "winnt.h" #define USE_WC_PREFIX /* For CMSG_DATA */ #include "iphlpapi.h" #include "wine/server.h" #include "wine/debug.h" #include "wine/exception.h" #include "wine/unicode.h" #if defined(linux) && !defined(IP_UNICAST_IF) #define IP_UNICAST_IF 50 #endif #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) # define sipx_network sipx_addr.x_net # define sipx_node sipx_addr.x_host.c_host #endif /* __FreeBSD__ */ #ifndef INADDR_NONE #define INADDR_NONE ~0UL #endif WINE_DEFAULT_DEBUG_CHANNEL(winsock); WINE_DECLARE_DEBUG_CHANNEL(winediag); /* names of the protocols */ static const WCHAR NameIpxW[] = {'I', 'P', 'X', '\0'}; static const WCHAR NameSpxW[] = {'S', 'P', 'X', '\0'}; static const WCHAR NameSpxIIW[] = {'S', 'P', 'X', ' ', 'I', 'I', '\0'}; static const WCHAR NameTcpW[] = {'T', 'C', 'P', '/', 'I', 'P', '\0'}; static const WCHAR NameUdpW[] = {'U', 'D', 'P', '/', 'I', 'P', '\0'}; /* Taken from Win2k */ static const GUID ProviderIdIP = { 0xe70f1aa0, 0xab8b, 0x11cf, { 0x8c, 0xa3, 0x00, 0x80, 0x5f, 0x48, 0xa1, 0x92 } }; static const GUID ProviderIdIPX = { 0x11058240, 0xbe47, 0x11cf, { 0x95, 0xc8, 0x00, 0x80, 0x5f, 0x48, 0xa1, 0x92 } }; static const GUID ProviderIdSPX = { 0x11058241, 0xbe47, 0x11cf, { 0x95, 0xc8, 0x00, 0x80, 0x5f, 0x48, 0xa1, 0x92 } }; static const INT valid_protocols[] = { WS_IPPROTO_TCP, WS_IPPROTO_UDP, WS_NSPROTO_IPX, WS_NSPROTO_SPX, WS_NSPROTO_SPXII, 0 }; #define IS_IPX_PROTO(X) ((X) >= WS_NSPROTO_IPX && (X) <= WS_NSPROTO_IPX + 255) #if defined(IP_UNICAST_IF) && defined(SO_ATTACH_FILTER) # define LINUX_BOUND_IF struct interface_filter { struct sock_filter iface_memaddr; struct sock_filter iface_rule; struct sock_filter ip_memaddr; struct sock_filter ip_rule; struct sock_filter return_keep; struct sock_filter return_dump; }; # define FILTER_JUMP_DUMP(here) (u_char)(offsetof(struct interface_filter, return_dump) \ -offsetof(struct interface_filter, here)-sizeof(struct sock_filter)) \ /sizeof(struct sock_filter) # define FILTER_JUMP_KEEP(here) (u_char)(offsetof(struct interface_filter, return_keep) \ -offsetof(struct interface_filter, here)-sizeof(struct sock_filter)) \ /sizeof(struct sock_filter) # define FILTER_JUMP_NEXT() (u_char)(0) # define SKF_NET_DESTIP 16 /* offset in the network header to the destination IP */ static struct interface_filter generic_interface_filter = { /* This filter rule allows incoming packets on the specified interface, which works for all * remotely generated packets and for locally generated broadcast packets. */ BPF_STMT(BPF_LD+BPF_W+BPF_ABS, SKF_AD_OFF+SKF_AD_IFINDEX), BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0xdeadbeef, FILTER_JUMP_KEEP(iface_rule), FILTER_JUMP_NEXT()), /* This rule allows locally generated packets targeted at the specific IP address of the chosen * adapter (local packets not destined for the broadcast address do not have IFINDEX set) */ BPF_STMT(BPF_LD+BPF_W+BPF_ABS, SKF_NET_OFF+SKF_NET_DESTIP), BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0xdeadbeef, FILTER_JUMP_KEEP(ip_rule), FILTER_JUMP_DUMP(ip_rule)), BPF_STMT(BPF_RET+BPF_K, (u_int)-1), /* keep packet */ BPF_STMT(BPF_RET+BPF_K, 0) /* dump packet */ }; #endif /* LINUX_BOUND_IF */ /* * The actual definition of WSASendTo, wrapped in a different function name * so that internal calls from ws2_32 itself will not trigger programs like * Garena, which hooks WSASendTo/WSARecvFrom calls. */ static int WS2_sendto( SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount, LPDWORD lpNumberOfBytesSent, DWORD dwFlags, const struct WS_sockaddr *to, int tolen, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine ); /* * Internal fundamental receive function, essentially WSARecvFrom with an * additional parameter to support message control headers. */ static int WS2_recv_base( SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount, LPDWORD lpNumberOfBytesRecvd, LPDWORD lpFlags, struct WS_sockaddr *lpFrom, LPINT lpFromlen, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine, LPWSABUF lpControlBuffer ); /* critical section to protect some non-reentrant net function */ static CRITICAL_SECTION csWSgetXXXbyYYY; static CRITICAL_SECTION_DEBUG critsect_debug = { 0, 0, &csWSgetXXXbyYYY, { &critsect_debug.ProcessLocksList, &critsect_debug.ProcessLocksList }, 0, 0, { (DWORD_PTR)(__FILE__ ": csWSgetXXXbyYYY") } }; static CRITICAL_SECTION csWSgetXXXbyYYY = { &critsect_debug, -1, 0, 0, 0, 0 }; union generic_unix_sockaddr { struct sockaddr addr; char data[128]; /* should be big enough for all families */ }; static inline const char *debugstr_sockaddr( const struct WS_sockaddr *a ) { if (!a) return "(nil)"; switch (a->sa_family) { case WS_AF_INET: return wine_dbg_sprintf("{ family AF_INET, address %s, port %d }", inet_ntoa(((const struct sockaddr_in *)a)->sin_addr), ntohs(((const struct sockaddr_in *)a)->sin_port)); case WS_AF_INET6: { char buf[46]; const char *p; struct WS_sockaddr_in6 *sin = (struct WS_sockaddr_in6 *)a; p = WS_inet_ntop( WS_AF_INET6, &sin->sin6_addr, buf, sizeof(buf) ); if (!p) p = "(unknown IPv6 address)"; return wine_dbg_sprintf("{ family AF_INET6, address %s, port %d }", p, ntohs(sin->sin6_port)); } case WS_AF_IPX: { int i; char netnum[16], nodenum[16]; struct WS_sockaddr_ipx *sin = (struct WS_sockaddr_ipx *)a; for (i = 0;i < 4; i++) sprintf(netnum + i * 2, "%02X", (unsigned char) sin->sa_netnum[i]); for (i = 0;i < 6; i++) sprintf(nodenum + i * 2, "%02X", (unsigned char) sin->sa_nodenum[i]); return wine_dbg_sprintf("{ family AF_IPX, address %s.%s, ipx socket %d }", netnum, nodenum, sin->sa_socket); } case WS_AF_IRDA: { DWORD addr; memcpy( &addr, ((const SOCKADDR_IRDA *)a)->irdaDeviceID, sizeof(addr) ); addr = ntohl( addr ); return wine_dbg_sprintf("{ family AF_IRDA, addr %08x, name %s }", addr, ((const SOCKADDR_IRDA *)a)->irdaServiceName); } default: return wine_dbg_sprintf("{ family %d }", a->sa_family); } } static inline const char *debugstr_sockopt(int level, int optname) { const char *stropt = NULL, *strlevel = NULL; #define DEBUG_SOCKLEVEL(x) case (x): strlevel = #x #define DEBUG_SOCKOPT(x) case (x): stropt = #x; break switch(level) { DEBUG_SOCKLEVEL(WS_SOL_SOCKET); switch(optname) { DEBUG_SOCKOPT(WS_SO_ACCEPTCONN); DEBUG_SOCKOPT(WS_SO_BROADCAST); DEBUG_SOCKOPT(WS_SO_BSP_STATE); DEBUG_SOCKOPT(WS_SO_CONDITIONAL_ACCEPT); DEBUG_SOCKOPT(WS_SO_CONNECT_TIME); DEBUG_SOCKOPT(WS_SO_DEBUG); DEBUG_SOCKOPT(WS_SO_DONTLINGER); DEBUG_SOCKOPT(WS_SO_DONTROUTE); DEBUG_SOCKOPT(WS_SO_ERROR); DEBUG_SOCKOPT(WS_SO_EXCLUSIVEADDRUSE); DEBUG_SOCKOPT(WS_SO_GROUP_ID); DEBUG_SOCKOPT(WS_SO_GROUP_PRIORITY); DEBUG_SOCKOPT(WS_SO_KEEPALIVE); DEBUG_SOCKOPT(WS_SO_LINGER); DEBUG_SOCKOPT(WS_SO_MAX_MSG_SIZE); DEBUG_SOCKOPT(WS_SO_OOBINLINE); DEBUG_SOCKOPT(WS_SO_OPENTYPE); DEBUG_SOCKOPT(WS_SO_PROTOCOL_INFOA); DEBUG_SOCKOPT(WS_SO_PROTOCOL_INFOW); DEBUG_SOCKOPT(WS_SO_RCVBUF); DEBUG_SOCKOPT(WS_SO_RCVTIMEO); DEBUG_SOCKOPT(WS_SO_REUSEADDR); DEBUG_SOCKOPT(WS_SO_SNDBUF); DEBUG_SOCKOPT(WS_SO_SNDTIMEO); DEBUG_SOCKOPT(WS_SO_TYPE); } break; DEBUG_SOCKLEVEL(WS_NSPROTO_IPX); switch(optname) { DEBUG_SOCKOPT(WS_IPX_PTYPE); DEBUG_SOCKOPT(WS_IPX_FILTERPTYPE); DEBUG_SOCKOPT(WS_IPX_DSTYPE); DEBUG_SOCKOPT(WS_IPX_RECVHDR); DEBUG_SOCKOPT(WS_IPX_MAXSIZE); DEBUG_SOCKOPT(WS_IPX_ADDRESS); DEBUG_SOCKOPT(WS_IPX_MAX_ADAPTER_NUM); } break; DEBUG_SOCKLEVEL(WS_SOL_IRLMP); switch(optname) { DEBUG_SOCKOPT(WS_IRLMP_ENUMDEVICES); } break; DEBUG_SOCKLEVEL(WS_IPPROTO_TCP); switch(optname) { DEBUG_SOCKOPT(WS_TCP_BSDURGENT); DEBUG_SOCKOPT(WS_TCP_EXPEDITED_1122); DEBUG_SOCKOPT(WS_TCP_NODELAY); } break; DEBUG_SOCKLEVEL(WS_IPPROTO_IP); switch(optname) { DEBUG_SOCKOPT(WS_IP_ADD_MEMBERSHIP); DEBUG_SOCKOPT(WS_IP_DROP_MEMBERSHIP); DEBUG_SOCKOPT(WS_IP_HDRINCL); DEBUG_SOCKOPT(WS_IP_MULTICAST_IF); DEBUG_SOCKOPT(WS_IP_MULTICAST_LOOP); DEBUG_SOCKOPT(WS_IP_MULTICAST_TTL); DEBUG_SOCKOPT(WS_IP_OPTIONS); DEBUG_SOCKOPT(WS_IP_PKTINFO); DEBUG_SOCKOPT(WS_IP_TOS); DEBUG_SOCKOPT(WS_IP_TTL); DEBUG_SOCKOPT(WS_IP_UNICAST_IF); DEBUG_SOCKOPT(WS_IP_DONTFRAGMENT); } break; DEBUG_SOCKLEVEL(WS_IPPROTO_IPV6); switch(optname) { DEBUG_SOCKOPT(WS_IPV6_ADD_MEMBERSHIP); DEBUG_SOCKOPT(WS_IPV6_DROP_MEMBERSHIP); DEBUG_SOCKOPT(WS_IPV6_MULTICAST_IF); DEBUG_SOCKOPT(WS_IPV6_MULTICAST_HOPS); DEBUG_SOCKOPT(WS_IPV6_MULTICAST_LOOP); DEBUG_SOCKOPT(WS_IPV6_UNICAST_HOPS); DEBUG_SOCKOPT(WS_IPV6_V6ONLY); DEBUG_SOCKOPT(WS_IPV6_UNICAST_IF); DEBUG_SOCKOPT(WS_IPV6_DONTFRAG); } break; } #undef DEBUG_SOCKLEVEL #undef DEBUG_SOCKOPT if (!strlevel) strlevel = wine_dbg_sprintf("WS_0x%x", level); if (!stropt) stropt = wine_dbg_sprintf("WS_0x%x", optname); return wine_dbg_sprintf("level %s, name %s", strlevel + 3, stropt + 3); } static inline const char *debugstr_optval(const char *optval, int optlenval) { if (optval && !IS_INTRESOURCE(optval) && optlenval >= 1 && optlenval <= sizeof(DWORD)) { DWORD value = 0; memcpy(&value, optval, optlenval); return wine_dbg_sprintf("%p (%u)", optval, value); } return wine_dbg_sprintf("%p", optval); } /* HANDLE<->SOCKET conversion (SOCKET is UINT_PTR). */ #define SOCKET2HANDLE(s) ((HANDLE)(s)) #define HANDLE2SOCKET(h) ((SOCKET)(h)) /**************************************************************** * Async IO declarations ****************************************************************/ struct ws2_async_io { struct ws2_async_io *next; }; struct ws2_async_shutdown { struct ws2_async_io io; HANDLE hSocket; IO_STATUS_BLOCK iosb; int type; }; struct ws2_async { struct ws2_async_io io; HANDLE hSocket; LPWSAOVERLAPPED user_overlapped; LPWSAOVERLAPPED_COMPLETION_ROUTINE completion_func; IO_STATUS_BLOCK local_iosb; struct WS_sockaddr *addr; union { int val; /* for send operations */ int *ptr; /* for recv operations */ } addrlen; DWORD flags; DWORD *lpFlags; WSABUF *control; unsigned int n_iovecs; unsigned int first_iovec; struct iovec iovec[1]; }; struct ws2_accept_async { struct ws2_async_io io; HANDLE listen_socket; HANDLE accept_socket; LPOVERLAPPED user_overlapped; ULONG_PTR cvalue; PVOID buf; /* buffer to write data to */ int data_len; int local_len; int remote_len; struct ws2_async *read; }; static struct ws2_async_io *async_io_freelist; static void release_async_io( struct ws2_async_io *io ) { for (;;) { struct ws2_async_io *next = async_io_freelist; io->next = next; if (InterlockedCompareExchangePointer( (void **)&async_io_freelist, io, next ) == next) return; } } static struct ws2_async_io *alloc_async_io( DWORD size ) { /* first free remaining previous fileinfos */ struct ws2_async_io *io = InterlockedExchangePointer( (void **)&async_io_freelist, NULL ); while (io) { struct ws2_async_io *next = io->next; HeapFree( GetProcessHeap(), 0, io ); io = next; } return HeapAlloc( GetProcessHeap(), 0, size ); } /****************************************************************/ /* ----------------------------------- internal data */ /* ws_... struct conversion flags */ typedef struct /* WSAAsyncSelect() control struct */ { HANDLE service, event, sock; HWND hWnd; UINT uMsg; LONG lEvent; } ws_select_info; #define WS_MAX_SOCKETS_PER_PROCESS 128 /* reasonable guess */ #define WS_MAX_UDP_DATAGRAM 1024 static INT WINAPI WSA_DefaultBlockingHook( FARPROC x ); /* hostent's, servent's and protent's are stored in one buffer per thread, * as documented on MSDN for the functions that return any of the buffers */ struct per_thread_data { int opentype; struct WS_hostent *he_buffer; struct WS_servent *se_buffer; struct WS_protoent *pe_buffer; int he_len; int se_len; int pe_len; char ntoa_buffer[16]; /* 4*3 digits + 3 '.' + 1 '\0' */ }; /* internal: routing description information */ struct route { struct in_addr addr; IF_INDEX interface; DWORD metric; }; static INT num_startup; /* reference counter */ static FARPROC blocking_hook = (FARPROC)WSA_DefaultBlockingHook; /* function prototypes */ static struct WS_hostent *WS_create_he(char *name, int aliases, int aliases_size, int addresses, int address_length); static struct WS_hostent *WS_dup_he(const struct hostent* p_he); static struct WS_protoent *WS_dup_pe(const struct protoent* p_pe); static struct WS_servent *WS_dup_se(const struct servent* p_se); static int ws_protocol_info(SOCKET s, int unicode, WSAPROTOCOL_INFOW *buffer, int *size); int WSAIOCTL_GetInterfaceCount(void); int WSAIOCTL_GetInterfaceName(int intNumber, char *intName); static void WS_AddCompletion( SOCKET sock, ULONG_PTR CompletionValue, NTSTATUS CompletionStatus, ULONG Information ); #define MAP_OPTION(opt) { WS_##opt, opt } static const int ws_flags_map[][2] = { MAP_OPTION( MSG_OOB ), MAP_OPTION( MSG_PEEK ), MAP_OPTION( MSG_DONTROUTE ), MAP_OPTION( MSG_WAITALL ), }; static const int ws_sock_map[][2] = { MAP_OPTION( SO_DEBUG ), MAP_OPTION( SO_ACCEPTCONN ), MAP_OPTION( SO_REUSEADDR ), MAP_OPTION( SO_KEEPALIVE ), MAP_OPTION( SO_DONTROUTE ), MAP_OPTION( SO_BROADCAST ), MAP_OPTION( SO_LINGER ), MAP_OPTION( SO_OOBINLINE ), MAP_OPTION( SO_SNDBUF ), MAP_OPTION( SO_RCVBUF ), MAP_OPTION( SO_ERROR ), MAP_OPTION( SO_TYPE ), #ifdef SO_RCVTIMEO MAP_OPTION( SO_RCVTIMEO ), #endif #ifdef SO_SNDTIMEO MAP_OPTION( SO_SNDTIMEO ), #endif }; static const int ws_tcp_map[][2] = { #ifdef TCP_NODELAY MAP_OPTION( TCP_NODELAY ), #endif }; static const int ws_ip_map[][2] = { MAP_OPTION( IP_MULTICAST_IF ), MAP_OPTION( IP_MULTICAST_TTL ), MAP_OPTION( IP_MULTICAST_LOOP ), MAP_OPTION( IP_ADD_MEMBERSHIP ), MAP_OPTION( IP_DROP_MEMBERSHIP ), MAP_OPTION( IP_OPTIONS ), #ifdef IP_HDRINCL MAP_OPTION( IP_HDRINCL ), #endif MAP_OPTION( IP_TOS ), MAP_OPTION( IP_TTL ), #ifdef IP_PKTINFO MAP_OPTION( IP_PKTINFO ), #endif #ifdef IP_UNICAST_IF MAP_OPTION( IP_UNICAST_IF ), #endif }; static const int ws_ipv6_map[][2] = { #ifdef IPV6_ADD_MEMBERSHIP MAP_OPTION( IPV6_ADD_MEMBERSHIP ), #endif #ifdef IPV6_DROP_MEMBERSHIP MAP_OPTION( IPV6_DROP_MEMBERSHIP ), #endif MAP_OPTION( IPV6_MULTICAST_IF ), MAP_OPTION( IPV6_MULTICAST_HOPS ), MAP_OPTION( IPV6_MULTICAST_LOOP ), MAP_OPTION( IPV6_UNICAST_HOPS ), MAP_OPTION( IPV6_V6ONLY ), #ifdef IPV6_UNICAST_IF MAP_OPTION( IPV6_UNICAST_IF ), #endif }; static const int ws_af_map[][2] = { MAP_OPTION( AF_UNSPEC ), MAP_OPTION( AF_INET ), MAP_OPTION( AF_INET6 ), #ifdef HAS_IPX MAP_OPTION( AF_IPX ), #endif #ifdef AF_IRDA MAP_OPTION( AF_IRDA ), #endif {FROM_PROTOCOL_INFO, FROM_PROTOCOL_INFO}, }; static const int ws_socktype_map[][2] = { MAP_OPTION( SOCK_DGRAM ), MAP_OPTION( SOCK_STREAM ), MAP_OPTION( SOCK_RAW ), {FROM_PROTOCOL_INFO, FROM_PROTOCOL_INFO}, }; static const int ws_proto_map[][2] = { MAP_OPTION( IPPROTO_IP ), MAP_OPTION( IPPROTO_TCP ), MAP_OPTION( IPPROTO_UDP ), MAP_OPTION( IPPROTO_ICMP ), MAP_OPTION( IPPROTO_IGMP ), MAP_OPTION( IPPROTO_RAW ), {FROM_PROTOCOL_INFO, FROM_PROTOCOL_INFO}, }; static const int ws_aiflag_map[][2] = { MAP_OPTION( AI_PASSIVE ), MAP_OPTION( AI_CANONNAME ), MAP_OPTION( AI_NUMERICHOST ), #ifdef AI_NUMERICSERV MAP_OPTION( AI_NUMERICSERV ), #endif #ifdef AI_V4MAPPED MAP_OPTION( AI_V4MAPPED ), #endif MAP_OPTION( AI_ADDRCONFIG ), }; static const int ws_niflag_map[][2] = { MAP_OPTION( NI_NOFQDN ), MAP_OPTION( NI_NUMERICHOST ), MAP_OPTION( NI_NAMEREQD ), MAP_OPTION( NI_NUMERICSERV ), MAP_OPTION( NI_DGRAM ), }; static const int ws_eai_map[][2] = { MAP_OPTION( EAI_AGAIN ), MAP_OPTION( EAI_BADFLAGS ), MAP_OPTION( EAI_FAIL ), MAP_OPTION( EAI_FAMILY ), MAP_OPTION( EAI_MEMORY ), /* Note: EAI_NODATA is deprecated, but still * used by Windows and Linux... We map the newer * EAI_NONAME to EAI_NODATA for now until Windows * changes too. */ #ifdef EAI_NODATA MAP_OPTION( EAI_NODATA ), #endif #ifdef EAI_NONAME { WS_EAI_NODATA, EAI_NONAME }, #endif MAP_OPTION( EAI_SERVICE ), MAP_OPTION( EAI_SOCKTYPE ), { 0, 0 } }; static const char magic_loopback_addr[] = {127, 12, 34, 56}; #ifndef HAVE_STRUCT_MSGHDR_MSG_ACCRIGHTS #ifdef IP_PKTINFO static inline WSACMSGHDR *fill_control_message(int level, int type, WSACMSGHDR *current, ULONG *maxsize, void *data, int len) { ULONG msgsize = sizeof(WSACMSGHDR) + WSA_CMSG_ALIGN(len); char *ptr = (char *) current + sizeof(WSACMSGHDR); /* Make sure there is at least enough room for this entry */ if (msgsize > *maxsize) return NULL; *maxsize -= msgsize; /* Fill in the entry */ current->cmsg_len = sizeof(WSACMSGHDR) + len; current->cmsg_level = level; current->cmsg_type = type; memcpy(ptr, data, len); /* Return the pointer to where next entry should go */ return (WSACMSGHDR *) (ptr + WSA_CMSG_ALIGN(len)); } #endif /* IP_PKTINFO */ static inline int convert_control_headers(struct msghdr *hdr, WSABUF *control) { #ifdef IP_PKTINFO WSACMSGHDR *cmsg_win = (WSACMSGHDR *) control->buf, *ptr; ULONG ctlsize = control->len; struct cmsghdr *cmsg_unix; ptr = cmsg_win; /* Loop over all the headers, converting as appropriate */ for (cmsg_unix = CMSG_FIRSTHDR(hdr); cmsg_unix != NULL; cmsg_unix = CMSG_NXTHDR(hdr, cmsg_unix)) { switch(cmsg_unix->cmsg_level) { case IPPROTO_IP: switch(cmsg_unix->cmsg_type) { case IP_PKTINFO: { /* Convert the Unix IP_PKTINFO structure to the Windows version */ struct in_pktinfo *data_unix = (struct in_pktinfo *) CMSG_DATA(cmsg_unix); struct WS_in_pktinfo data_win; memcpy(&data_win.ipi_addr,&data_unix->ipi_addr.s_addr,4); /* 4 bytes = 32 address bits */ data_win.ipi_ifindex = data_unix->ipi_ifindex; ptr = fill_control_message(WS_IPPROTO_IP, WS_IP_PKTINFO, ptr, &ctlsize, (void*)&data_win, sizeof(data_win)); if (!ptr) goto error; } break; default: FIXME("Unhandled IPPROTO_IP message header type %d\n", cmsg_unix->cmsg_type); break; } break; default: FIXME("Unhandled message header level %d\n", cmsg_unix->cmsg_level); break; } } error: /* Set the length of the returned control headers */ control->len = (ptr == NULL ? 0 : (char*)ptr - (char*)cmsg_win); return (ptr != NULL); #else /* IP_PKTINFO */ control->len = 0; return 1; #endif /* IP_PKTINFO */ } #endif /* HAVE_STRUCT_MSGHDR_MSG_ACCRIGHTS */ /* ----------------------------------- error handling */ static NTSTATUS sock_get_ntstatus( int err ) { switch ( err ) { case EBADF: return STATUS_INVALID_HANDLE; case EBUSY: return STATUS_DEVICE_BUSY; case EPERM: case EACCES: return STATUS_ACCESS_DENIED; case EFAULT: return STATUS_NO_MEMORY; case EINVAL: return STATUS_INVALID_PARAMETER; case ENFILE: case EMFILE: return STATUS_TOO_MANY_OPENED_FILES; case EWOULDBLOCK: return STATUS_CANT_WAIT; case EINPROGRESS: return STATUS_PENDING; case EALREADY: return STATUS_NETWORK_BUSY; case ENOTSOCK: return STATUS_OBJECT_TYPE_MISMATCH; case EDESTADDRREQ: return STATUS_INVALID_PARAMETER; case EMSGSIZE: return STATUS_BUFFER_OVERFLOW; case EPROTONOSUPPORT: case ESOCKTNOSUPPORT: case EPFNOSUPPORT: case EAFNOSUPPORT: case EPROTOTYPE: return STATUS_NOT_SUPPORTED; case ENOPROTOOPT: return STATUS_INVALID_PARAMETER; case EOPNOTSUPP: return STATUS_NOT_SUPPORTED; case EADDRINUSE: return STATUS_ADDRESS_ALREADY_ASSOCIATED; case EADDRNOTAVAIL: return STATUS_INVALID_PARAMETER; case ECONNREFUSED: return STATUS_CONNECTION_REFUSED; case ESHUTDOWN: return STATUS_PIPE_DISCONNECTED; case ENOTCONN: return STATUS_CONNECTION_DISCONNECTED; case ETIMEDOUT: return STATUS_IO_TIMEOUT; case ENETUNREACH: return STATUS_NETWORK_UNREACHABLE; case ENETDOWN: return STATUS_NETWORK_BUSY; case EPIPE: case ECONNRESET: return STATUS_CONNECTION_RESET; case ECONNABORTED: return STATUS_CONNECTION_ABORTED; case 0: return STATUS_SUCCESS; default: WARN("Unknown errno %d!\n", err); return STATUS_UNSUCCESSFUL; } } static UINT sock_get_error( int err ) { switch(err) { case EINTR: return WSAEINTR; case EPERM: case EACCES: return WSAEACCES; case EFAULT: return WSAEFAULT; case EINVAL: return WSAEINVAL; case EMFILE: return WSAEMFILE; case EWOULDBLOCK: return WSAEWOULDBLOCK; case EINPROGRESS: return WSAEINPROGRESS; case EALREADY: return WSAEALREADY; case EBADF: case ENOTSOCK: return WSAENOTSOCK; case EDESTADDRREQ: return WSAEDESTADDRREQ; case EMSGSIZE: return WSAEMSGSIZE; case EPROTOTYPE: return WSAEPROTOTYPE; case ENOPROTOOPT: return WSAENOPROTOOPT; case EPROTONOSUPPORT: return WSAEPROTONOSUPPORT; case ESOCKTNOSUPPORT: return WSAESOCKTNOSUPPORT; case EOPNOTSUPP: return WSAEOPNOTSUPP; case EPFNOSUPPORT: return WSAEPFNOSUPPORT; case EAFNOSUPPORT: return WSAEAFNOSUPPORT; case EADDRINUSE: return WSAEADDRINUSE; case EADDRNOTAVAIL: return WSAEADDRNOTAVAIL; case ENETDOWN: return WSAENETDOWN; case ENETUNREACH: return WSAENETUNREACH; case ENETRESET: return WSAENETRESET; case ECONNABORTED: return WSAECONNABORTED; case EPIPE: case ECONNRESET: return WSAECONNRESET; case ENOBUFS: return WSAENOBUFS; case EISCONN: return WSAEISCONN; case ENOTCONN: return WSAENOTCONN; case ESHUTDOWN: return WSAESHUTDOWN; case ETOOMANYREFS: return WSAETOOMANYREFS; case ETIMEDOUT: return WSAETIMEDOUT; case ECONNREFUSED: return WSAECONNREFUSED; case ELOOP: return WSAELOOP; case ENAMETOOLONG: return WSAENAMETOOLONG; case EHOSTDOWN: return WSAEHOSTDOWN; case EHOSTUNREACH: return WSAEHOSTUNREACH; case ENOTEMPTY: return WSAENOTEMPTY; #ifdef EPROCLIM case EPROCLIM: return WSAEPROCLIM; #endif #ifdef EUSERS case EUSERS: return WSAEUSERS; #endif #ifdef EDQUOT case EDQUOT: return WSAEDQUOT; #endif #ifdef ESTALE case ESTALE: return WSAESTALE; #endif #ifdef EREMOTE case EREMOTE: return WSAEREMOTE; #endif /* just in case we ever get here and there are no problems */ case 0: return 0; default: WARN("Unknown errno %d!\n", err); return WSAEOPNOTSUPP; } } static UINT wsaErrno(void) { int loc_errno = errno; WARN("errno %d, (%s).\n", loc_errno, strerror(loc_errno)); return sock_get_error( loc_errno ); } /* most ws2 overlapped functions return an ntstatus-based error code */ static NTSTATUS wsaErrStatus(void) { int loc_errno = errno; WARN("errno %d, (%s).\n", loc_errno, strerror(loc_errno)); return sock_get_ntstatus(loc_errno); } static UINT wsaHerrno(int loc_errno) { WARN("h_errno %d.\n", loc_errno); switch(loc_errno) { case HOST_NOT_FOUND: return WSAHOST_NOT_FOUND; case TRY_AGAIN: return WSATRY_AGAIN; case NO_RECOVERY: return WSANO_RECOVERY; case NO_DATA: return WSANO_DATA; case ENOBUFS: return WSAENOBUFS; case 0: return 0; default: WARN("Unknown h_errno %d!\n", loc_errno); return WSAEOPNOTSUPP; } } static inline DWORD NtStatusToWSAError( const DWORD status ) { /* We only need to cover the status codes set by server async request handling */ DWORD wserr; switch ( status ) { case STATUS_SUCCESS: wserr = 0; break; case STATUS_PENDING: wserr = WSA_IO_PENDING; break; case STATUS_OBJECT_TYPE_MISMATCH: wserr = WSAENOTSOCK; break; case STATUS_INVALID_HANDLE: wserr = WSAEBADF; break; case STATUS_INVALID_PARAMETER: wserr = WSAEINVAL; break; case STATUS_PIPE_DISCONNECTED: wserr = WSAESHUTDOWN; break; case STATUS_NETWORK_BUSY: wserr = WSAEALREADY; break; case STATUS_NETWORK_UNREACHABLE: wserr = WSAENETUNREACH; break; case STATUS_CONNECTION_REFUSED: wserr = WSAECONNREFUSED; break; case STATUS_CONNECTION_DISCONNECTED: wserr = WSAENOTCONN; break; case STATUS_CONNECTION_RESET: wserr = WSAECONNRESET; break; case STATUS_CONNECTION_ABORTED: wserr = WSAECONNABORTED; break; case STATUS_CANCELLED: wserr = WSA_OPERATION_ABORTED; break; case STATUS_ADDRESS_ALREADY_ASSOCIATED: wserr = WSAEADDRINUSE; break; case STATUS_IO_TIMEOUT: case STATUS_TIMEOUT: wserr = WSAETIMEDOUT; break; case STATUS_NO_MEMORY: wserr = WSAEFAULT; break; case STATUS_ACCESS_DENIED: wserr = WSAEACCES; break; case STATUS_TOO_MANY_OPENED_FILES: wserr = WSAEMFILE; break; case STATUS_CANT_WAIT: wserr = WSAEWOULDBLOCK; break; case STATUS_BUFFER_OVERFLOW: wserr = WSAEMSGSIZE; break; case STATUS_NOT_SUPPORTED: wserr = WSAEOPNOTSUPP; break; case STATUS_HOST_UNREACHABLE: wserr = WSAEHOSTUNREACH; break; default: wserr = RtlNtStatusToDosError( status ); FIXME( "Status code %08x converted to DOS error code %x\n", status, wserr ); } return wserr; } /* set last error code from NT status without mapping WSA errors */ static inline unsigned int set_error( unsigned int err ) { if (err) { err = NtStatusToWSAError( err ); SetLastError( err ); } return err; } static inline int get_sock_fd( SOCKET s, DWORD access, unsigned int *options ) { int fd; if (set_error( wine_server_handle_to_fd( SOCKET2HANDLE(s), access, &fd, options ) )) return -1; return fd; } static inline void release_sock_fd( SOCKET s, int fd ) { wine_server_release_fd( SOCKET2HANDLE(s), fd ); } static void _enable_event( HANDLE s, unsigned int event, unsigned int sstate, unsigned int cstate ) { SERVER_START_REQ( enable_socket_event ) { req->handle = wine_server_obj_handle( s ); req->mask = event; req->sstate = sstate; req->cstate = cstate; wine_server_call( req ); } SERVER_END_REQ; } static NTSTATUS _is_blocking(SOCKET s, BOOL *ret) { NTSTATUS status; SERVER_START_REQ( get_socket_event ) { req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) ); req->service = FALSE; req->c_event = 0; status = wine_server_call( req ); *ret = (reply->state & FD_WINE_NONBLOCKING) == 0; } SERVER_END_REQ; return status; } static unsigned int _get_sock_mask(SOCKET s) { unsigned int ret; SERVER_START_REQ( get_socket_event ) { req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) ); req->service = FALSE; req->c_event = 0; wine_server_call( req ); ret = reply->mask; } SERVER_END_REQ; return ret; } static void _sync_sock_state(SOCKET s) { BOOL dummy; /* do a dummy wineserver request in order to let the wineserver run through its select loop once */ (void)_is_blocking(s, &dummy); } static void _get_sock_errors(SOCKET s, int *events) { SERVER_START_REQ( get_socket_event ) { req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) ); req->service = FALSE; req->c_event = 0; wine_server_set_reply( req, events, sizeof(int) * FD_MAX_EVENTS ); wine_server_call( req ); } SERVER_END_REQ; } static int _get_sock_error(SOCKET s, unsigned int bit) { int events[FD_MAX_EVENTS]; _get_sock_errors(s, events); return events[bit]; } static int _get_fd_type(int fd) { int sock_type = -1; socklen_t optlen = sizeof(sock_type); getsockopt(fd, SOL_SOCKET, SO_TYPE, (char*) &sock_type, &optlen); return sock_type; } static struct per_thread_data *get_per_thread_data(void) { struct per_thread_data * ptb = NtCurrentTeb()->WinSockData; /* lazy initialization */ if (!ptb) { ptb = HeapAlloc( GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(*ptb) ); NtCurrentTeb()->WinSockData = ptb; } return ptb; } static void free_per_thread_data(void) { struct per_thread_data * ptb = NtCurrentTeb()->WinSockData; if (!ptb) return; /* delete scratch buffers */ HeapFree( GetProcessHeap(), 0, ptb->he_buffer ); HeapFree( GetProcessHeap(), 0, ptb->se_buffer ); HeapFree( GetProcessHeap(), 0, ptb->pe_buffer ); ptb->he_buffer = NULL; ptb->se_buffer = NULL; ptb->pe_buffer = NULL; HeapFree( GetProcessHeap(), 0, ptb ); NtCurrentTeb()->WinSockData = NULL; } /*********************************************************************** * DllMain (WS2_32.init) */ BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID fImpLoad) { TRACE("%p 0x%x %p\n", hInstDLL, fdwReason, fImpLoad); switch (fdwReason) { case DLL_PROCESS_ATTACH: break; case DLL_PROCESS_DETACH: if (fImpLoad) break; free_per_thread_data(); DeleteCriticalSection(&csWSgetXXXbyYYY); break; case DLL_THREAD_DETACH: free_per_thread_data(); break; } return TRUE; } /*********************************************************************** * convert_flags() * * Converts send/recv flags from Windows format. * Return the converted flag bits, unsupported flags remain unchanged. */ static int convert_flags(int flags) { int i, out; if (!flags) return 0; for (out = i = 0; flags && i < sizeof(ws_flags_map) / sizeof(ws_flags_map[0]); i++) { if (ws_flags_map[i][0] & flags) { out |= ws_flags_map[i][1]; flags &= ~ws_flags_map[i][0]; } } if (flags) { FIXME("Unknown send/recv flags 0x%x, using anyway...\n", flags); out |= flags; } return out; } /*********************************************************************** * convert_sockopt() * * Converts socket flags from Windows format. * Return 1 if converted, 0 if not (error). */ static int convert_sockopt(INT *level, INT *optname) { unsigned int i; switch (*level) { case WS_SOL_SOCKET: *level = SOL_SOCKET; for(i=0; iwVersion = wVersionRequested; /* return winsock information */ lpWSAData->wHighVersion = 0x0202; strcpy(lpWSAData->szDescription, "WinSock 2.0" ); strcpy(lpWSAData->szSystemStatus, "Running" ); lpWSAData->iMaxSockets = WS_MAX_SOCKETS_PER_PROCESS; lpWSAData->iMaxUdpDg = WS_MAX_UDP_DATAGRAM; /* don't do anything with lpWSAData->lpVendorInfo */ /* (some apps don't allocate the space for this field) */ TRACE("succeeded starts: %d\n", num_startup); return 0; } /*********************************************************************** * WSACleanup (WS2_32.116) */ INT WINAPI WSACleanup(void) { if (num_startup) { num_startup--; TRACE("pending cleanups: %d\n", num_startup); return 0; } SetLastError(WSANOTINITIALISED); return SOCKET_ERROR; } /*********************************************************************** * WSAGetLastError (WS2_32.111) */ INT WINAPI WSAGetLastError(void) { return GetLastError(); } /*********************************************************************** * WSASetLastError (WS2_32.112) */ void WINAPI WSASetLastError(INT iError) { SetLastError(iError); } static struct WS_hostent *check_buffer_he(int size) { struct per_thread_data * ptb = get_per_thread_data(); if (ptb->he_buffer) { if (ptb->he_len >= size ) return ptb->he_buffer; HeapFree( GetProcessHeap(), 0, ptb->he_buffer ); } ptb->he_buffer = HeapAlloc( GetProcessHeap(), 0, (ptb->he_len = size) ); if (!ptb->he_buffer) SetLastError(WSAENOBUFS); return ptb->he_buffer; } static struct WS_servent *check_buffer_se(int size) { struct per_thread_data * ptb = get_per_thread_data(); if (ptb->se_buffer) { if (ptb->se_len >= size ) return ptb->se_buffer; HeapFree( GetProcessHeap(), 0, ptb->se_buffer ); } ptb->se_buffer = HeapAlloc( GetProcessHeap(), 0, (ptb->se_len = size) ); if (!ptb->se_buffer) SetLastError(WSAENOBUFS); return ptb->se_buffer; } static struct WS_protoent *check_buffer_pe(int size) { struct per_thread_data * ptb = get_per_thread_data(); if (ptb->pe_buffer) { if (ptb->pe_len >= size ) return ptb->pe_buffer; HeapFree( GetProcessHeap(), 0, ptb->pe_buffer ); } ptb->pe_buffer = HeapAlloc( GetProcessHeap(), 0, (ptb->pe_len = size) ); if (!ptb->pe_buffer) SetLastError(WSAENOBUFS); return ptb->pe_buffer; } /* ----------------------------------- i/o APIs */ static inline BOOL supported_pf(int pf) { switch (pf) { case WS_AF_INET: case WS_AF_INET6: return TRUE; #ifdef HAS_IPX case WS_AF_IPX: return TRUE; #endif #ifdef HAS_IRDA case WS_AF_IRDA: return TRUE; #endif default: return FALSE; } } static inline BOOL supported_protocol(int protocol) { int i; for (i = 0; i < sizeof(valid_protocols) / sizeof(valid_protocols[0]); i++) if (protocol == valid_protocols[i]) return TRUE; return FALSE; } /**********************************************************************/ /* Returns the length of the converted address if successful, 0 if it was too small to * start with. */ static unsigned int ws_sockaddr_ws2u(const struct WS_sockaddr* wsaddr, int wsaddrlen, union generic_unix_sockaddr *uaddr) { unsigned int uaddrlen = 0; switch (wsaddr->sa_family) { #ifdef HAS_IPX case WS_AF_IPX: { const struct WS_sockaddr_ipx* wsipx=(const struct WS_sockaddr_ipx*)wsaddr; struct sockaddr_ipx* uipx = (struct sockaddr_ipx *)uaddr; if (wsaddrlensipx_family=AF_IPX; uipx->sipx_port=wsipx->sa_socket; /* copy sa_netnum and sa_nodenum to sipx_network and sipx_node * in one go */ memcpy(&uipx->sipx_network,wsipx->sa_netnum,sizeof(uipx->sipx_network)+sizeof(uipx->sipx_node)); #ifdef IPX_FRAME_NONE uipx->sipx_type=IPX_FRAME_NONE; #endif break; } #endif case WS_AF_INET6: { struct sockaddr_in6* uin6 = (struct sockaddr_in6 *)uaddr; const struct WS_sockaddr_in6* win6 = (const struct WS_sockaddr_in6*)wsaddr; /* Note: Windows has 2 versions of the sockaddr_in6 struct, one with * scope_id, one without. */ if (wsaddrlen >= sizeof(struct WS_sockaddr_in6_old)) { uaddrlen = sizeof(struct sockaddr_in6); memset( uaddr, 0, uaddrlen ); uin6->sin6_family = AF_INET6; uin6->sin6_port = win6->sin6_port; uin6->sin6_flowinfo = win6->sin6_flowinfo; #ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_SCOPE_ID if (wsaddrlen >= sizeof(struct WS_sockaddr_in6)) uin6->sin6_scope_id = win6->sin6_scope_id; #endif memcpy(&uin6->sin6_addr,&win6->sin6_addr,16); /* 16 bytes = 128 address bits */ break; } FIXME("bad size %d for WS_sockaddr_in6\n",wsaddrlen); return 0; } case WS_AF_INET: { struct sockaddr_in* uin = (struct sockaddr_in *)uaddr; const struct WS_sockaddr_in* win = (const struct WS_sockaddr_in*)wsaddr; if (wsaddrlensin_family = AF_INET; uin->sin_port = win->sin_port; memcpy(&uin->sin_addr,&win->sin_addr,4); /* 4 bytes = 32 address bits */ break; } #ifdef HAS_IRDA case WS_AF_IRDA: { struct sockaddr_irda *uin = (struct sockaddr_irda *)uaddr; const SOCKADDR_IRDA *win = (const SOCKADDR_IRDA *)wsaddr; if (wsaddrlen < sizeof(SOCKADDR_IRDA)) return 0; uaddrlen = sizeof(struct sockaddr_irda); memset( uaddr, 0, uaddrlen ); uin->sir_family = AF_IRDA; if (!strncmp( win->irdaServiceName, "LSAP-SEL", strlen( "LSAP-SEL" ) )) { unsigned int lsap_sel = 0; sscanf( win->irdaServiceName, "LSAP-SEL%u", &lsap_sel ); uin->sir_lsap_sel = lsap_sel; } else { uin->sir_lsap_sel = LSAP_ANY; memcpy( uin->sir_name, win->irdaServiceName, 25 ); } memcpy( &uin->sir_addr, win->irdaDeviceID, sizeof(uin->sir_addr) ); break; } #endif case WS_AF_UNSPEC: { /* Try to determine the needed space by the passed windows sockaddr space */ switch (wsaddrlen) { default: /* likely an ipv4 address */ case sizeof(struct WS_sockaddr_in): uaddrlen = sizeof(struct sockaddr_in); break; #ifdef HAS_IPX case sizeof(struct WS_sockaddr_ipx): uaddrlen = sizeof(struct sockaddr_ipx); break; #endif #ifdef HAS_IRDA case sizeof(SOCKADDR_IRDA): uaddrlen = sizeof(struct sockaddr_irda); break; #endif case sizeof(struct WS_sockaddr_in6): case sizeof(struct WS_sockaddr_in6_old): uaddrlen = sizeof(struct sockaddr_in6); break; } memset( uaddr, 0, uaddrlen ); break; } default: FIXME("Unknown address family %d, return NULL.\n", wsaddr->sa_family); return 0; } return uaddrlen; } static BOOL is_sockaddr_bound(const struct sockaddr *uaddr, int uaddrlen) { switch (uaddr->sa_family) { #ifdef HAS_IPX case AF_IPX: { static const struct sockaddr_ipx emptyAddr; struct sockaddr_ipx *ipx = (struct sockaddr_ipx*) uaddr; return ipx->sipx_port || memcmp(&ipx->sipx_network, &emptyAddr.sipx_network, sizeof(emptyAddr.sipx_network)) || memcmp(&ipx->sipx_node, &emptyAddr.sipx_node, sizeof(emptyAddr.sipx_node)); } #endif case AF_INET6: { static const struct sockaddr_in6 emptyAddr; const struct sockaddr_in6 *in6 = (const struct sockaddr_in6*) uaddr; return in6->sin6_port || memcmp(&in6->sin6_addr, &emptyAddr.sin6_addr, sizeof(struct in6_addr)); } case AF_INET: { static const struct sockaddr_in emptyAddr; const struct sockaddr_in *in = (const struct sockaddr_in*) uaddr; return in->sin_port || memcmp(&in->sin_addr, &emptyAddr.sin_addr, sizeof(struct in_addr)); } case AF_UNSPEC: return FALSE; default: FIXME("unknown address family %d\n", uaddr->sa_family); return TRUE; } } /* Returns -1 if getsockname fails, 0 if not bound, 1 otherwise */ static int is_fd_bound(int fd, union generic_unix_sockaddr *uaddr, socklen_t *uaddrlen) { union generic_unix_sockaddr inaddr; socklen_t inlen; int res; if (!uaddr) uaddr = &inaddr; if (!uaddrlen) uaddrlen = &inlen; *uaddrlen = sizeof(inaddr); res = getsockname(fd, &uaddr->addr, uaddrlen); if (!res) res = is_sockaddr_bound(&uaddr->addr, *uaddrlen); return res; } /* Returns 0 if successful, -1 if the buffer is too small */ static int ws_sockaddr_u2ws(const struct sockaddr* uaddr, struct WS_sockaddr* wsaddr, int* wsaddrlen) { int res; switch(uaddr->sa_family) { #ifdef HAS_IPX case AF_IPX: { const struct sockaddr_ipx* uipx=(const struct sockaddr_ipx*)uaddr; struct WS_sockaddr_ipx* wsipx=(struct WS_sockaddr_ipx*)wsaddr; res=-1; switch (*wsaddrlen) /* how much can we copy? */ { default: res=0; /* enough */ *wsaddrlen = sizeof(*wsipx); wsipx->sa_socket=uipx->sipx_port; /* fall through */ case 13: case 12: memcpy(wsipx->sa_nodenum,uipx->sipx_node,sizeof(wsipx->sa_nodenum)); /* fall through */ case 11: case 10: case 9: case 8: case 7: case 6: memcpy(wsipx->sa_netnum,&uipx->sipx_network,sizeof(wsipx->sa_netnum)); /* fall through */ case 5: case 4: case 3: case 2: wsipx->sa_family=WS_AF_IPX; /* fall through */ case 1: case 0: /* way too small */ break; } } break; #endif #ifdef HAS_IRDA case AF_IRDA: { const struct sockaddr_irda *uin = (const struct sockaddr_irda *)uaddr; SOCKADDR_IRDA *win = (SOCKADDR_IRDA *)wsaddr; if (*wsaddrlen < sizeof(SOCKADDR_IRDA)) return -1; win->irdaAddressFamily = WS_AF_IRDA; memcpy( win->irdaDeviceID, &uin->sir_addr, sizeof(win->irdaDeviceID) ); if (uin->sir_lsap_sel != LSAP_ANY) sprintf( win->irdaServiceName, "LSAP-SEL%u", uin->sir_lsap_sel ); else memcpy( win->irdaServiceName, uin->sir_name, sizeof(win->irdaServiceName) ); return 0; } #endif case AF_INET6: { const struct sockaddr_in6* uin6 = (const struct sockaddr_in6*)uaddr; struct WS_sockaddr_in6_old* win6old = (struct WS_sockaddr_in6_old*)wsaddr; if (*wsaddrlen < sizeof(struct WS_sockaddr_in6_old)) return -1; win6old->sin6_family = WS_AF_INET6; win6old->sin6_port = uin6->sin6_port; win6old->sin6_flowinfo = uin6->sin6_flowinfo; memcpy(&win6old->sin6_addr,&uin6->sin6_addr,16); /* 16 bytes = 128 address bits */ #ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_SCOPE_ID if (*wsaddrlen >= sizeof(struct WS_sockaddr_in6)) { struct WS_sockaddr_in6* win6 = (struct WS_sockaddr_in6*)wsaddr; win6->sin6_scope_id = uin6->sin6_scope_id; *wsaddrlen = sizeof(struct WS_sockaddr_in6); } else *wsaddrlen = sizeof(struct WS_sockaddr_in6_old); #else *wsaddrlen = sizeof(struct WS_sockaddr_in6_old); #endif return 0; } case AF_INET: { const struct sockaddr_in* uin = (const struct sockaddr_in*)uaddr; struct WS_sockaddr_in* win = (struct WS_sockaddr_in*)wsaddr; if (*wsaddrlen < sizeof(struct WS_sockaddr_in)) return -1; win->sin_family = WS_AF_INET; win->sin_port = uin->sin_port; memcpy(&win->sin_addr,&uin->sin_addr,4); /* 4 bytes = 32 address bits */ memset(win->sin_zero, 0, 8); /* Make sure the null padding is null */ *wsaddrlen = sizeof(struct WS_sockaddr_in); return 0; } case AF_UNSPEC: { memset(wsaddr,0,*wsaddrlen); return 0; } default: FIXME("Unknown address family %d\n", uaddr->sa_family); return -1; } return res; } static INT WS_DuplicateSocket(BOOL unicode, SOCKET s, DWORD dwProcessId, LPWSAPROTOCOL_INFOW lpProtocolInfo) { HANDLE hProcess; int size; WSAPROTOCOL_INFOW infow; TRACE("(unicode %d, socket %04lx, processid %x, buffer %p)\n", unicode, s, dwProcessId, lpProtocolInfo); if (!ws_protocol_info(s, unicode, &infow, &size)) return SOCKET_ERROR; if (!(hProcess = OpenProcess(PROCESS_DUP_HANDLE, FALSE, dwProcessId))) { SetLastError(WSAEINVAL); return SOCKET_ERROR; } if (!lpProtocolInfo) { CloseHandle(hProcess); SetLastError(WSAEFAULT); return SOCKET_ERROR; } /* I don't know what the real Windoze does next, this is a hack */ /* ...we could duplicate and then use ConvertToGlobalHandle on the duplicate, then let * the target use the global duplicate, or we could copy a reference to us to the structure * and let the target duplicate it from us, but let's do it as simple as possible */ memcpy(lpProtocolInfo, &infow, size); DuplicateHandle(GetCurrentProcess(), SOCKET2HANDLE(s), hProcess, (LPHANDLE)&lpProtocolInfo->dwServiceFlags3, 0, FALSE, DUPLICATE_SAME_ACCESS); CloseHandle(hProcess); lpProtocolInfo->dwServiceFlags4 = 0xff00ff00; /* magic */ return 0; } /***************************************************************************** * WS_EnterSingleProtocolW [internal] * * enters the protocol information of one given protocol into the given * buffer. * * RETURNS * TRUE if a protocol was entered into the buffer. * * BUGS * - only implemented for IPX, SPX, SPXII, TCP, UDP * - there is no check that the operating system supports the returned * protocols */ static BOOL WS_EnterSingleProtocolW( INT protocol, WSAPROTOCOL_INFOW* info ) { memset( info, 0, sizeof(WSAPROTOCOL_INFOW) ); info->iProtocol = protocol; switch (protocol) { case WS_IPPROTO_TCP: info->dwServiceFlags1 = XP1_IFS_HANDLES | XP1_EXPEDITED_DATA | XP1_GRACEFUL_CLOSE | XP1_GUARANTEED_ORDER | XP1_GUARANTEED_DELIVERY; info->ProviderId = ProviderIdIP; info->dwCatalogEntryId = 0x3e9; info->dwProviderFlags = PFL_MATCHES_PROTOCOL_ZERO; info->ProtocolChain.ChainLen = 1; info->iVersion = 2; info->iAddressFamily = WS_AF_INET; info->iMaxSockAddr = 0x10; info->iMinSockAddr = 0x10; info->iSocketType = WS_SOCK_STREAM; strcpyW( info->szProtocol, NameTcpW ); break; case WS_IPPROTO_UDP: info->dwServiceFlags1 = XP1_IFS_HANDLES | XP1_SUPPORT_BROADCAST | XP1_SUPPORT_MULTIPOINT | XP1_MESSAGE_ORIENTED | XP1_CONNECTIONLESS; info->ProviderId = ProviderIdIP; info->dwCatalogEntryId = 0x3ea; info->dwProviderFlags = PFL_MATCHES_PROTOCOL_ZERO; info->ProtocolChain.ChainLen = 1; info->iVersion = 2; info->iAddressFamily = WS_AF_INET; info->iMaxSockAddr = 0x10; info->iMinSockAddr = 0x10; info->iSocketType = WS_SOCK_DGRAM; info->dwMessageSize = 0xffbb; strcpyW( info->szProtocol, NameUdpW ); break; case WS_NSPROTO_IPX: info->dwServiceFlags1 = XP1_PARTIAL_MESSAGE | XP1_SUPPORT_BROADCAST | XP1_SUPPORT_MULTIPOINT | XP1_MESSAGE_ORIENTED | XP1_CONNECTIONLESS; info->ProviderId = ProviderIdIPX; info->dwCatalogEntryId = 0x406; info->dwProviderFlags = PFL_MATCHES_PROTOCOL_ZERO; info->ProtocolChain.ChainLen = 1; info->iVersion = 2; info->iAddressFamily = WS_AF_IPX; info->iMaxSockAddr = 0x10; info->iMinSockAddr = 0x0e; info->iSocketType = WS_SOCK_DGRAM; info->iProtocolMaxOffset = 0xff; info->dwMessageSize = 0x240; strcpyW( info->szProtocol, NameIpxW ); break; case WS_NSPROTO_SPX: info->dwServiceFlags1 = XP1_IFS_HANDLES | XP1_PSEUDO_STREAM | XP1_MESSAGE_ORIENTED | XP1_GUARANTEED_ORDER | XP1_GUARANTEED_DELIVERY; info->ProviderId = ProviderIdSPX; info->dwCatalogEntryId = 0x407; info->dwProviderFlags = PFL_MATCHES_PROTOCOL_ZERO; info->ProtocolChain.ChainLen = 1; info->iVersion = 2; info->iAddressFamily = WS_AF_IPX; info->iMaxSockAddr = 0x10; info->iMinSockAddr = 0x0e; info->iSocketType = WS_SOCK_SEQPACKET; info->dwMessageSize = 0xffffffff; strcpyW( info->szProtocol, NameSpxW ); break; case WS_NSPROTO_SPXII: info->dwServiceFlags1 = XP1_IFS_HANDLES | XP1_GRACEFUL_CLOSE | XP1_PSEUDO_STREAM | XP1_MESSAGE_ORIENTED | XP1_GUARANTEED_ORDER | XP1_GUARANTEED_DELIVERY; info->ProviderId = ProviderIdSPX; info->dwCatalogEntryId = 0x409; info->dwProviderFlags = PFL_MATCHES_PROTOCOL_ZERO; info->ProtocolChain.ChainLen = 1; info->iVersion = 2; info->iAddressFamily = WS_AF_IPX; info->iMaxSockAddr = 0x10; info->iMinSockAddr = 0x0e; info->iSocketType = WS_SOCK_SEQPACKET; info->dwMessageSize = 0xffffffff; strcpyW( info->szProtocol, NameSpxIIW ); break; default: FIXME("unknown Protocol <0x%08x>\n", protocol); return FALSE; } return TRUE; } /***************************************************************************** * WS_EnterSingleProtocolA [internal] * * see function WS_EnterSingleProtocolW * */ static BOOL WS_EnterSingleProtocolA( INT protocol, WSAPROTOCOL_INFOA* info ) { WSAPROTOCOL_INFOW infow; INT ret; memset( info, 0, sizeof(WSAPROTOCOL_INFOA) ); ret = WS_EnterSingleProtocolW( protocol, &infow ); if (ret) { /* convert the structure from W to A */ memcpy( info, &infow, FIELD_OFFSET( WSAPROTOCOL_INFOA, szProtocol ) ); WideCharToMultiByte( CP_ACP, 0, infow.szProtocol, -1, info->szProtocol, WSAPROTOCOL_LEN+1, NULL, NULL ); } return ret; } static INT WS_EnumProtocols( BOOL unicode, const INT *protocols, LPWSAPROTOCOL_INFOW buffer, LPDWORD len ) { INT i = 0, items = 0; DWORD size = 0; union _info { LPWSAPROTOCOL_INFOA a; LPWSAPROTOCOL_INFOW w; } info; info.w = buffer; if (!protocols) protocols = valid_protocols; while (protocols[i]) { if(supported_protocol(protocols[i++])) items++; } size = items * (unicode ? sizeof(WSAPROTOCOL_INFOW) : sizeof(WSAPROTOCOL_INFOA)); TRACE("unicode %d, protocols %p, buffer %p, length %p %d, items %d, required %d\n", unicode, protocols, buffer, len, len ? *len : 0, items, size); if (*len < size || !buffer) { *len = size; SetLastError(WSAENOBUFS); return SOCKET_ERROR; } for (i = items = 0; protocols[i]; i++) { if (!supported_protocol(protocols[i])) continue; if (unicode) { if (WS_EnterSingleProtocolW( protocols[i], &info.w[items] )) items++; } else { if (WS_EnterSingleProtocolA( protocols[i], &info.a[items] )) items++; } } return items; } static BOOL ws_protocol_info(SOCKET s, int unicode, WSAPROTOCOL_INFOW *buffer, int *size) { NTSTATUS status; *size = unicode ? sizeof(WSAPROTOCOL_INFOW) : sizeof(WSAPROTOCOL_INFOA); memset(buffer, 0, *size); SERVER_START_REQ( get_socket_info ) { req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) ); status = wine_server_call( req ); if (!status) { buffer->iAddressFamily = convert_af_u2w(reply->family); buffer->iSocketType = convert_socktype_u2w(reply->type); buffer->iProtocol = convert_proto_u2w(reply->protocol); } } SERVER_END_REQ; if (status) { unsigned int err = NtStatusToWSAError( status ); SetLastError( err == WSAEBADF ? WSAENOTSOCK : err ); return FALSE; } if (unicode) WS_EnterSingleProtocolW( buffer->iProtocol, buffer); else WS_EnterSingleProtocolA( buffer->iProtocol, (WSAPROTOCOL_INFOA *)buffer); return TRUE; } /************************************************************************** * Functions for handling overlapped I/O **************************************************************************/ /* user APC called upon async completion */ static void WINAPI ws2_async_apc( void *arg, IO_STATUS_BLOCK *iosb, ULONG reserved ) { struct ws2_async *wsa = arg; if (wsa->completion_func) wsa->completion_func( NtStatusToWSAError(iosb->u.Status), iosb->Information, wsa->user_overlapped, wsa->flags ); release_async_io( &wsa->io ); } /*********************************************************************** * WS2_recv (INTERNAL) * * Workhorse for both synchronous and asynchronous recv() operations. */ static int WS2_recv( int fd, struct ws2_async *wsa, int flags ) { #ifndef HAVE_STRUCT_MSGHDR_MSG_ACCRIGHTS char pktbuf[512]; #endif struct msghdr hdr; union generic_unix_sockaddr unix_sockaddr; int n; hdr.msg_name = NULL; if (wsa->addr) { hdr.msg_namelen = sizeof(unix_sockaddr); hdr.msg_name = &unix_sockaddr; } else hdr.msg_namelen = 0; hdr.msg_iov = wsa->iovec + wsa->first_iovec; hdr.msg_iovlen = wsa->n_iovecs - wsa->first_iovec; #ifdef HAVE_STRUCT_MSGHDR_MSG_ACCRIGHTS hdr.msg_accrights = NULL; hdr.msg_accrightslen = 0; #else hdr.msg_control = pktbuf; hdr.msg_controllen = sizeof(pktbuf); hdr.msg_flags = 0; #endif while ((n = recvmsg(fd, &hdr, flags)) == -1) { if (errno != EINTR) return -1; } #ifdef HAVE_STRUCT_MSGHDR_MSG_ACCRIGHTS if (wsa->control) { ERR("Message control headers cannot be properly supported on this system.\n"); wsa->control->len = 0; } #else if (wsa->control && !convert_control_headers(&hdr, wsa->control)) { WARN("Application passed insufficient room for control headers.\n"); *wsa->lpFlags |= WS_MSG_CTRUNC; errno = EMSGSIZE; return -1; } #endif /* if this socket is connected and lpFrom is not NULL, Linux doesn't give us * msg_name and msg_namelen from recvmsg, but it does set msg_namelen to zero. * * quoting linux 2.6 net/ipv4/tcp.c: * "According to UNIX98, msg_name/msg_namelen are ignored * on connected socket. I was just happy when found this 8) --ANK" * * likewise MSDN says that lpFrom and lpFromlen are ignored for * connection-oriented sockets, so don't try to update lpFrom. */ if (wsa->addr && hdr.msg_namelen) ws_sockaddr_u2ws( &unix_sockaddr.addr, wsa->addr, wsa->addrlen.ptr ); return n; } /*********************************************************************** * WS2_async_recv (INTERNAL) * * Handler for overlapped recv() operations. */ static NTSTATUS WS2_async_recv( void *user, IO_STATUS_BLOCK *iosb, NTSTATUS status, void **apc, void **arg ) { struct ws2_async *wsa = user; int result = 0, fd; switch (status) { case STATUS_ALERTED: if ((status = wine_server_handle_to_fd( wsa->hSocket, FILE_READ_DATA, &fd, NULL ) )) break; result = WS2_recv( fd, wsa, convert_flags(wsa->flags) ); wine_server_release_fd( wsa->hSocket, fd ); if (result >= 0) { status = STATUS_SUCCESS; _enable_event( wsa->hSocket, FD_READ, 0, 0 ); } else { if (errno == EAGAIN) { status = STATUS_PENDING; _enable_event( wsa->hSocket, FD_READ, 0, 0 ); } else { result = 0; status = wsaErrStatus(); } } break; } if (status != STATUS_PENDING) { iosb->u.Status = status; iosb->Information = result; if (wsa->completion_func) { *apc = ws2_async_apc; *arg = wsa; } else release_async_io( &wsa->io ); } return status; } /*********************************************************************** * WS2_async_accept_recv (INTERNAL) * * This function is used to finish the read part of an accept request. It is * needed to place the completion on the correct socket (listener). */ static NTSTATUS WS2_async_accept_recv( void *user, IO_STATUS_BLOCK *iosb, NTSTATUS status, void **apc, void **arg ) { void *junk; struct ws2_accept_async *wsa = user; status = WS2_async_recv( wsa->read, iosb, status, &junk, &junk ); if (status == STATUS_PENDING) return status; if (wsa->cvalue) WS_AddCompletion( HANDLE2SOCKET(wsa->listen_socket), wsa->cvalue, iosb->u.Status, iosb->Information ); release_async_io( &wsa->io ); return status; } /*********************************************************************** * WS2_async_accept (INTERNAL) * * This is the function called to satisfy the AcceptEx callback */ static NTSTATUS WS2_async_accept( void *user, IO_STATUS_BLOCK *iosb, NTSTATUS status, void **apc, void **arg ) { struct ws2_accept_async *wsa = user; int len; char *addr; TRACE("status: 0x%x listen: %p, accept: %p\n", status, wsa->listen_socket, wsa->accept_socket); if (status == STATUS_ALERTED) { SERVER_START_REQ( accept_into_socket ) { req->lhandle = wine_server_obj_handle( wsa->listen_socket ); req->ahandle = wine_server_obj_handle( wsa->accept_socket ); status = wine_server_call( req ); } SERVER_END_REQ; if (status == STATUS_CANT_WAIT) return STATUS_PENDING; if (status == STATUS_INVALID_HANDLE) { FIXME("AcceptEx accepting socket closed but request was not cancelled\n"); status = STATUS_CANCELLED; } } else if (status == STATUS_HANDLES_CLOSED) status = STATUS_CANCELLED; /* strange windows behavior */ if (status != STATUS_SUCCESS) goto finish; /* WS2 Spec says size param is extra 16 bytes long...what do we put in it? */ addr = ((char *)wsa->buf) + wsa->data_len; len = wsa->local_len - sizeof(int); WS_getsockname(HANDLE2SOCKET(wsa->accept_socket), (struct WS_sockaddr *)(addr + sizeof(int)), &len); *(int *)addr = len; addr += wsa->local_len; len = wsa->remote_len - sizeof(int); WS_getpeername(HANDLE2SOCKET(wsa->accept_socket), (struct WS_sockaddr *)(addr + sizeof(int)), &len); *(int *)addr = len; if (!wsa->read) goto finish; SERVER_START_REQ( register_async ) { req->type = ASYNC_TYPE_READ; req->async.handle = wine_server_obj_handle( wsa->accept_socket ); req->async.event = wine_server_obj_handle( wsa->user_overlapped->hEvent ); req->async.callback = wine_server_client_ptr( WS2_async_accept_recv ); req->async.iosb = wine_server_client_ptr( iosb ); req->async.arg = wine_server_client_ptr( wsa ); status = wine_server_call( req ); } SERVER_END_REQ; if (status != STATUS_PENDING) goto finish; /* The APC has finished but no completion should be sent for the operation yet, additional processing * needs to be performed by WS2_async_accept_recv() first. */ return STATUS_MORE_PROCESSING_REQUIRED; finish: iosb->u.Status = status; iosb->Information = 0; if (wsa->read) release_async_io( &wsa->read->io ); release_async_io( &wsa->io ); return status; } /*********************************************************************** * WS2_send (INTERNAL) * * Workhorse for both synchronous and asynchronous send() operations. */ static int WS2_send( int fd, struct ws2_async *wsa, int flags ) { struct msghdr hdr; union generic_unix_sockaddr unix_addr; int n, ret; hdr.msg_name = NULL; hdr.msg_namelen = 0; if (wsa->addr) { hdr.msg_name = &unix_addr; hdr.msg_namelen = ws_sockaddr_ws2u( wsa->addr, wsa->addrlen.val, &unix_addr ); if ( !hdr.msg_namelen ) { errno = EFAULT; return -1; } #if defined(HAS_IPX) && defined(SOL_IPX) if(wsa->addr->sa_family == WS_AF_IPX) { struct sockaddr_ipx* uipx = (struct sockaddr_ipx*)hdr.msg_name; int val=0; socklen_t len = sizeof(int); /* The packet type is stored at the ipx socket level; At least the linux kernel seems * to do something with it in case hdr.msg_name is NULL. Nonetheless can we use it to store * the packet type and then we can retrieve it using getsockopt. After that we can set the * ipx type in the sockaddr_opx structure with the stored value. */ if(getsockopt(fd, SOL_IPX, IPX_TYPE, &val, &len) != -1) uipx->sipx_type = val; } #endif } hdr.msg_iov = wsa->iovec + wsa->first_iovec; hdr.msg_iovlen = wsa->n_iovecs - wsa->first_iovec; #ifdef HAVE_STRUCT_MSGHDR_MSG_ACCRIGHTS hdr.msg_accrights = NULL; hdr.msg_accrightslen = 0; #else hdr.msg_control = NULL; hdr.msg_controllen = 0; hdr.msg_flags = 0; #endif while ((ret = sendmsg(fd, &hdr, flags)) == -1) { if (errno != EINTR) return -1; } n = ret; while (wsa->first_iovec < wsa->n_iovecs && wsa->iovec[wsa->first_iovec].iov_len <= n) n -= wsa->iovec[wsa->first_iovec++].iov_len; if (wsa->first_iovec < wsa->n_iovecs) { wsa->iovec[wsa->first_iovec].iov_base = (char*)wsa->iovec[wsa->first_iovec].iov_base + n; wsa->iovec[wsa->first_iovec].iov_len -= n; } return ret; } /*********************************************************************** * WS2_async_send (INTERNAL) * * Handler for overlapped send() operations. */ static NTSTATUS WS2_async_send( void *user, IO_STATUS_BLOCK *iosb, NTSTATUS status, void **apc, void **arg ) { struct ws2_async *wsa = user; int result = 0, fd; switch (status) { case STATUS_ALERTED: if ( wsa->n_iovecs <= wsa->first_iovec ) { /* Nothing to do */ status = STATUS_SUCCESS; break; } if ((status = wine_server_handle_to_fd( wsa->hSocket, FILE_WRITE_DATA, &fd, NULL ) )) break; /* check to see if the data is ready (non-blocking) */ result = WS2_send( fd, wsa, convert_flags(wsa->flags) ); wine_server_release_fd( wsa->hSocket, fd ); if (result >= 0) { if (wsa->first_iovec < wsa->n_iovecs) status = STATUS_PENDING; else status = STATUS_SUCCESS; iosb->Information += result; } else if (errno == EAGAIN) { status = STATUS_PENDING; } else { status = wsaErrStatus(); } break; } if (status != STATUS_PENDING) { iosb->u.Status = status; if (wsa->completion_func) { *apc = ws2_async_apc; *arg = wsa; } else release_async_io( &wsa->io ); } return status; } /*********************************************************************** * WS2_async_shutdown (INTERNAL) * * Handler for shutdown() operations on overlapped sockets. */ static NTSTATUS WS2_async_shutdown( void *user, IO_STATUS_BLOCK *iosb, NTSTATUS status, void **apc, void **arg ) { struct ws2_async_shutdown *wsa = user; int fd, err = 1; switch (status) { case STATUS_ALERTED: if ((status = wine_server_handle_to_fd( wsa->hSocket, 0, &fd, NULL ) )) break; switch ( wsa->type ) { case ASYNC_TYPE_READ: err = shutdown( fd, 0 ); break; case ASYNC_TYPE_WRITE: err = shutdown( fd, 1 ); break; } status = err ? wsaErrStatus() : STATUS_SUCCESS; wine_server_release_fd( wsa->hSocket, fd ); break; } iosb->u.Status = status; iosb->Information = 0; release_async_io( &wsa->io ); return status; } /*********************************************************************** * WS2_register_async_shutdown (INTERNAL) * * Helper function for WS_shutdown() on overlapped sockets. */ static int WS2_register_async_shutdown( SOCKET s, int type ) { struct ws2_async_shutdown *wsa; NTSTATUS status; TRACE("socket %04lx type %d\n", s, type); wsa = (struct ws2_async_shutdown *)alloc_async_io( sizeof(*wsa) ); if ( !wsa ) return WSAEFAULT; wsa->hSocket = SOCKET2HANDLE(s); wsa->type = type; SERVER_START_REQ( register_async ) { req->type = type; req->async.handle = wine_server_obj_handle( wsa->hSocket ); req->async.callback = wine_server_client_ptr( WS2_async_shutdown ); req->async.iosb = wine_server_client_ptr( &wsa->iosb ); req->async.arg = wine_server_client_ptr( wsa ); req->async.cvalue = 0; status = wine_server_call( req ); } SERVER_END_REQ; if (status != STATUS_PENDING) { HeapFree( GetProcessHeap(), 0, wsa ); return NtStatusToWSAError( status ); } return 0; } /*********************************************************************** * accept (WS2_32.1) */ SOCKET WINAPI WS_accept(SOCKET s, struct WS_sockaddr *addr, int *addrlen32) { NTSTATUS status; SOCKET as; BOOL is_blocking; TRACE("socket %04lx\n", s ); status = _is_blocking(s, &is_blocking); if (status) { set_error(status); return INVALID_SOCKET; } do { /* try accepting first (if there is a deferred connection) */ SERVER_START_REQ( accept_socket ) { req->lhandle = wine_server_obj_handle( SOCKET2HANDLE(s) ); req->access = GENERIC_READ|GENERIC_WRITE|SYNCHRONIZE; req->attributes = OBJ_INHERIT; status = wine_server_call( req ); as = HANDLE2SOCKET( wine_server_ptr_handle( reply->handle )); } SERVER_END_REQ; if (!status) { if (addr && WS_getpeername(as, addr, addrlen32)) { WS_closesocket(as); return SOCKET_ERROR; } TRACE("\taccepted %04lx\n", as); return as; } if (is_blocking && status == STATUS_CANT_WAIT) { int fd = get_sock_fd( s, FILE_READ_DATA, NULL ); /* block here */ do_block(fd, POLLIN, -1); _sync_sock_state(s); /* let wineserver notice connection */ release_sock_fd( s, fd ); } } while (is_blocking && status == STATUS_CANT_WAIT); set_error(status); return INVALID_SOCKET; } /*********************************************************************** * AcceptEx */ static BOOL WINAPI WS2_AcceptEx(SOCKET listener, SOCKET acceptor, PVOID dest, DWORD dest_len, DWORD local_addr_len, DWORD rem_addr_len, LPDWORD received, LPOVERLAPPED overlapped) { DWORD status; struct ws2_accept_async *wsa; int fd; TRACE("(%04lx, %04lx, %p, %d, %d, %d, %p, %p)\n", listener, acceptor, dest, dest_len, local_addr_len, rem_addr_len, received, overlapped); if (!dest) { SetLastError(WSAEINVAL); return FALSE; } if (!overlapped) { SetLastError(WSA_INVALID_PARAMETER); return FALSE; } if (!rem_addr_len) { SetLastError(WSAEFAULT); return FALSE; } fd = get_sock_fd( listener, FILE_READ_DATA, NULL ); if (fd == -1) { SetLastError(WSAENOTSOCK); return FALSE; } release_sock_fd( listener, fd ); fd = get_sock_fd( acceptor, FILE_READ_DATA, NULL ); if (fd == -1) { SetLastError(WSAENOTSOCK); return FALSE; } release_sock_fd( acceptor, fd ); wsa = (struct ws2_accept_async *)alloc_async_io( sizeof(*wsa) ); if(!wsa) { SetLastError(WSAEFAULT); return FALSE; } wsa->listen_socket = SOCKET2HANDLE(listener); wsa->accept_socket = SOCKET2HANDLE(acceptor); wsa->user_overlapped = overlapped; wsa->cvalue = !((ULONG_PTR)overlapped->hEvent & 1) ? (ULONG_PTR)overlapped : 0; wsa->buf = dest; wsa->data_len = dest_len; wsa->local_len = local_addr_len; wsa->remote_len = rem_addr_len; wsa->read = NULL; if (wsa->data_len) { /* set up a read request if we need it */ wsa->read = (struct ws2_async *)alloc_async_io( offsetof(struct ws2_async, iovec[1]) ); if (!wsa->read) { HeapFree( GetProcessHeap(), 0, wsa ); SetLastError(WSAEFAULT); return FALSE; } wsa->read->hSocket = wsa->accept_socket; wsa->read->flags = 0; wsa->read->lpFlags = &wsa->read->flags; wsa->read->addr = NULL; wsa->read->addrlen.ptr = NULL; wsa->read->control = NULL; wsa->read->n_iovecs = 1; wsa->read->first_iovec = 0; wsa->read->completion_func = NULL; wsa->read->iovec[0].iov_base = wsa->buf; wsa->read->iovec[0].iov_len = wsa->data_len; } SERVER_START_REQ( register_async ) { req->type = ASYNC_TYPE_READ; req->async.handle = wine_server_obj_handle( SOCKET2HANDLE(listener) ); req->async.event = wine_server_obj_handle( overlapped->hEvent ); req->async.callback = wine_server_client_ptr( WS2_async_accept ); req->async.iosb = wine_server_client_ptr( overlapped ); req->async.arg = wine_server_client_ptr( wsa ); req->async.cvalue = wsa->cvalue; status = wine_server_call( req ); } SERVER_END_REQ; if(status != STATUS_PENDING) { HeapFree( GetProcessHeap(), 0, wsa->read ); HeapFree( GetProcessHeap(), 0, wsa ); } SetLastError( NtStatusToWSAError(status) ); return FALSE; } /*********************************************************************** * GetAcceptExSockaddrs */ static void WINAPI WS2_GetAcceptExSockaddrs(PVOID buffer, DWORD data_size, DWORD local_size, DWORD remote_size, struct WS_sockaddr **local_addr, LPINT local_addr_len, struct WS_sockaddr **remote_addr, LPINT remote_addr_len) { char *cbuf = buffer; TRACE("(%p, %d, %d, %d, %p, %p, %p, %p)\n", buffer, data_size, local_size, remote_size, local_addr, local_addr_len, remote_addr, remote_addr_len ); cbuf += data_size; *local_addr_len = *(int *) cbuf; *local_addr = (struct WS_sockaddr *)(cbuf + sizeof(int)); cbuf += local_size; *remote_addr_len = *(int *) cbuf; *remote_addr = (struct WS_sockaddr *)(cbuf + sizeof(int)); } /*********************************************************************** * WSASendMsg */ int WINAPI WSASendMsg( SOCKET s, LPWSAMSG msg, DWORD dwFlags, LPDWORD lpNumberOfBytesSent, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine) { if (!msg) { SetLastError( WSAEFAULT ); return SOCKET_ERROR; } return WS2_sendto( s, msg->lpBuffers, msg->dwBufferCount, lpNumberOfBytesSent, dwFlags, msg->name, msg->namelen, lpOverlapped, lpCompletionRoutine ); } /*********************************************************************** * WSARecvMsg * * Perform a receive operation that is capable of returning message * control headers. It is important to note that the WSAMSG parameter * must remain valid throughout the operation, even when an overlapped * receive is performed. */ static int WINAPI WS2_WSARecvMsg( SOCKET s, LPWSAMSG msg, LPDWORD lpNumberOfBytesRecvd, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine ) { if (!msg) { SetLastError( WSAEFAULT ); return SOCKET_ERROR; } return WS2_recv_base( s, msg->lpBuffers, msg->dwBufferCount, lpNumberOfBytesRecvd, &msg->dwFlags, msg->name, &msg->namelen, lpOverlapped, lpCompletionRoutine, &msg->Control ); } /*********************************************************************** * interface_bind (INTERNAL) * * Take bind() calls on any name corresponding to a local network adapter and restrict the given socket to * operating only on the specified interface. This restriction consists of two components: * 1) An outgoing packet restriction suggesting the egress interface for all packets. * 2) An incoming packet restriction dropping packets not meant for the interface. * If the function succeeds in placing these restrictions (returns TRUE) then the name for the bind() may * safely be changed to INADDR_ANY, permitting the transmission and receipt of broadcast packets on the * socket. This behavior is only relevant to UDP sockets and is needed for applications that expect to be able * to receive broadcast packets on a socket that is bound to a specific network interface. */ static BOOL interface_bind( SOCKET s, int fd, struct sockaddr *addr ) { struct sockaddr_in *in_sock = (struct sockaddr_in *) addr; in_addr_t bind_addr = in_sock->sin_addr.s_addr; PIP_ADAPTER_INFO adapters = NULL, adapter; BOOL ret = FALSE; DWORD adap_size; int enable = 1; if (bind_addr == htonl(INADDR_ANY) || bind_addr == htonl(INADDR_LOOPBACK)) return FALSE; /* Not binding to a network adapter, special interface binding unnecessary. */ if (_get_fd_type(fd) != SOCK_DGRAM) return FALSE; /* Special interface binding is only necessary for UDP datagrams. */ if (GetAdaptersInfo(NULL, &adap_size) != ERROR_BUFFER_OVERFLOW) goto cleanup; adapters = HeapAlloc(GetProcessHeap(), 0, adap_size); if (adapters == NULL || GetAdaptersInfo(adapters, &adap_size) != NO_ERROR) goto cleanup; /* Search the IPv4 adapter list for the appropriate binding interface */ for (adapter = adapters; adapter != NULL; adapter = adapter->Next) { in_addr_t adapter_addr = (in_addr_t) inet_addr(adapter->IpAddressList.IpAddress.String); if (bind_addr == adapter_addr) { #if defined(IP_BOUND_IF) /* IP_BOUND_IF sets both the incoming and outgoing restriction at once */ if (setsockopt(fd, IPPROTO_IP, IP_BOUND_IF, &adapter->Index, sizeof(adapter->Index)) != 0) goto cleanup; ret = TRUE; #elif defined(LINUX_BOUND_IF) in_addr_t ifindex = (in_addr_t) htonl(adapter->Index); struct interface_filter specific_interface_filter; struct sock_fprog filter_prog; if (setsockopt(fd, IPPROTO_IP, IP_UNICAST_IF, &ifindex, sizeof(ifindex)) != 0) goto cleanup; /* Failed to suggest egress interface */ specific_interface_filter = generic_interface_filter; specific_interface_filter.iface_rule.k = adapter->Index; specific_interface_filter.ip_rule.k = htonl(adapter_addr); filter_prog.len = sizeof(generic_interface_filter)/sizeof(struct sock_filter); filter_prog.filter = (struct sock_filter *) &specific_interface_filter; if (setsockopt(fd, SOL_SOCKET, SO_ATTACH_FILTER, &filter_prog, sizeof(filter_prog)) != 0) goto cleanup; /* Failed to specify incoming packet filter */ ret = TRUE; #else FIXME("Broadcast packets on interface-bound sockets are not currently supported on this platform, " "receiving broadcast packets will not work on socket %04lx.\n", s); #endif break; } } /* Will soon be switching to INADDR_ANY: permit address reuse */ if (ret && setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(enable)) == 0) TRACE("Socket %04lx bound to interface index %d\n", s, adapter->Index); else ret = FALSE; cleanup: if(!ret) ERR("Failed to bind to interface, receiving broadcast packets will not work on socket %04lx.\n", s); HeapFree(GetProcessHeap(), 0, adapters); return ret; } /*********************************************************************** * bind (WS2_32.2) */ int WINAPI WS_bind(SOCKET s, const struct WS_sockaddr* name, int namelen) { int fd = get_sock_fd( s, 0, NULL ); int res = SOCKET_ERROR; TRACE("socket %04lx, ptr %p %s, length %d\n", s, name, debugstr_sockaddr(name), namelen); if (fd != -1) { if (!name || (name->sa_family && !supported_pf(name->sa_family))) { SetLastError(WSAEAFNOSUPPORT); } else { union generic_unix_sockaddr uaddr; unsigned int uaddrlen = ws_sockaddr_ws2u(name, namelen, &uaddr); if (!uaddrlen) { SetLastError(WSAEFAULT); } else { #ifdef IPV6_V6ONLY const struct sockaddr_in6 *in6 = (const struct sockaddr_in6*) &uaddr; if (name->sa_family == WS_AF_INET6 && !memcmp(&in6->sin6_addr, &in6addr_any, sizeof(struct in6_addr))) { int enable = 1; if (setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &enable, sizeof(enable)) == -1) { release_sock_fd( s, fd ); SetLastError(WSAEAFNOSUPPORT); return SOCKET_ERROR; } } #endif if (name->sa_family == WS_AF_INET) { struct sockaddr_in *in4 = (struct sockaddr_in*) &uaddr; if (memcmp(&in4->sin_addr, magic_loopback_addr, 4) == 0) { /* Trying to bind to the default host interface, using * INADDR_ANY instead*/ WARN("Trying to bind to magic IP address, using " "INADDR_ANY instead.\n"); in4->sin_addr.s_addr = htonl(INADDR_ANY); } else if (interface_bind(s, fd, &uaddr.addr)) in4->sin_addr.s_addr = htonl(INADDR_ANY); } if (bind(fd, &uaddr.addr, uaddrlen) < 0) { int loc_errno = errno; WARN("\tfailure - errno = %i\n", errno); errno = loc_errno; switch (errno) { case EADDRNOTAVAIL: SetLastError(WSAEINVAL); break; case EADDRINUSE: { int optval = 0; socklen_t optlen = sizeof(optval); /* Windows >= 2003 will return different results depending on * SO_REUSEADDR, WSAEACCES may be returned representing that * the socket hijacking protection prevented the bind */ if (!getsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&optval, &optlen) && optval) { SetLastError(WSAEACCES); break; } /* fall through */ } default: SetLastError(wsaErrno()); break; } } else { res=0; /* success */ } } } release_sock_fd( s, fd ); } return res; } /*********************************************************************** * closesocket (WS2_32.3) */ int WINAPI WS_closesocket(SOCKET s) { int res = SOCKET_ERROR, fd; if (num_startup) { fd = get_sock_fd(s, FILE_READ_DATA, NULL); if (fd >= 0) { release_sock_fd(s, fd); if (CloseHandle(SOCKET2HANDLE(s))) res = 0; } else SetLastError(WSAENOTSOCK); } else SetLastError(WSANOTINITIALISED); TRACE("(socket %04lx) -> %d\n", s, res); return res; } static int do_connect(int fd, const struct WS_sockaddr* name, int namelen) { union generic_unix_sockaddr uaddr; unsigned int uaddrlen = ws_sockaddr_ws2u(name, namelen, &uaddr); if (!uaddrlen) return WSAEFAULT; if (name->sa_family == WS_AF_INET) { struct sockaddr_in *in4 = (struct sockaddr_in*) &uaddr; if (memcmp(&in4->sin_addr, magic_loopback_addr, 4) == 0) { /* Trying to connect to magic replace-loopback address, * assuming we really want to connect to localhost */ TRACE("Trying to connect to magic IP address, using " "INADDR_LOOPBACK instead.\n"); in4->sin_addr.s_addr = htonl(INADDR_LOOPBACK); } } if (connect(fd, &uaddr.addr, uaddrlen) == 0) return 0; return wsaErrno(); } /*********************************************************************** * connect (WS2_32.4) */ int WINAPI WS_connect(SOCKET s, const struct WS_sockaddr* name, int namelen) { int fd = get_sock_fd( s, FILE_READ_DATA, NULL ); TRACE("socket %04lx, ptr %p %s, length %d\n", s, name, debugstr_sockaddr(name), namelen); if (fd != -1) { NTSTATUS status; BOOL is_blocking; int ret = do_connect(fd, name, namelen); if (ret == 0) goto connect_success; if (ret == WSAEINPROGRESS) { /* tell wineserver that a connection is in progress */ _enable_event(SOCKET2HANDLE(s), FD_CONNECT|FD_READ|FD_WRITE, FD_CONNECT, FD_WINE_CONNECTED|FD_WINE_LISTENING); status = _is_blocking( s, &is_blocking ); if (status) { release_sock_fd( s, fd ); set_error( status ); return SOCKET_ERROR; } if (is_blocking) { int result; /* block here */ do_block(fd, POLLIN | POLLOUT, -1); _sync_sock_state(s); /* let wineserver notice connection */ /* retrieve any error codes from it */ result = _get_sock_error(s, FD_CONNECT_BIT); if (result) SetLastError(NtStatusToWSAError(result)); else { goto connect_success; } } else { SetLastError(WSAEWOULDBLOCK); } } else { SetLastError(ret); } release_sock_fd( s, fd ); } return SOCKET_ERROR; connect_success: release_sock_fd( s, fd ); _enable_event(SOCKET2HANDLE(s), FD_CONNECT|FD_READ|FD_WRITE, FD_WINE_CONNECTED|FD_READ|FD_WRITE, FD_CONNECT|FD_WINE_LISTENING); TRACE("\tconnected %04lx\n", s); return 0; } /*********************************************************************** * WSAConnect (WS2_32.30) */ int WINAPI WSAConnect( SOCKET s, const struct WS_sockaddr* name, int namelen, LPWSABUF lpCallerData, LPWSABUF lpCalleeData, LPQOS lpSQOS, LPQOS lpGQOS ) { if ( lpCallerData || lpCalleeData || lpSQOS || lpGQOS ) FIXME("unsupported parameters!\n"); return WS_connect( s, name, namelen ); } /*********************************************************************** * ConnectEx */ static BOOL WINAPI WS2_ConnectEx(SOCKET s, const struct WS_sockaddr* name, int namelen, PVOID sendBuf, DWORD sendBufLen, LPDWORD sent, LPOVERLAPPED ov) { int fd, ret, status; if (!ov) { SetLastError( ERROR_INVALID_PARAMETER ); return FALSE; } fd = get_sock_fd( s, FILE_READ_DATA, NULL ); if (fd == -1) { SetLastError( WSAENOTSOCK ); return FALSE; } TRACE("socket %04lx, ptr %p %s, length %d, sendptr %p, len %d, ov %p\n", s, name, debugstr_sockaddr(name), namelen, sendBuf, sendBufLen, ov); ret = is_fd_bound(fd, NULL, NULL); if (ret <= 0) { SetLastError(ret == -1 ? wsaErrno() : WSAEINVAL); release_sock_fd( s, fd ); return FALSE; } ret = do_connect(fd, name, namelen); if (ret == 0) { WSABUF wsabuf; _enable_event(SOCKET2HANDLE(s), FD_CONNECT|FD_READ|FD_WRITE, FD_WINE_CONNECTED|FD_READ|FD_WRITE, FD_CONNECT|FD_WINE_LISTENING); wsabuf.len = sendBufLen; wsabuf.buf = (char*) sendBuf; /* WSASend takes care of completion if need be */ if (WSASend(s, &wsabuf, sendBuf ? 1 : 0, sent, 0, ov, NULL) != SOCKET_ERROR) goto connection_success; } else if (ret == WSAEINPROGRESS) { struct ws2_async *wsa; ULONG_PTR cvalue = (((ULONG_PTR)ov->hEvent & 1) == 0) ? (ULONG_PTR)ov : 0; _enable_event(SOCKET2HANDLE(s), FD_CONNECT|FD_READ|FD_WRITE, FD_CONNECT, FD_WINE_CONNECTED|FD_WINE_LISTENING); /* Indirectly call WSASend */ if (!(wsa = (struct ws2_async *)alloc_async_io( offsetof( struct ws2_async, iovec[1] )))) { SetLastError(WSAEFAULT); } else { IO_STATUS_BLOCK *iosb = (IO_STATUS_BLOCK *)ov; iosb->u.Status = STATUS_PENDING; iosb->Information = 0; wsa->hSocket = SOCKET2HANDLE(s); wsa->addr = NULL; wsa->addrlen.val = 0; wsa->flags = 0; wsa->lpFlags = &wsa->flags; wsa->control = NULL; wsa->n_iovecs = sendBuf ? 1 : 0; wsa->first_iovec = 0; wsa->completion_func = NULL; wsa->iovec[0].iov_base = sendBuf; wsa->iovec[0].iov_len = sendBufLen; SERVER_START_REQ( register_async ) { req->type = ASYNC_TYPE_WRITE; req->async.handle = wine_server_obj_handle( wsa->hSocket ); req->async.callback = wine_server_client_ptr( WS2_async_send ); req->async.iosb = wine_server_client_ptr( iosb ); req->async.arg = wine_server_client_ptr( wsa ); req->async.event = wine_server_obj_handle( ov->hEvent ); req->async.cvalue = cvalue; status = wine_server_call( req ); } SERVER_END_REQ; if (status != STATUS_PENDING) HeapFree(GetProcessHeap(), 0, wsa); /* If the connect already failed */ if (status == STATUS_PIPE_DISCONNECTED) status = _get_sock_error(s, FD_CONNECT_BIT); SetLastError( NtStatusToWSAError(status) ); } } else { SetLastError(ret); } release_sock_fd( s, fd ); return FALSE; connection_success: release_sock_fd( s, fd ); return TRUE; } /*********************************************************************** * getpeername (WS2_32.5) */ int WINAPI WS_getpeername(SOCKET s, struct WS_sockaddr *name, int *namelen) { int fd; int res; TRACE("socket %04lx, ptr %p, len %08x\n", s, name, namelen ? *namelen : 0); fd = get_sock_fd( s, 0, NULL ); res = SOCKET_ERROR; if (fd != -1) { union generic_unix_sockaddr uaddr; socklen_t uaddrlen = sizeof(uaddr); if (getpeername(fd, &uaddr.addr, &uaddrlen) == 0) { if (!name || !namelen) SetLastError(WSAEFAULT); else if (ws_sockaddr_u2ws(&uaddr.addr, name, namelen) != 0) /* The buffer was too small */ SetLastError(WSAEFAULT); else { res = 0; TRACE("=> %s\n", debugstr_sockaddr(name)); } } else SetLastError(wsaErrno()); release_sock_fd( s, fd ); } return res; } /* When binding to an UDP address with filter support the getsockname call on the socket * will always return 0.0.0.0 instead of the filtered interface address. This function * checks if the socket is interface-bound on UDP and return the correct address. * This is required because applications often do a bind() with port zero followed by a * getsockname() to retrieve the port and address acquired. */ static void interface_bind_check(int fd, struct sockaddr_in *addr) { #if !defined(IP_BOUND_IF) && !defined(LINUX_BOUND_IF) return; #else int ifindex; socklen_t len; /* Check for IPv4, address 0.0.0.0 and UDP socket */ if (addr->sin_family != AF_INET || addr->sin_addr.s_addr != 0) return; if (_get_fd_type(fd) != SOCK_DGRAM) return; ifindex = -1; len = sizeof(ifindex); #if defined(IP_BOUND_IF) getsockopt(fd, IPPROTO_IP, IP_BOUND_IF, &ifindex, &len); #elif defined(LINUX_BOUND_IF) getsockopt(fd, IPPROTO_IP, IP_UNICAST_IF, &ifindex, &len); if (ifindex > 0) ifindex = ntohl(ifindex); #endif if (ifindex > 0) { PIP_ADAPTER_INFO adapters, adapter; DWORD adap_size; if (GetAdaptersInfo(NULL, &adap_size) != ERROR_BUFFER_OVERFLOW) return; adapters = HeapAlloc(GetProcessHeap(), 0, adap_size); if (adapters && GetAdaptersInfo(adapters, &adap_size) == NO_ERROR) { /* Search the IPv4 adapter list for the appropriate bound interface */ for (adapter = adapters; adapter != NULL; adapter = adapter->Next) { in_addr_t adapter_addr; if (adapter->Index != ifindex) continue; adapter_addr = inet_addr(adapter->IpAddressList.IpAddress.String); addr->sin_addr.s_addr = adapter_addr; TRACE("reporting interface address from adapter %d\n", ifindex); break; } } HeapFree(GetProcessHeap(), 0, adapters); } #endif } /*********************************************************************** * getsockname (WS2_32.6) */ int WINAPI WS_getsockname(SOCKET s, struct WS_sockaddr *name, int *namelen) { int fd; int res; TRACE("socket %04lx, ptr %p, len %08x\n", s, name, namelen ? *namelen : 0); /* Check if what we've received is valid. Should we use IsBadReadPtr? */ if( (name == NULL) || (namelen == NULL) ) { SetLastError( WSAEFAULT ); return SOCKET_ERROR; } fd = get_sock_fd( s, 0, NULL ); res = SOCKET_ERROR; if (fd != -1) { union generic_unix_sockaddr uaddr; socklen_t uaddrlen; int bound = is_fd_bound(fd, &uaddr, &uaddrlen); if (bound <= 0) { SetLastError(bound == -1 ? wsaErrno() : WSAEINVAL); } else if (ws_sockaddr_u2ws(&uaddr.addr, name, namelen) != 0) { /* The buffer was too small */ SetLastError(WSAEFAULT); } else { interface_bind_check(fd, (struct sockaddr_in*) &uaddr); if (ws_sockaddr_u2ws(&uaddr.addr, name, namelen) != 0) { /* The buffer was too small */ SetLastError(WSAEFAULT); } else { res = 0; TRACE("=> %s\n", debugstr_sockaddr(name)); } } release_sock_fd( s, fd ); } return res; } /*********************************************************************** * getsockopt (WS2_32.7) */ INT WINAPI WS_getsockopt(SOCKET s, INT level, INT optname, char *optval, INT *optlen) { int fd; INT ret = 0; TRACE("(socket %04lx, %s, optval %s, optlen %p (%d))\n", s, debugstr_sockopt(level, optname), debugstr_optval(optval, 0), optlen, optlen ? *optlen : 0); switch(level) { case WS_SOL_SOCKET: { switch(optname) { /* Handle common cases. The special cases are below, sorted * alphabetically */ case WS_SO_BROADCAST: case WS_SO_DEBUG: case WS_SO_KEEPALIVE: case WS_SO_OOBINLINE: case WS_SO_RCVBUF: case WS_SO_REUSEADDR: case WS_SO_SNDBUF: if ( (fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; convert_sockopt(&level, &optname); if (getsockopt(fd, level, optname, optval, (socklen_t *)optlen) != 0 ) { SetLastError(wsaErrno()); ret = SOCKET_ERROR; } release_sock_fd( s, fd ); return ret; case WS_SO_ACCEPTCONN: if ( (fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; if (getsockopt(fd, SOL_SOCKET, SO_ACCEPTCONN, optval, (socklen_t *)optlen) != 0 ) { SetLastError(wsaErrno()); ret = SOCKET_ERROR; } else { /* BSD returns != 0 while Windows return exact == 1 */ if (*(int *)optval) *(int *)optval = 1; } release_sock_fd( s, fd ); return ret; case WS_SO_BSP_STATE: { int req_size, addr_size; WSAPROTOCOL_INFOW infow; CSADDR_INFO *csinfo; ret = ws_protocol_info(s, TRUE, &infow, &addr_size); if (ret) { if (infow.iAddressFamily == WS_AF_INET) addr_size = sizeof(struct sockaddr_in); else if (infow.iAddressFamily == WS_AF_INET6) addr_size = sizeof(struct sockaddr_in6); else { FIXME("Family %d is unsupported for SO_BSP_STATE\n", infow.iAddressFamily); SetLastError(WSAEAFNOSUPPORT); return SOCKET_ERROR; } req_size = sizeof(CSADDR_INFO) + addr_size * 2; if (*optlen < req_size) { ret = 0; SetLastError(WSAEFAULT); } else { union generic_unix_sockaddr uaddr; socklen_t uaddrlen; if ( (fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; csinfo = (CSADDR_INFO*) optval; /* Check if the sock is bound */ if (is_fd_bound(fd, &uaddr, &uaddrlen) == 1) { csinfo->LocalAddr.lpSockaddr = (LPSOCKADDR) (optval + sizeof(CSADDR_INFO)); ws_sockaddr_u2ws(&uaddr.addr, csinfo->LocalAddr.lpSockaddr, &addr_size); csinfo->LocalAddr.iSockaddrLength = addr_size; } else { csinfo->LocalAddr.lpSockaddr = NULL; csinfo->LocalAddr.iSockaddrLength = 0; } /* Check if the sock is connected */ if (!getpeername(fd, &uaddr.addr, &uaddrlen) && is_sockaddr_bound(&uaddr.addr, uaddrlen)) { csinfo->RemoteAddr.lpSockaddr = (LPSOCKADDR) (optval + sizeof(CSADDR_INFO) + addr_size); ws_sockaddr_u2ws(&uaddr.addr, csinfo->RemoteAddr.lpSockaddr, &addr_size); csinfo->RemoteAddr.iSockaddrLength = addr_size; } else { csinfo->RemoteAddr.lpSockaddr = NULL; csinfo->RemoteAddr.iSockaddrLength = 0; } csinfo->iSocketType = infow.iSocketType; csinfo->iProtocol = infow.iProtocol; release_sock_fd( s, fd ); } } return ret ? 0 : SOCKET_ERROR; } case WS_SO_DONTLINGER: { struct linger lingval; socklen_t len = sizeof(struct linger); if (!optlen || *optlen < sizeof(BOOL)|| !optval) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } if ( (fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; if (getsockopt(fd, SOL_SOCKET, SO_LINGER, &lingval, &len) != 0 ) { SetLastError(wsaErrno()); ret = SOCKET_ERROR; } else { *(BOOL *)optval = !lingval.l_onoff; *optlen = sizeof(BOOL); } release_sock_fd( s, fd ); return ret; } case WS_SO_CONNECT_TIME: { static int pretendtime = 0; struct WS_sockaddr addr; int len = sizeof(addr); if (!optlen || *optlen < sizeof(DWORD) || !optval) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } if (WS_getpeername(s, &addr, &len) == SOCKET_ERROR) *(DWORD *)optval = ~0u; else { if (!pretendtime) FIXME("WS_SO_CONNECT_TIME - faking results\n"); *(DWORD *)optval = pretendtime++; } *optlen = sizeof(DWORD); return ret; } /* As mentioned in setsockopt, Windows ignores this, so we * always return true here */ case WS_SO_DONTROUTE: if (!optlen || *optlen < sizeof(BOOL) || !optval) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } *(BOOL *)optval = TRUE; *optlen = sizeof(BOOL); return 0; case WS_SO_ERROR: { if ( (fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; if (getsockopt(fd, SOL_SOCKET, SO_ERROR, optval, (socklen_t *)optlen) != 0 ) { SetLastError(wsaErrno()); ret = SOCKET_ERROR; } release_sock_fd( s, fd ); /* The wineserver may have swallowed the error before us */ if (!ret && *(int*) optval == 0) { int i, events[FD_MAX_EVENTS]; _get_sock_errors(s, events); for (i = 0; i < FD_MAX_EVENTS; i++) { if(events[i]) { events[i] = NtStatusToWSAError(events[i]); TRACE("returning SO_ERROR %d from wine server\n", events[i]); *(int*) optval = events[i]; break; } } } return ret; } case WS_SO_LINGER: { struct linger lingval; socklen_t len = sizeof(struct linger); /* struct linger and LINGER have different sizes */ if (!optlen || *optlen < sizeof(LINGER) || !optval) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } if ( (fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; if (_get_fd_type(fd) == SOCK_DGRAM) { SetLastError(WSAENOPROTOOPT); ret = SOCKET_ERROR; } else if (getsockopt(fd, SOL_SOCKET, SO_LINGER, &lingval, &len) != 0) { SetLastError(wsaErrno()); ret = SOCKET_ERROR; } else { ((LINGER *)optval)->l_onoff = lingval.l_onoff; ((LINGER *)optval)->l_linger = lingval.l_linger; *optlen = sizeof(struct linger); } release_sock_fd( s, fd ); return ret; } case WS_SO_MAX_MSG_SIZE: if (!optlen || *optlen < sizeof(int) || !optval) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } TRACE("getting global SO_MAX_MSG_SIZE = 65507\n"); *(int *)optval = 65507; *optlen = sizeof(int); return 0; /* SO_OPENTYPE does not require a valid socket handle. */ case WS_SO_OPENTYPE: if (!optlen || *optlen < sizeof(int) || !optval) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } *(int *)optval = get_per_thread_data()->opentype; *optlen = sizeof(int); TRACE("getting global SO_OPENTYPE = 0x%x\n", *((int*)optval) ); return 0; case WS_SO_PROTOCOL_INFOA: case WS_SO_PROTOCOL_INFOW: { int size; WSAPROTOCOL_INFOW infow; ret = ws_protocol_info(s, optname == WS_SO_PROTOCOL_INFOW, &infow, &size); if (ret) { if (!optlen || !optval || *optlen < size) { if(optlen) *optlen = size; ret = 0; SetLastError(WSAEFAULT); } else memcpy(optval, &infow, size); } return ret ? 0 : SOCKET_ERROR; } case WS_SO_RCVTIMEO: case WS_SO_SNDTIMEO: { INT64 timeout; if (!optlen || *optlen < sizeof(int)|| !optval) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } if ( (fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; timeout = get_rcvsnd_timeo(fd, optname == WS_SO_RCVTIMEO); *(int *)optval = timeout <= UINT_MAX ? timeout : UINT_MAX; release_sock_fd( s, fd ); return ret; } case WS_SO_TYPE: { int sock_type; if (!optlen || *optlen < sizeof(int) || !optval) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } if ( (fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; sock_type = _get_fd_type(fd); if (sock_type == -1) { SetLastError(wsaErrno()); ret = SOCKET_ERROR; } else (*(int *)optval) = convert_socktype_u2w(sock_type); release_sock_fd( s, fd ); return ret; } default: TRACE("Unknown SOL_SOCKET optname: 0x%08x\n", optname); SetLastError(WSAENOPROTOOPT); return SOCKET_ERROR; } /* end switch(optname) */ }/* end case WS_SOL_SOCKET */ #ifdef HAS_IPX case WS_NSPROTO_IPX: { struct WS_sockaddr_ipx addr; IPX_ADDRESS_DATA *data; int namelen; switch(optname) { case WS_IPX_PTYPE: if ((fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; #ifdef SOL_IPX if(getsockopt(fd, SOL_IPX, IPX_TYPE, optval, (socklen_t *)optlen) == -1) { ret = SOCKET_ERROR; } #else { struct ipx val; socklen_t len=sizeof(struct ipx); if(getsockopt(fd, 0, SO_DEFAULT_HEADERS, &val, &len) == -1 ) ret = SOCKET_ERROR; else *optval = (int)val.ipx_pt; } #endif TRACE("ptype: %d (fd: %d)\n", *(int*)optval, fd); release_sock_fd( s, fd ); return ret; case WS_IPX_ADDRESS: /* * On a Win2000 system with one network card there are usually * three ipx devices one with a speed of 28.8kbps, 10Mbps and 100Mbps. * Using this call you can then retrieve info about this all. * In case of Linux it is a bit different. Usually you have * only "one" device active and further it is not possible to * query things like the linkspeed. */ FIXME("IPX_ADDRESS\n"); namelen = sizeof(struct WS_sockaddr_ipx); memset(&addr, 0, sizeof(struct WS_sockaddr_ipx)); WS_getsockname(s, (struct WS_sockaddr*)&addr, &namelen); data = (IPX_ADDRESS_DATA*)optval; memcpy(data->nodenum,addr.sa_nodenum,sizeof(data->nodenum)); memcpy(data->netnum,addr.sa_netnum,sizeof(data->netnum)); data->adapternum = 0; data->wan = FALSE; /* We are not on a wan for now .. */ data->status = FALSE; /* Since we are not on a wan, the wan link isn't up */ data->maxpkt = 1467; /* This value is the default one, at least on Win2k/WinXP */ data->linkspeed = 100000; /* Set the line speed in 100bit/s to 10 Mbit; * note 1MB = 1000kB in this case */ return 0; case WS_IPX_MAX_ADAPTER_NUM: FIXME("IPX_MAX_ADAPTER_NUM\n"); *(int*)optval = 1; /* As noted under IPX_ADDRESS we have just one card. */ return 0; default: FIXME("IPX optname:%x\n", optname); return SOCKET_ERROR; }/* end switch(optname) */ } /* end case WS_NSPROTO_IPX */ #endif #ifdef HAS_IRDA #define MAX_IRDA_DEVICES 10 case WS_SOL_IRLMP: switch(optname) { case WS_IRLMP_ENUMDEVICES: { char buf[sizeof(struct irda_device_list) + (MAX_IRDA_DEVICES - 1) * sizeof(struct irda_device_info)]; int res; socklen_t len = sizeof(buf); if ( (fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; res = getsockopt( fd, SOL_IRLMP, IRLMP_ENUMDEVICES, buf, &len ); release_sock_fd( s, fd ); if (res < 0) { SetLastError(wsaErrno()); return SOCKET_ERROR; } else { struct irda_device_list *src = (struct irda_device_list *)buf; DEVICELIST *dst = (DEVICELIST *)optval; INT needed = sizeof(DEVICELIST); unsigned int i; if (src->len > 0) needed += (src->len - 1) * sizeof(IRDA_DEVICE_INFO); if (*optlen < needed) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } *optlen = needed; TRACE("IRLMP_ENUMDEVICES: %d devices found:\n", src->len); dst->numDevice = src->len; for (i = 0; i < src->len; i++) { TRACE("saddr = %08x, daddr = %08x, info = %s, hints = %02x%02x\n", src->dev[i].saddr, src->dev[i].daddr, src->dev[i].info, src->dev[i].hints[0], src->dev[i].hints[1]); memcpy( dst->Device[i].irdaDeviceID, &src->dev[i].daddr, sizeof(dst->Device[i].irdaDeviceID) ) ; memcpy( dst->Device[i].irdaDeviceName, src->dev[i].info, sizeof(dst->Device[i].irdaDeviceName) ) ; memcpy( &dst->Device[i].irdaDeviceHints1, &src->dev[i].hints[0], sizeof(dst->Device[i].irdaDeviceHints1) ) ; memcpy( &dst->Device[i].irdaDeviceHints2, &src->dev[i].hints[1], sizeof(dst->Device[i].irdaDeviceHints2) ) ; dst->Device[i].irdaCharSet = src->dev[i].charset; } return 0; } } default: FIXME("IrDA optname:0x%x\n", optname); return SOCKET_ERROR; } break; /* case WS_SOL_IRLMP */ #undef MAX_IRDA_DEVICES #endif /* Levels WS_IPPROTO_TCP and WS_IPPROTO_IP convert directly */ case WS_IPPROTO_TCP: switch(optname) { case WS_TCP_NODELAY: if ( (fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; convert_sockopt(&level, &optname); if (getsockopt(fd, level, optname, optval, (socklen_t *)optlen) != 0 ) { SetLastError(wsaErrno()); ret = SOCKET_ERROR; } release_sock_fd( s, fd ); return ret; } FIXME("Unknown IPPROTO_TCP optname 0x%08x\n", optname); return SOCKET_ERROR; case WS_IPPROTO_IP: switch(optname) { case WS_IP_ADD_MEMBERSHIP: case WS_IP_DROP_MEMBERSHIP: #ifdef IP_HDRINCL case WS_IP_HDRINCL: #endif case WS_IP_MULTICAST_IF: case WS_IP_MULTICAST_LOOP: case WS_IP_MULTICAST_TTL: case WS_IP_OPTIONS: #ifdef IP_PKTINFO case WS_IP_PKTINFO: #endif case WS_IP_TOS: case WS_IP_TTL: #ifdef IP_UNICAST_IF case WS_IP_UNICAST_IF: #endif if ( (fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; convert_sockopt(&level, &optname); if (getsockopt(fd, level, optname, optval, (socklen_t *)optlen) != 0 ) { SetLastError(wsaErrno()); ret = SOCKET_ERROR; } release_sock_fd( s, fd ); return ret; case WS_IP_DONTFRAGMENT: FIXME("WS_IP_DONTFRAGMENT is always false!\n"); *(BOOL*)optval = FALSE; return 0; } FIXME("Unknown IPPROTO_IP optname 0x%08x\n", optname); return SOCKET_ERROR; case WS_IPPROTO_IPV6: switch(optname) { #ifdef IPV6_ADD_MEMBERSHIP case WS_IPV6_ADD_MEMBERSHIP: #endif #ifdef IPV6_DROP_MEMBERSHIP case WS_IPV6_DROP_MEMBERSHIP: #endif case WS_IPV6_MULTICAST_IF: case WS_IPV6_MULTICAST_HOPS: case WS_IPV6_MULTICAST_LOOP: case WS_IPV6_UNICAST_HOPS: case WS_IPV6_V6ONLY: #ifdef IPV6_UNICAST_IF case WS_IPV6_UNICAST_IF: #endif if ( (fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; convert_sockopt(&level, &optname); if (getsockopt(fd, level, optname, optval, (socklen_t *)optlen) != 0 ) { SetLastError(wsaErrno()); ret = SOCKET_ERROR; } release_sock_fd( s, fd ); return ret; case WS_IPV6_DONTFRAG: FIXME("WS_IPV6_DONTFRAG is always false!\n"); *(BOOL*)optval = FALSE; return 0; } FIXME("Unknown IPPROTO_IPV6 optname 0x%08x\n", optname); return SOCKET_ERROR; default: WARN("Unknown level: 0x%08x\n", level); SetLastError(WSAEINVAL); return SOCKET_ERROR; } /* end switch(level) */ } /*********************************************************************** * htonl (WS2_32.8) */ WS_u_long WINAPI WS_htonl(WS_u_long hostlong) { return htonl(hostlong); } /*********************************************************************** * htons (WS2_32.9) */ WS_u_short WINAPI WS_htons(WS_u_short hostshort) { return htons(hostshort); } /*********************************************************************** * WSAHtonl (WS2_32.46) * From MSDN description of error codes, this function should also * check if WinSock has been initialized and the socket is a valid * socket. But why? This function only translates a host byte order * u_long into a network byte order u_long... */ int WINAPI WSAHtonl(SOCKET s, WS_u_long hostlong, WS_u_long *lpnetlong) { if (lpnetlong) { *lpnetlong = htonl(hostlong); return 0; } SetLastError(WSAEFAULT); return SOCKET_ERROR; } /*********************************************************************** * WSAHtons (WS2_32.47) * From MSDN description of error codes, this function should also * check if WinSock has been initialized and the socket is a valid * socket. But why? This function only translates a host byte order * u_short into a network byte order u_short... */ int WINAPI WSAHtons(SOCKET s, WS_u_short hostshort, WS_u_short *lpnetshort) { if (lpnetshort) { *lpnetshort = htons(hostshort); return 0; } SetLastError(WSAEFAULT); return SOCKET_ERROR; } /*********************************************************************** * inet_addr (WS2_32.11) */ WS_u_long WINAPI WS_inet_addr(const char *cp) { if (!cp) return INADDR_NONE; return inet_addr(cp); } /*********************************************************************** * ntohl (WS2_32.14) */ WS_u_long WINAPI WS_ntohl(WS_u_long netlong) { return ntohl(netlong); } /*********************************************************************** * ntohs (WS2_32.15) */ WS_u_short WINAPI WS_ntohs(WS_u_short netshort) { return ntohs(netshort); } /*********************************************************************** * inet_ntoa (WS2_32.12) */ char* WINAPI WS_inet_ntoa(struct WS_in_addr in) { char* s = inet_ntoa(*((struct in_addr*)&in)); if( s ) { struct per_thread_data *data = get_per_thread_data(); strcpy(data->ntoa_buffer, s); return data->ntoa_buffer; } SetLastError(wsaErrno()); return NULL; } static const char *debugstr_wsaioctl(DWORD ioctl) { const char *buf_type, *family; switch(ioctl & 0x18000000) { case WS_IOC_WS2: family = "IOC_WS2"; break; case WS_IOC_PROTOCOL: family = "IOC_PROTOCOL"; break; case WS_IOC_VENDOR: family = "IOC_VENDOR"; break; default: /* WS_IOC_UNIX */ { BYTE size = (ioctl >> 16) & WS_IOCPARM_MASK; char x = (ioctl & 0xff00) >> 8; BYTE y = ioctl & 0xff; char args[14]; switch (ioctl & (WS_IOC_VOID|WS_IOC_INOUT)) { case WS_IOC_VOID: buf_type = "_IO"; sprintf(args, "%d, %d", x, y); break; case WS_IOC_IN: buf_type = "_IOW"; sprintf(args, "'%c', %d, %d", x, y, size); break; case WS_IOC_OUT: buf_type = "_IOR"; sprintf(args, "'%c', %d, %d", x, y, size); break; default: buf_type = "?"; sprintf(args, "'%c', %d, %d", x, y, size); break; } return wine_dbg_sprintf("%s(%s)", buf_type, args); } } /* We are different from WS_IOC_UNIX. */ switch (ioctl & (WS_IOC_VOID|WS_IOC_INOUT)) { case WS_IOC_VOID: buf_type = "_WSAIO"; break; case WS_IOC_INOUT: buf_type = "_WSAIORW"; break; case WS_IOC_IN: buf_type = "_WSAIOW"; break; case WS_IOC_OUT: buf_type = "_WSAIOR"; break; default: buf_type = "?"; break; } return wine_dbg_sprintf("%s(%s, %d)", buf_type, family, (USHORT)(ioctl & 0xffff)); } /* do an ioctl call through the server */ static DWORD server_ioctl_sock( SOCKET s, DWORD code, LPVOID in_buff, DWORD in_size, LPVOID out_buff, DWORD out_size, LPDWORD ret_size, LPWSAOVERLAPPED overlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE completion ) { HANDLE event = overlapped ? overlapped->hEvent : 0; HANDLE handle = SOCKET2HANDLE( s ); struct ws2_async *wsa; NTSTATUS status; PIO_STATUS_BLOCK io; if (!(wsa = (struct ws2_async *)alloc_async_io( sizeof(*wsa) ))) return WSA_NOT_ENOUGH_MEMORY; wsa->hSocket = handle; wsa->user_overlapped = overlapped; wsa->completion_func = completion; io = (overlapped ? (PIO_STATUS_BLOCK)overlapped : &wsa->local_iosb); status = NtDeviceIoControlFile( handle, event, ws2_async_apc, wsa, io, code, in_buff, in_size, out_buff, out_size ); if (status == STATUS_NOT_SUPPORTED) { FIXME("Unsupported ioctl %x (device=%x access=%x func=%x method=%x)\n", code, code >> 16, (code >> 14) & 3, (code >> 2) & 0xfff, code & 3); } else if (status == STATUS_SUCCESS) *ret_size = io->Information; /* "Information" is the size written to the output buffer */ if (status != STATUS_PENDING) RtlFreeHeap( GetProcessHeap(), 0, wsa ); return NtStatusToWSAError( status ); } /********************************************************************** * WSAIoctl (WS2_32.50) * */ INT WINAPI WSAIoctl(SOCKET s, DWORD code, LPVOID in_buff, DWORD in_size, LPVOID out_buff, DWORD out_size, LPDWORD ret_size, LPWSAOVERLAPPED overlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE completion ) { int fd; DWORD status = 0, total = 0; TRACE("%04lx, %s, %p, %d, %p, %d, %p, %p, %p\n", s, debugstr_wsaioctl(code), in_buff, in_size, out_buff, out_size, ret_size, overlapped, completion); switch (code) { case WS_FIONBIO: if (in_size != sizeof(WS_u_long) || IS_INTRESOURCE(in_buff)) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } TRACE("-> FIONBIO (%x)\n", *(WS_u_long*)in_buff); if (_get_sock_mask(s)) { /* AsyncSelect()'ed sockets are always nonblocking */ if (!*(WS_u_long *)in_buff) status = WSAEINVAL; break; } if (*(WS_u_long *)in_buff) _enable_event(SOCKET2HANDLE(s), 0, FD_WINE_NONBLOCKING, 0); else _enable_event(SOCKET2HANDLE(s), 0, 0, FD_WINE_NONBLOCKING); break; case WS_FIONREAD: { if (out_size != sizeof(WS_u_long) || IS_INTRESOURCE(out_buff)) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } if ((fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; if (ioctl(fd, FIONREAD, out_buff ) == -1) status = wsaErrno(); release_sock_fd( s, fd ); break; } case WS_SIOCATMARK: { unsigned int oob = 0, atmark = 0; socklen_t oobsize = sizeof(int); if (out_size != sizeof(WS_u_long) || IS_INTRESOURCE(out_buff)) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } if ((fd = get_sock_fd( s, 0, NULL )) == -1) return SOCKET_ERROR; /* SO_OOBINLINE sockets must always return TRUE to SIOCATMARK */ if ((getsockopt(fd, SOL_SOCKET, SO_OOBINLINE, &oob, &oobsize ) == -1) || (!oob && ioctl(fd, SIOCATMARK, &atmark ) == -1)) status = wsaErrno(); else { /* The SIOCATMARK value read from ioctl() is reversed * because BSD returns TRUE if it's in the OOB mark * while Windows returns TRUE if there are NO OOB bytes. */ (*(WS_u_long *) out_buff) = oob || !atmark; } release_sock_fd( s, fd ); break; } case WS_FIOASYNC: WARN("Warning: WS1.1 shouldn't be using async I/O\n"); SetLastError(WSAEINVAL); return SOCKET_ERROR; case WS_SIO_GET_INTERFACE_LIST: { INTERFACE_INFO* intArray = out_buff; DWORD size, numInt = 0, apiReturn; TRACE("-> SIO_GET_INTERFACE_LIST request\n"); if (!out_buff || !ret_size) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } fd = get_sock_fd( s, 0, NULL ); if (fd == -1) return SOCKET_ERROR; apiReturn = GetAdaptersInfo(NULL, &size); if (apiReturn == ERROR_BUFFER_OVERFLOW) { PIP_ADAPTER_INFO table = HeapAlloc(GetProcessHeap(),0,size); if (table) { if (GetAdaptersInfo(table, &size) == NO_ERROR) { PIP_ADAPTER_INFO ptr; for (ptr = table, numInt = 0; ptr; ptr = ptr->Next) { unsigned int addr, mask, bcast; struct ifreq ifInfo; /* Skip interfaces without an IPv4 address. */ if (ptr->IpAddressList.IpAddress.String[0] == '\0') continue; if ((numInt + 1)*sizeof(INTERFACE_INFO)/sizeof(IP_ADAPTER_INFO) > out_size) { WARN("Buffer too small = %u, out_size = %u\n", numInt + 1, out_size); status = WSAEFAULT; break; } /* Socket Status Flags */ lstrcpynA(ifInfo.ifr_name, ptr->AdapterName, IFNAMSIZ); if (ioctl(fd, SIOCGIFFLAGS, &ifInfo) < 0) { ERR("Error obtaining status flags for socket!\n"); status = WSAEINVAL; break; } else { /* set flags; the values of IFF_* are not the same under Linux and Windows, therefore must generate new flags */ intArray->iiFlags = 0; if (ifInfo.ifr_flags & IFF_BROADCAST) intArray->iiFlags |= WS_IFF_BROADCAST; #ifdef IFF_POINTOPOINT if (ifInfo.ifr_flags & IFF_POINTOPOINT) intArray->iiFlags |= WS_IFF_POINTTOPOINT; #endif if (ifInfo.ifr_flags & IFF_LOOPBACK) intArray->iiFlags |= WS_IFF_LOOPBACK; if (ifInfo.ifr_flags & IFF_UP) intArray->iiFlags |= WS_IFF_UP; if (ifInfo.ifr_flags & IFF_MULTICAST) intArray->iiFlags |= WS_IFF_MULTICAST; } addr = inet_addr(ptr->IpAddressList.IpAddress.String); mask = inet_addr(ptr->IpAddressList.IpMask.String); bcast = addr | ~mask; intArray->iiAddress.AddressIn.sin_family = AF_INET; intArray->iiAddress.AddressIn.sin_port = 0; intArray->iiAddress.AddressIn.sin_addr.WS_s_addr = addr; intArray->iiNetmask.AddressIn.sin_family = AF_INET; intArray->iiNetmask.AddressIn.sin_port = 0; intArray->iiNetmask.AddressIn.sin_addr.WS_s_addr = mask; intArray->iiBroadcastAddress.AddressIn.sin_family = AF_INET; intArray->iiBroadcastAddress.AddressIn.sin_port = 0; intArray->iiBroadcastAddress.AddressIn.sin_addr. WS_s_addr = bcast; intArray++; numInt++; } } else { ERR("Unable to get interface table!\n"); status = WSAEINVAL; } HeapFree(GetProcessHeap(),0,table); } else status = WSAEINVAL; } else if (apiReturn != ERROR_NO_DATA) { ERR("Unable to get interface table!\n"); status = WSAEINVAL; } /* Calculate the size of the array being returned */ total = sizeof(INTERFACE_INFO) * numInt; release_sock_fd( s, fd ); break; } case WS_SIO_ADDRESS_LIST_QUERY: { DWORD size; TRACE("-> SIO_ADDRESS_LIST_QUERY request\n"); if (!ret_size) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } if (out_size && out_size < FIELD_OFFSET(SOCKET_ADDRESS_LIST, Address[0])) { *ret_size = 0; SetLastError(WSAEINVAL); return SOCKET_ERROR; } if (GetAdaptersInfo(NULL, &size) == ERROR_BUFFER_OVERFLOW) { IP_ADAPTER_INFO *p, *table = HeapAlloc(GetProcessHeap(), 0, size); SOCKET_ADDRESS_LIST *sa_list; SOCKADDR_IN *sockaddr; SOCKET_ADDRESS *sa; unsigned int i; DWORD num; if (!table || GetAdaptersInfo(table, &size)) { HeapFree(GetProcessHeap(), 0, table); status = WSAEINVAL; break; } for (p = table, num = 0; p; p = p->Next) if (p->IpAddressList.IpAddress.String[0]) num++; total = FIELD_OFFSET(SOCKET_ADDRESS_LIST, Address[num]) + num * sizeof(*sockaddr); if (total > out_size || !out_buff) { *ret_size = total; HeapFree(GetProcessHeap(), 0, table); status = WSAEFAULT; break; } sa_list = out_buff; sa = sa_list->Address; sockaddr = (SOCKADDR_IN *)&sa[num]; sa_list->iAddressCount = num; for (p = table, i = 0; p; p = p->Next) { if (!p->IpAddressList.IpAddress.String[0]) continue; sa[i].lpSockaddr = (SOCKADDR *)&sockaddr[i]; sa[i].iSockaddrLength = sizeof(SOCKADDR); sockaddr[i].sin_family = AF_INET; sockaddr[i].sin_port = 0; sockaddr[i].sin_addr.WS_s_addr = inet_addr(p->IpAddressList.IpAddress.String); i++; } HeapFree(GetProcessHeap(), 0, table); } else { WARN("unable to get IP address list\n"); status = WSAEINVAL; } break; } case WS_SIO_FLUSH: FIXME("SIO_FLUSH: stub.\n"); break; case WS_SIO_GET_EXTENSION_FUNCTION_POINTER: { static const GUID connectex_guid = WSAID_CONNECTEX; static const GUID disconnectex_guid = WSAID_DISCONNECTEX; static const GUID acceptex_guid = WSAID_ACCEPTEX; static const GUID getaccepexsockaddrs_guid = WSAID_GETACCEPTEXSOCKADDRS; static const GUID transmitfile_guid = WSAID_TRANSMITFILE; static const GUID transmitpackets_guid = WSAID_TRANSMITPACKETS; static const GUID wsarecvmsg_guid = WSAID_WSARECVMSG; static const GUID wsasendmsg_guid = WSAID_WSASENDMSG; if ( IsEqualGUID(&connectex_guid, in_buff) ) { *(LPFN_CONNECTEX *)out_buff = WS2_ConnectEx; break; } else if ( IsEqualGUID(&disconnectex_guid, in_buff) ) { FIXME("SIO_GET_EXTENSION_FUNCTION_POINTER: unimplemented DisconnectEx\n"); } else if ( IsEqualGUID(&acceptex_guid, in_buff) ) { *(LPFN_ACCEPTEX *)out_buff = WS2_AcceptEx; break; } else if ( IsEqualGUID(&getaccepexsockaddrs_guid, in_buff) ) { *(LPFN_GETACCEPTEXSOCKADDRS *)out_buff = WS2_GetAcceptExSockaddrs; break; } else if ( IsEqualGUID(&transmitfile_guid, in_buff) ) { FIXME("SIO_GET_EXTENSION_FUNCTION_POINTER: unimplemented TransmitFile\n"); } else if ( IsEqualGUID(&transmitpackets_guid, in_buff) ) { FIXME("SIO_GET_EXTENSION_FUNCTION_POINTER: unimplemented TransmitPackets\n"); } else if ( IsEqualGUID(&wsarecvmsg_guid, in_buff) ) { *(LPFN_WSARECVMSG *)out_buff = WS2_WSARecvMsg; break; } else if ( IsEqualGUID(&wsasendmsg_guid, in_buff) ) { *(LPFN_WSASENDMSG *)out_buff = WSASendMsg; break; } else FIXME("SIO_GET_EXTENSION_FUNCTION_POINTER %s: stub\n", debugstr_guid(in_buff)); status = WSAEOPNOTSUPP; break; } case WS_SIO_KEEPALIVE_VALS: { struct tcp_keepalive *k; int keepalive, keepidle, keepintvl; if (!in_buff || in_size < sizeof(struct tcp_keepalive)) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } k = in_buff; keepalive = k->onoff ? 1 : 0; keepidle = max( 1, (k->keepalivetime + 500) / 1000 ); keepintvl = max( 1, (k->keepaliveinterval + 500) / 1000 ); TRACE("onoff: %d, keepalivetime: %d, keepaliveinterval: %d\n", keepalive, keepidle, keepintvl); fd = get_sock_fd(s, 0, NULL); if (setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (void *)&keepalive, sizeof(int)) == -1) status = WSAEINVAL; #if defined(TCP_KEEPIDLE) && defined(TCP_KEEPINTVL) /* these values need to be set only if SO_KEEPALIVE is enabled */ else if(keepalive) { if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPIDLE, (void *)&keepidle, sizeof(int)) == -1) status = WSAEINVAL; else if (setsockopt(fd, IPPROTO_TCP, TCP_KEEPINTVL, (void *)&keepintvl, sizeof(int)) == -1) status = WSAEINVAL; } #else else FIXME("ignoring keepalive interval and timeout\n"); #endif release_sock_fd(s, fd); break; } case WS_SIO_ROUTING_INTERFACE_QUERY: { struct WS_sockaddr *daddr = (struct WS_sockaddr *)in_buff; struct WS_sockaddr_in *daddr_in = (struct WS_sockaddr_in *)daddr; struct WS_sockaddr_in *saddr_in = out_buff; MIB_IPFORWARDROW row; PMIB_IPADDRTABLE ipAddrTable = NULL; DWORD size, i, found_index; TRACE("-> WS_SIO_ROUTING_INTERFACE_QUERY request\n"); if (!in_buff || in_size < sizeof(struct WS_sockaddr) || !out_buff || out_size < sizeof(struct WS_sockaddr_in) || !ret_size) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } if (daddr->sa_family != AF_INET) { FIXME("unsupported address family %d\n", daddr->sa_family); status = WSAEAFNOSUPPORT; break; } if (GetBestRoute(daddr_in->sin_addr.S_un.S_addr, 0, &row) != NOERROR || GetIpAddrTable(NULL, &size, FALSE) != ERROR_INSUFFICIENT_BUFFER) { status = WSAEFAULT; break; } ipAddrTable = HeapAlloc(GetProcessHeap(), 0, size); if (GetIpAddrTable(ipAddrTable, &size, FALSE)) { HeapFree(GetProcessHeap(), 0, ipAddrTable); status = WSAEFAULT; break; } for (i = 0, found_index = ipAddrTable->dwNumEntries; i < ipAddrTable->dwNumEntries; i++) { if (ipAddrTable->table[i].dwIndex == row.dwForwardIfIndex) found_index = i; } if (found_index == ipAddrTable->dwNumEntries) { ERR("no matching IP address for interface %d\n", row.dwForwardIfIndex); HeapFree(GetProcessHeap(), 0, ipAddrTable); status = WSAEFAULT; break; } saddr_in->sin_family = AF_INET; saddr_in->sin_addr.S_un.S_addr = ipAddrTable->table[found_index].dwAddr; saddr_in->sin_port = 0; total = sizeof(struct WS_sockaddr_in); HeapFree(GetProcessHeap(), 0, ipAddrTable); break; } case WS_SIO_SET_COMPATIBILITY_MODE: TRACE("WS_SIO_SET_COMPATIBILITY_MODE ignored\n"); status = WSAEOPNOTSUPP; break; case WS_SIO_UDP_CONNRESET: FIXME("WS_SIO_UDP_CONNRESET stub\n"); break; case 0x667e: /* Netscape tries hard to use bogus ioctl 0x667e */ SetLastError(WSAEOPNOTSUPP); return SOCKET_ERROR; default: status = WSAEOPNOTSUPP; break; } if (status == WSAEOPNOTSUPP) { status = server_ioctl_sock(s, code, in_buff, in_size, out_buff, out_size, &total, overlapped, completion); if (status != WSAEOPNOTSUPP) { if (status == 0 || status == WSA_IO_PENDING) TRACE("-> %s request\n", debugstr_wsaioctl(code)); else ERR("-> %s request failed with status 0x%x\n", debugstr_wsaioctl(code), status); /* overlapped and completion operations will be handled by the server */ completion = NULL; overlapped = NULL; } else FIXME("unsupported WS_IOCTL cmd (%s)\n", debugstr_wsaioctl(code)); } if (completion) { FIXME( "completion routine %p not supported\n", completion ); } else if (overlapped) { ULONG_PTR cvalue = (overlapped && ((ULONG_PTR)overlapped->hEvent & 1) == 0) ? (ULONG_PTR)overlapped : 0; overlapped->Internal = status; overlapped->InternalHigh = total; if (overlapped->hEvent) NtSetEvent( overlapped->hEvent, NULL ); if (cvalue) WS_AddCompletion( HANDLE2SOCKET(s), cvalue, status, total ); } if (!status) { if (ret_size) *ret_size = total; return 0; } SetLastError( status ); return SOCKET_ERROR; } /*********************************************************************** * ioctlsocket (WS2_32.10) */ int WINAPI WS_ioctlsocket(SOCKET s, LONG cmd, WS_u_long *argp) { DWORD ret_size; return WSAIoctl( s, cmd, argp, sizeof(WS_u_long), argp, sizeof(WS_u_long), &ret_size, NULL, NULL ); } /*********************************************************************** * listen (WS2_32.13) */ int WINAPI WS_listen(SOCKET s, int backlog) { int fd = get_sock_fd( s, FILE_READ_DATA, NULL ), ret = SOCKET_ERROR; TRACE("socket %04lx, backlog %d\n", s, backlog); if (fd != -1) { int bound = is_fd_bound(fd, NULL, NULL); if (bound <= 0) { SetLastError(bound == -1 ? wsaErrno() : WSAEINVAL); } else if (listen(fd, backlog) == 0) { _enable_event(SOCKET2HANDLE(s), FD_ACCEPT, FD_WINE_LISTENING, FD_CONNECT|FD_WINE_CONNECTED); ret = 0; } else SetLastError(wsaErrno()); release_sock_fd( s, fd ); } else SetLastError(WSAENOTSOCK); return ret; } /*********************************************************************** * recv (WS2_32.16) */ int WINAPI WS_recv(SOCKET s, char *buf, int len, int flags) { DWORD n, dwFlags = flags; WSABUF wsabuf; wsabuf.len = len; wsabuf.buf = buf; if ( WS2_recv_base(s, &wsabuf, 1, &n, &dwFlags, NULL, NULL, NULL, NULL, NULL) == SOCKET_ERROR ) return SOCKET_ERROR; else return n; } /*********************************************************************** * recvfrom (WS2_32.17) */ int WINAPI WS_recvfrom(SOCKET s, char *buf, INT len, int flags, struct WS_sockaddr *from, int *fromlen) { DWORD n, dwFlags = flags; WSABUF wsabuf; wsabuf.len = len; wsabuf.buf = buf; if ( WS2_recv_base(s, &wsabuf, 1, &n, &dwFlags, from, fromlen, NULL, NULL, NULL) == SOCKET_ERROR ) return SOCKET_ERROR; else return n; } /* allocate a poll array for the corresponding fd sets */ static struct pollfd *fd_sets_to_poll( const WS_fd_set *readfds, const WS_fd_set *writefds, const WS_fd_set *exceptfds, int *count_ptr ) { unsigned int i, j = 0, count = 0; struct pollfd *fds; if (readfds) count += readfds->fd_count; if (writefds) count += writefds->fd_count; if (exceptfds) count += exceptfds->fd_count; *count_ptr = count; if (!count) { SetLastError(WSAEINVAL); return NULL; } if (!(fds = HeapAlloc( GetProcessHeap(), 0, count * sizeof(fds[0])))) { SetLastError( ERROR_NOT_ENOUGH_MEMORY ); return NULL; } if (readfds) for (i = 0; i < readfds->fd_count; i++, j++) { fds[j].fd = get_sock_fd( readfds->fd_array[i], FILE_READ_DATA, NULL ); if (fds[j].fd == -1) goto failed; fds[j].revents = 0; if (is_fd_bound(fds[j].fd, NULL, NULL) == 1) { fds[j].events = POLLIN; } else { release_sock_fd( readfds->fd_array[i], fds[j].fd ); fds[j].fd = -1; fds[j].events = 0; } } if (writefds) for (i = 0; i < writefds->fd_count; i++, j++) { fds[j].fd = get_sock_fd( writefds->fd_array[i], FILE_WRITE_DATA, NULL ); if (fds[j].fd == -1) goto failed; fds[j].revents = 0; if (is_fd_bound(fds[j].fd, NULL, NULL) == 1 || _get_fd_type(fds[j].fd) == SOCK_DGRAM) { fds[j].events = POLLOUT; } else { release_sock_fd( writefds->fd_array[i], fds[j].fd ); fds[j].fd = -1; fds[j].events = 0; } } if (exceptfds) for (i = 0; i < exceptfds->fd_count; i++, j++) { fds[j].fd = get_sock_fd( exceptfds->fd_array[i], 0, NULL ); if (fds[j].fd == -1) goto failed; fds[j].revents = 0; if (is_fd_bound(fds[j].fd, NULL, NULL) == 1) { int oob_inlined = 0; socklen_t olen = sizeof(oob_inlined); fds[j].events = POLLHUP; /* Check if we need to test for urgent data or not */ getsockopt(fds[j].fd, SOL_SOCKET, SO_OOBINLINE, (char*) &oob_inlined, &olen); if (!oob_inlined) fds[j].events |= POLLPRI; } else { release_sock_fd( exceptfds->fd_array[i], fds[j].fd ); fds[j].fd = -1; fds[j].events = 0; } } return fds; failed: count = j; j = 0; if (readfds) for (i = 0; i < readfds->fd_count && j < count; i++, j++) if (fds[j].fd != -1) release_sock_fd( readfds->fd_array[i], fds[j].fd ); if (writefds) for (i = 0; i < writefds->fd_count && j < count; i++, j++) if (fds[j].fd != -1) release_sock_fd( writefds->fd_array[i], fds[j].fd ); if (exceptfds) for (i = 0; i < exceptfds->fd_count && j < count; i++, j++) if (fds[j].fd != -1) release_sock_fd( exceptfds->fd_array[i], fds[j].fd ); HeapFree( GetProcessHeap(), 0, fds ); return NULL; } /* release the file descriptor obtained in fd_sets_to_poll */ /* must be called with the original fd_set arrays, before calling get_poll_results */ static void release_poll_fds( const WS_fd_set *readfds, const WS_fd_set *writefds, const WS_fd_set *exceptfds, struct pollfd *fds ) { unsigned int i, j = 0; if (readfds) { for (i = 0; i < readfds->fd_count; i++, j++) if (fds[j].fd != -1) release_sock_fd( readfds->fd_array[i], fds[j].fd ); } if (writefds) { for (i = 0; i < writefds->fd_count; i++, j++) if (fds[j].fd != -1) release_sock_fd( writefds->fd_array[i], fds[j].fd ); } if (exceptfds) { for (i = 0; i < exceptfds->fd_count; i++, j++) { if (fds[j].fd == -1) continue; release_sock_fd( exceptfds->fd_array[i], fds[j].fd ); if (fds[j].revents & POLLHUP) { int fd = get_sock_fd( exceptfds->fd_array[i], 0, NULL ); if (fd != -1) release_sock_fd( exceptfds->fd_array[i], fd ); else fds[j].revents = 0; } } } } static int do_poll(struct pollfd *pollfds, int count, int timeout) { struct timeval tv1, tv2; int ret, torig = timeout; if (timeout > 0) gettimeofday( &tv1, 0 ); while ((ret = poll( pollfds, count, timeout )) < 0) { if (errno != EINTR) break; if (timeout < 0) continue; if (timeout == 0) return 0; gettimeofday( &tv2, 0 ); tv2.tv_sec -= tv1.tv_sec; tv2.tv_usec -= tv1.tv_usec; if (tv2.tv_usec < 0) { tv2.tv_usec += 1000000; tv2.tv_sec -= 1; } timeout = torig - (tv2.tv_sec * 1000) - (tv2.tv_usec + 999) / 1000; if (timeout <= 0) return 0; } return ret; } /* map the poll results back into the Windows fd sets */ static int get_poll_results( WS_fd_set *readfds, WS_fd_set *writefds, WS_fd_set *exceptfds, const struct pollfd *fds ) { const struct pollfd *poll_writefds = fds + (readfds ? readfds->fd_count : 0); const struct pollfd *poll_exceptfds = poll_writefds + (writefds ? writefds->fd_count : 0); unsigned int i, k, total = 0; if (readfds) { for (i = k = 0; i < readfds->fd_count; i++) { if (fds[i].revents || (readfds == writefds && (poll_writefds[i].revents & POLLOUT) && !(poll_writefds[i].revents & POLLHUP)) || (readfds == exceptfds && poll_exceptfds[i].revents)) readfds->fd_array[k++] = readfds->fd_array[i]; } readfds->fd_count = k; total += k; } if (writefds && writefds != readfds) { for (i = k = 0; i < writefds->fd_count; i++) { if (((poll_writefds[i].revents & POLLOUT) && !(poll_writefds[i].revents & POLLHUP)) || (writefds == exceptfds && poll_exceptfds[i].revents)) writefds->fd_array[k++] = writefds->fd_array[i]; } writefds->fd_count = k; total += k; } if (exceptfds && exceptfds != readfds && exceptfds != writefds) { for (i = k = 0; i < exceptfds->fd_count; i++) if (poll_exceptfds[i].revents) exceptfds->fd_array[k++] = exceptfds->fd_array[i]; exceptfds->fd_count = k; total += k; } return total; } /*********************************************************************** * select (WS2_32.18) */ int WINAPI WS_select(int nfds, WS_fd_set *ws_readfds, WS_fd_set *ws_writefds, WS_fd_set *ws_exceptfds, const struct WS_timeval* ws_timeout) { struct pollfd *pollfds; int count, ret, timeout = -1; TRACE("read %p, write %p, excp %p timeout %p\n", ws_readfds, ws_writefds, ws_exceptfds, ws_timeout); if (!(pollfds = fd_sets_to_poll( ws_readfds, ws_writefds, ws_exceptfds, &count ))) return SOCKET_ERROR; if (ws_timeout) timeout = (ws_timeout->tv_sec * 1000) + (ws_timeout->tv_usec + 999) / 1000; ret = do_poll(pollfds, count, timeout); release_poll_fds( ws_readfds, ws_writefds, ws_exceptfds, pollfds ); if (ret == -1) SetLastError(wsaErrno()); else ret = get_poll_results( ws_readfds, ws_writefds, ws_exceptfds, pollfds ); HeapFree( GetProcessHeap(), 0, pollfds ); return ret; } /* helper to send completion messages for client-only i/o operation case */ static void WS_AddCompletion( SOCKET sock, ULONG_PTR CompletionValue, NTSTATUS CompletionStatus, ULONG Information ) { SERVER_START_REQ( add_fd_completion ) { req->handle = wine_server_obj_handle( SOCKET2HANDLE(sock) ); req->cvalue = CompletionValue; req->status = CompletionStatus; req->information = Information; wine_server_call( req ); } SERVER_END_REQ; } /*********************************************************************** * send (WS2_32.19) */ int WINAPI WS_send(SOCKET s, const char *buf, int len, int flags) { DWORD n; WSABUF wsabuf; wsabuf.len = len; wsabuf.buf = (char*) buf; if ( WS2_sendto( s, &wsabuf, 1, &n, flags, NULL, 0, NULL, NULL) == SOCKET_ERROR ) return SOCKET_ERROR; else return n; } /*********************************************************************** * WSASend (WS2_32.72) */ INT WINAPI WSASend( SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount, LPDWORD lpNumberOfBytesSent, DWORD dwFlags, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine ) { return WS2_sendto( s, lpBuffers, dwBufferCount, lpNumberOfBytesSent, dwFlags, NULL, 0, lpOverlapped, lpCompletionRoutine ); } /*********************************************************************** * WSASendDisconnect (WS2_32.73) */ INT WINAPI WSASendDisconnect( SOCKET s, LPWSABUF lpBuffers ) { return WS_shutdown( s, SD_SEND ); } static int WS2_sendto( SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount, LPDWORD lpNumberOfBytesSent, DWORD dwFlags, const struct WS_sockaddr *to, int tolen, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine ) { unsigned int i, options; int n, fd, err, overlapped, flags; struct ws2_async *wsa = NULL, localwsa; int totalLength = 0; DWORD bytes_sent; BOOL is_blocking; TRACE("socket %04lx, wsabuf %p, nbufs %d, flags %d, to %p, tolen %d, ovl %p, func %p\n", s, lpBuffers, dwBufferCount, dwFlags, to, tolen, lpOverlapped, lpCompletionRoutine); fd = get_sock_fd( s, FILE_WRITE_DATA, &options ); TRACE( "fd=%d, options=%x\n", fd, options ); if ( fd == -1 ) return SOCKET_ERROR; if (!lpOverlapped && !lpNumberOfBytesSent) { err = WSAEFAULT; goto error; } overlapped = (lpOverlapped || lpCompletionRoutine) && !(options & (FILE_SYNCHRONOUS_IO_ALERT | FILE_SYNCHRONOUS_IO_NONALERT)); if (overlapped || dwBufferCount > 1) { if (!(wsa = (struct ws2_async *)alloc_async_io( offsetof(struct ws2_async, iovec[dwBufferCount])))) { err = WSAEFAULT; goto error; } } else wsa = &localwsa; wsa->hSocket = SOCKET2HANDLE(s); wsa->addr = (struct WS_sockaddr *)to; wsa->addrlen.val = tolen; wsa->flags = dwFlags; wsa->lpFlags = &wsa->flags; wsa->control = NULL; wsa->n_iovecs = dwBufferCount; wsa->first_iovec = 0; for ( i = 0; i < dwBufferCount; i++ ) { wsa->iovec[i].iov_base = lpBuffers[i].buf; wsa->iovec[i].iov_len = lpBuffers[i].len; totalLength += lpBuffers[i].len; } flags = convert_flags(dwFlags); n = WS2_send( fd, wsa, flags ); if (n == -1 && errno != EAGAIN) { err = wsaErrno(); goto error; } if (overlapped) { IO_STATUS_BLOCK *iosb = lpOverlapped ? (IO_STATUS_BLOCK *)lpOverlapped : &wsa->local_iosb; ULONG_PTR cvalue = (lpOverlapped && ((ULONG_PTR)lpOverlapped->hEvent & 1) == 0) ? (ULONG_PTR)lpOverlapped : 0; wsa->user_overlapped = lpOverlapped; wsa->completion_func = lpCompletionRoutine; release_sock_fd( s, fd ); if (n == -1 || n < totalLength) { iosb->u.Status = STATUS_PENDING; iosb->Information = n == -1 ? 0 : n; SERVER_START_REQ( register_async ) { req->type = ASYNC_TYPE_WRITE; req->async.handle = wine_server_obj_handle( wsa->hSocket ); req->async.callback = wine_server_client_ptr( WS2_async_send ); req->async.iosb = wine_server_client_ptr( iosb ); req->async.arg = wine_server_client_ptr( wsa ); req->async.event = wine_server_obj_handle( lpCompletionRoutine ? 0 : lpOverlapped->hEvent ); req->async.cvalue = cvalue; err = wine_server_call( req ); } SERVER_END_REQ; /* Enable the event only after starting the async. The server will deliver it as soon as the async is done. */ _enable_event(SOCKET2HANDLE(s), FD_WRITE, 0, 0); if (err != STATUS_PENDING) HeapFree( GetProcessHeap(), 0, wsa ); SetLastError(NtStatusToWSAError( err )); return SOCKET_ERROR; } iosb->u.Status = STATUS_SUCCESS; iosb->Information = n; if (lpNumberOfBytesSent) *lpNumberOfBytesSent = n; if (!wsa->completion_func) { if (cvalue) WS_AddCompletion( s, cvalue, STATUS_SUCCESS, n ); if (lpOverlapped->hEvent) SetEvent( lpOverlapped->hEvent ); HeapFree( GetProcessHeap(), 0, wsa ); } else NtQueueApcThread( GetCurrentThread(), (PNTAPCFUNC)ws2_async_apc, (ULONG_PTR)wsa, (ULONG_PTR)iosb, 0 ); SetLastError(ERROR_SUCCESS); return 0; } if ((err = _is_blocking( s, &is_blocking ))) { err = NtStatusToWSAError( err ); goto error; } if ( is_blocking ) { /* On a blocking non-overlapped stream socket, * sending blocks until the entire buffer is sent. */ DWORD timeout_start = GetTickCount(); bytes_sent = n == -1 ? 0 : n; while (wsa->first_iovec < wsa->n_iovecs) { struct pollfd pfd; int poll_timeout = -1; INT64 timeout = get_rcvsnd_timeo(fd, FALSE); if (timeout) { timeout -= GetTickCount() - timeout_start; if (timeout < 0) poll_timeout = 0; else poll_timeout = timeout <= INT_MAX ? timeout : INT_MAX; } pfd.fd = fd; pfd.events = POLLOUT; if (!poll_timeout || !poll( &pfd, 1, poll_timeout )) { err = WSAETIMEDOUT; goto error; /* msdn says a timeout in send is fatal */ } n = WS2_send( fd, wsa, flags ); if (n == -1 && errno != EAGAIN) { err = wsaErrno(); goto error; } if (n >= 0) bytes_sent += n; } } else /* non-blocking */ { if (n < totalLength) _enable_event(SOCKET2HANDLE(s), FD_WRITE, 0, 0); if (n == -1) { err = WSAEWOULDBLOCK; goto error; } bytes_sent = n; } TRACE(" -> %i bytes\n", bytes_sent); if (lpNumberOfBytesSent) *lpNumberOfBytesSent = bytes_sent; if (wsa != &localwsa) HeapFree( GetProcessHeap(), 0, wsa ); release_sock_fd( s, fd ); SetLastError(ERROR_SUCCESS); return 0; error: if (wsa != &localwsa) HeapFree( GetProcessHeap(), 0, wsa ); release_sock_fd( s, fd ); WARN(" -> ERROR %d\n", err); SetLastError(err); return SOCKET_ERROR; } /*********************************************************************** * WSASendTo (WS2_32.74) */ INT WINAPI WSASendTo( SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount, LPDWORD lpNumberOfBytesSent, DWORD dwFlags, const struct WS_sockaddr *to, int tolen, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine ) { return WS2_sendto( s, lpBuffers, dwBufferCount, lpNumberOfBytesSent, dwFlags, to, tolen, lpOverlapped, lpCompletionRoutine ); } /*********************************************************************** * sendto (WS2_32.20) */ int WINAPI WS_sendto(SOCKET s, const char *buf, int len, int flags, const struct WS_sockaddr *to, int tolen) { DWORD n; WSABUF wsabuf; wsabuf.len = len; wsabuf.buf = (char*) buf; if ( WS2_sendto(s, &wsabuf, 1, &n, flags, to, tolen, NULL, NULL) == SOCKET_ERROR ) return SOCKET_ERROR; else return n; } /*********************************************************************** * setsockopt (WS2_32.21) */ int WINAPI WS_setsockopt(SOCKET s, int level, int optname, const char *optval, int optlen) { int fd; int woptval; struct linger linger; struct timeval tval; TRACE("(socket %04lx, %s, optval %s, optlen %d)\n", s, debugstr_sockopt(level, optname), debugstr_optval(optval, optlen), optlen); /* some broken apps pass the value directly instead of a pointer to it */ if(optlen && IS_INTRESOURCE(optval)) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } switch(level) { case WS_SOL_SOCKET: switch(optname) { /* Some options need some conversion before they can be sent to * setsockopt. The conversions are done here, then they will fall through * to the general case. Special options that are not passed to * setsockopt follow below that.*/ case WS_SO_DONTLINGER: if (!optval) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } linger.l_onoff = *(const int*)optval == 0; linger.l_linger = 0; level = SOL_SOCKET; optname = SO_LINGER; optval = (char*)&linger; optlen = sizeof(struct linger); break; case WS_SO_LINGER: if (!optval) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } linger.l_onoff = ((LINGER*)optval)->l_onoff; linger.l_linger = ((LINGER*)optval)->l_linger; level = SOL_SOCKET; optname = SO_LINGER; optval = (char*)&linger; optlen = sizeof(struct linger); break; case WS_SO_RCVBUF: if (*(const int*)optval < 2048) { WARN("SO_RCVBF for %d bytes is too small: ignored\n", *(const int*)optval ); return 0; } /* Fall through */ /* The options listed here don't need any special handling. Thanks to * the conversion happening above, options from there will fall through * to this, too.*/ case WS_SO_ACCEPTCONN: case WS_SO_BROADCAST: case WS_SO_ERROR: case WS_SO_KEEPALIVE: case WS_SO_OOBINLINE: /* BSD socket SO_REUSEADDR is not 100% compatible to winsock semantics. * however, using it the BSD way fixes bug 8513 and seems to be what * most programmers assume, anyway */ case WS_SO_REUSEADDR: case WS_SO_SNDBUF: case WS_SO_TYPE: convert_sockopt(&level, &optname); break; /* SO_DEBUG is a privileged operation, ignore it. */ case WS_SO_DEBUG: TRACE("Ignoring SO_DEBUG\n"); return 0; /* For some reason the game GrandPrixLegends does set SO_DONTROUTE on its * socket. According to MSDN, this option is silently ignored.*/ case WS_SO_DONTROUTE: TRACE("Ignoring SO_DONTROUTE\n"); return 0; /* Stops two sockets from being bound to the same port. Always happens * on unix systems, so just drop it. */ case WS_SO_EXCLUSIVEADDRUSE: TRACE("Ignoring SO_EXCLUSIVEADDRUSE, is always set.\n"); return 0; /* After a ConnectEx call succeeds, the socket can't be used with half of the * normal winsock functions on windows. We don't have that problem. */ case WS_SO_UPDATE_CONNECT_CONTEXT: TRACE("Ignoring SO_UPDATE_CONNECT_CONTEXT, since our sockets are normal\n"); return 0; /* After a AcceptEx call succeeds, the socket can't be used with half of the * normal winsock functions on windows. We don't have that problem. */ case WS_SO_UPDATE_ACCEPT_CONTEXT: TRACE("Ignoring SO_UPDATE_ACCEPT_CONTEXT, since our sockets are normal\n"); return 0; /* SO_OPENTYPE does not require a valid socket handle. */ case WS_SO_OPENTYPE: if (!optlen || optlen < sizeof(int) || !optval) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } get_per_thread_data()->opentype = *(const int *)optval; TRACE("setting global SO_OPENTYPE = 0x%x\n", *((const int*)optval) ); return 0; #ifdef SO_RCVTIMEO case WS_SO_RCVTIMEO: #endif #ifdef SO_SNDTIMEO case WS_SO_SNDTIMEO: #endif #if defined(SO_RCVTIMEO) || defined(SO_SNDTIMEO) if (optval && optlen == sizeof(UINT32)) { /* WinSock passes milliseconds instead of struct timeval */ tval.tv_usec = (*(const UINT32*)optval % 1000) * 1000; tval.tv_sec = *(const UINT32*)optval / 1000; /* min of 500 milliseconds */ if (tval.tv_sec == 0 && tval.tv_usec && tval.tv_usec < 500000) tval.tv_usec = 500000; optlen = sizeof(struct timeval); optval = (char*)&tval; } else if (optlen == sizeof(struct timeval)) { WARN("SO_SND/RCVTIMEO for %d bytes: assuming unixism\n", optlen); } else { WARN("SO_SND/RCVTIMEO for %d bytes is weird: ignored\n", optlen); return 0; } convert_sockopt(&level, &optname); break; #endif default: TRACE("Unknown SOL_SOCKET optname: 0x%08x\n", optname); SetLastError(WSAENOPROTOOPT); return SOCKET_ERROR; } break; /* case WS_SOL_SOCKET */ #ifdef HAS_IPX case WS_NSPROTO_IPX: switch(optname) { case WS_IPX_PTYPE: return set_ipx_packettype(s, *(int*)optval); case WS_IPX_FILTERPTYPE: /* Sets the receive filter packet type, at the moment we don't support it */ FIXME("IPX_FILTERPTYPE: %x\n", *optval); /* Returning 0 is better for now than returning a SOCKET_ERROR */ return 0; default: FIXME("opt_name:%x\n", optname); return SOCKET_ERROR; } break; /* case WS_NSPROTO_IPX */ #endif /* Levels WS_IPPROTO_TCP and WS_IPPROTO_IP convert directly */ case WS_IPPROTO_TCP: switch(optname) { case WS_TCP_NODELAY: convert_sockopt(&level, &optname); break; default: FIXME("Unknown IPPROTO_TCP optname 0x%08x\n", optname); return SOCKET_ERROR; } break; case WS_IPPROTO_IP: switch(optname) { case WS_IP_ADD_MEMBERSHIP: case WS_IP_DROP_MEMBERSHIP: #ifdef IP_HDRINCL case WS_IP_HDRINCL: #endif case WS_IP_MULTICAST_IF: case WS_IP_MULTICAST_LOOP: case WS_IP_MULTICAST_TTL: case WS_IP_OPTIONS: #ifdef IP_PKTINFO case WS_IP_PKTINFO: #endif case WS_IP_TOS: case WS_IP_TTL: #ifdef IP_UNICAST_IF case WS_IP_UNICAST_IF: #endif convert_sockopt(&level, &optname); break; case WS_IP_DONTFRAGMENT: FIXME("IP_DONTFRAGMENT is silently ignored!\n"); return 0; default: FIXME("Unknown IPPROTO_IP optname 0x%08x\n", optname); return SOCKET_ERROR; } break; case WS_IPPROTO_IPV6: switch(optname) { #ifdef IPV6_ADD_MEMBERSHIP case WS_IPV6_ADD_MEMBERSHIP: #endif #ifdef IPV6_DROP_MEMBERSHIP case WS_IPV6_DROP_MEMBERSHIP: #endif case WS_IPV6_MULTICAST_IF: case WS_IPV6_MULTICAST_HOPS: case WS_IPV6_MULTICAST_LOOP: case WS_IPV6_UNICAST_HOPS: case WS_IPV6_V6ONLY: #ifdef IPV6_UNICAST_IF case WS_IPV6_UNICAST_IF: #endif convert_sockopt(&level, &optname); break; case WS_IPV6_DONTFRAG: FIXME("IPV6_DONTFRAG is silently ignored!\n"); return 0; case WS_IPV6_PROTECTION_LEVEL: FIXME("IPV6_PROTECTION_LEVEL is ignored!\n"); return 0; default: FIXME("Unknown IPPROTO_IPV6 optname 0x%08x\n", optname); return SOCKET_ERROR; } break; default: WARN("Unknown level: 0x%08x\n", level); SetLastError(WSAEINVAL); return SOCKET_ERROR; } /* end switch(level) */ /* avoid endianness issues if argument is a 16-bit int */ if (optval && optlen < sizeof(int)) { woptval= *((const INT16 *) optval); optval= (char*) &woptval; woptval&= (1 << optlen * 8) - 1; optlen=sizeof(int); } fd = get_sock_fd( s, 0, NULL ); if (fd == -1) return SOCKET_ERROR; if (setsockopt(fd, level, optname, optval, optlen) == 0) { #ifdef __APPLE__ if (level == SOL_SOCKET && optname == SO_REUSEADDR && setsockopt(fd, level, SO_REUSEPORT, optval, optlen) != 0) { SetLastError(wsaErrno()); release_sock_fd( s, fd ); return SOCKET_ERROR; } #endif release_sock_fd( s, fd ); return 0; } TRACE("Setting socket error, %d\n", wsaErrno()); SetLastError(wsaErrno()); release_sock_fd( s, fd ); return SOCKET_ERROR; } /*********************************************************************** * shutdown (WS2_32.22) */ int WINAPI WS_shutdown(SOCKET s, int how) { int fd, err = WSAENOTSOCK; unsigned int options = 0, clear_flags = 0; fd = get_sock_fd( s, 0, &options ); TRACE("socket %04lx, how 0x%x, options 0x%x\n", s, how, options ); if (fd == -1) return SOCKET_ERROR; switch( how ) { case SD_RECEIVE: /* drop receives */ clear_flags |= FD_READ; break; case SD_SEND: /* drop sends */ clear_flags |= FD_WRITE; break; case SD_BOTH: /* drop all */ clear_flags |= FD_READ|FD_WRITE; /*fall through */ default: clear_flags |= FD_WINE_LISTENING; } if (!(options & (FILE_SYNCHRONOUS_IO_ALERT | FILE_SYNCHRONOUS_IO_NONALERT))) { switch ( how ) { case SD_RECEIVE: err = WS2_register_async_shutdown( s, ASYNC_TYPE_READ ); break; case SD_SEND: err = WS2_register_async_shutdown( s, ASYNC_TYPE_WRITE ); break; case SD_BOTH: default: err = WS2_register_async_shutdown( s, ASYNC_TYPE_READ ); if (!err) err = WS2_register_async_shutdown( s, ASYNC_TYPE_WRITE ); break; } if (err) goto error; } else /* non-overlapped mode */ { if ( shutdown( fd, how ) ) { err = wsaErrno(); goto error; } } release_sock_fd( s, fd ); _enable_event( SOCKET2HANDLE(s), 0, 0, clear_flags ); if ( how > 1) WSAAsyncSelect( s, 0, 0, 0 ); return 0; error: release_sock_fd( s, fd ); _enable_event( SOCKET2HANDLE(s), 0, 0, clear_flags ); SetLastError( err ); return SOCKET_ERROR; } /*********************************************************************** * socket (WS2_32.23) */ SOCKET WINAPI WS_socket(int af, int type, int protocol) { TRACE("af=%d type=%d protocol=%d\n", af, type, protocol); return WSASocketW( af, type, protocol, NULL, 0, get_per_thread_data()->opentype ? 0 : WSA_FLAG_OVERLAPPED ); } /*********************************************************************** * gethostbyaddr (WS2_32.51) */ struct WS_hostent* WINAPI WS_gethostbyaddr(const char *addr, int len, int type) { struct WS_hostent *retval = NULL; struct hostent* host; int unixtype = convert_af_w2u(type); const char *paddr = addr; unsigned long loopback; #ifdef HAVE_LINUX_GETHOSTBYNAME_R_6 char *extrabuf; int ebufsize = 1024; struct hostent hostentry; int locerr = ENOBUFS; #endif /* convert back the magic loopback address if necessary */ if (unixtype == AF_INET && len == 4 && !memcmp(addr, magic_loopback_addr, 4)) { loopback = htonl(INADDR_LOOPBACK); paddr = (char*) &loopback; } #ifdef HAVE_LINUX_GETHOSTBYNAME_R_6 host = NULL; extrabuf=HeapAlloc(GetProcessHeap(),0,ebufsize) ; while(extrabuf) { int res = gethostbyaddr_r(paddr, len, unixtype, &hostentry, extrabuf, ebufsize, &host, &locerr); if (res != ERANGE) break; ebufsize *=2; extrabuf=HeapReAlloc(GetProcessHeap(),0,extrabuf,ebufsize) ; } if (host) retval = WS_dup_he(host); else SetLastError((locerr < 0) ? wsaErrno() : wsaHerrno(locerr)); HeapFree(GetProcessHeap(),0,extrabuf); #else EnterCriticalSection( &csWSgetXXXbyYYY ); host = gethostbyaddr(paddr, len, unixtype); if (host) retval = WS_dup_he(host); else SetLastError((h_errno < 0) ? wsaErrno() : wsaHerrno(h_errno)); LeaveCriticalSection( &csWSgetXXXbyYYY ); #endif TRACE("ptr %p, len %d, type %d ret %p\n", addr, len, type, retval); return retval; } /*********************************************************************** * WS_compare_routes_by_metric_asc (INTERNAL) * * Comparison function for qsort(), for sorting two routes (struct route) * by metric in ascending order. */ static int WS_compare_routes_by_metric_asc(const void *left, const void *right) { return ((const struct route*)left)->metric - ((const struct route*)right)->metric; } /*********************************************************************** * WS_get_local_ips (INTERNAL) * * Returns the list of local IP addresses by going through the network * adapters and using the local routing table to sort the addresses * from highest routing priority to lowest routing priority. This * functionality is inferred from the description for obtaining local * IP addresses given in the Knowledge Base Article Q160215. * * Please note that the returned hostent is only freed when the thread * closes and is replaced if another hostent is requested. */ static struct WS_hostent* WS_get_local_ips( char *hostname ) { int numroutes = 0, i, j; DWORD n; PIP_ADAPTER_INFO adapters = NULL, k; struct WS_hostent *hostlist = NULL; PMIB_IPFORWARDTABLE routes = NULL; struct route *route_addrs = NULL; DWORD adap_size, route_size; /* Obtain the size of the adapter list and routing table, also allocate memory */ if (GetAdaptersInfo(NULL, &adap_size) != ERROR_BUFFER_OVERFLOW) return NULL; if (GetIpForwardTable(NULL, &route_size, FALSE) != ERROR_INSUFFICIENT_BUFFER) return NULL; adapters = HeapAlloc(GetProcessHeap(), 0, adap_size); routes = HeapAlloc(GetProcessHeap(), 0, route_size); route_addrs = HeapAlloc(GetProcessHeap(), 0, 0); /* HeapReAlloc doesn't work on NULL */ if (adapters == NULL || routes == NULL || route_addrs == NULL) goto cleanup; /* Obtain the adapter list and the full routing table */ if (GetAdaptersInfo(adapters, &adap_size) != NO_ERROR) goto cleanup; if (GetIpForwardTable(routes, &route_size, FALSE) != NO_ERROR) goto cleanup; /* Store the interface associated with each route */ for (n = 0; n < routes->dwNumEntries; n++) { IF_INDEX ifindex; DWORD ifmetric; BOOL exists = FALSE; if (routes->table[n].u1.ForwardType != MIB_IPROUTE_TYPE_DIRECT) continue; ifindex = routes->table[n].dwForwardIfIndex; ifmetric = routes->table[n].dwForwardMetric1; /* Only store the lowest valued metric for an interface */ for (j = 0; j < numroutes; j++) { if (route_addrs[j].interface == ifindex) { if (route_addrs[j].metric > ifmetric) route_addrs[j].metric = ifmetric; exists = TRUE; } } if (exists) continue; route_addrs = HeapReAlloc(GetProcessHeap(), 0, route_addrs, (numroutes+1)*sizeof(struct route)); if (route_addrs == NULL) goto cleanup; /* Memory allocation error, fail gracefully */ route_addrs[numroutes].interface = ifindex; route_addrs[numroutes].metric = ifmetric; /* If no IP is found in the next step (for whatever reason) * then fall back to the magic loopback address. */ memcpy(&(route_addrs[numroutes].addr.s_addr), magic_loopback_addr, 4); numroutes++; } if (numroutes == 0) goto cleanup; /* No routes, fall back to the Magic IP */ /* Find the IP address associated with each found interface */ for (i = 0; i < numroutes; i++) { for (k = adapters; k != NULL; k = k->Next) { char *ip = k->IpAddressList.IpAddress.String; if (route_addrs[i].interface == k->Index) route_addrs[i].addr.s_addr = (in_addr_t) inet_addr(ip); } } /* Allocate a hostent and enough memory for all the IPs, * including the NULL at the end of the list. */ hostlist = WS_create_he(hostname, 1, 0, numroutes+1, sizeof(struct in_addr)); if (hostlist == NULL) goto cleanup; /* Failed to allocate a hostent for the list of IPs */ hostlist->h_addr_list[numroutes] = NULL; /* NULL-terminate the address list */ hostlist->h_aliases[0] = NULL; /* NULL-terminate the alias list */ hostlist->h_addrtype = AF_INET; hostlist->h_length = sizeof(struct in_addr); /* = 4 */ /* Reorder the entries before placing them in the host list. Windows expects * the IP list in order from highest priority to lowest (the critical thing * is that most applications expect the first IP to be the default route). */ if (numroutes > 1) qsort(route_addrs, numroutes, sizeof(struct route), WS_compare_routes_by_metric_asc); for (i = 0; i < numroutes; i++) (*(struct in_addr *) hostlist->h_addr_list[i]) = route_addrs[i].addr; /* Cleanup all allocated memory except the address list, * the address list is used by the calling app. */ cleanup: HeapFree(GetProcessHeap(), 0, route_addrs); HeapFree(GetProcessHeap(), 0, adapters); HeapFree(GetProcessHeap(), 0, routes); return hostlist; } /*********************************************************************** * gethostbyname (WS2_32.52) */ struct WS_hostent* WINAPI WS_gethostbyname(const char* name) { struct WS_hostent *retval = NULL; struct hostent* host; #ifdef HAVE_LINUX_GETHOSTBYNAME_R_6 char *extrabuf; int ebufsize=1024; struct hostent hostentry; int locerr = ENOBUFS; #endif char hostname[100]; if(!num_startup) { SetLastError(WSANOTINITIALISED); return NULL; } if( gethostname( hostname, 100) == -1) { SetLastError(WSAENOBUFS); /* appropriate ? */ return retval; } if( !name || !name[0]) { name = hostname; } /* If the hostname of the local machine is requested then return the * complete list of local IP addresses */ if(strcmp(name, hostname) == 0) retval = WS_get_local_ips(hostname); /* If any other hostname was requested (or the routing table lookup failed) * then return the IP found by the host OS */ if(retval == NULL) { #ifdef HAVE_LINUX_GETHOSTBYNAME_R_6 host = NULL; extrabuf=HeapAlloc(GetProcessHeap(),0,ebufsize) ; while(extrabuf) { int res = gethostbyname_r(name, &hostentry, extrabuf, ebufsize, &host, &locerr); if( res != ERANGE) break; ebufsize *=2; extrabuf=HeapReAlloc(GetProcessHeap(),0,extrabuf,ebufsize) ; } if (!host) SetLastError((locerr < 0) ? wsaErrno() : wsaHerrno(locerr)); #else EnterCriticalSection( &csWSgetXXXbyYYY ); host = gethostbyname(name); if (!host) SetLastError((h_errno < 0) ? wsaErrno() : wsaHerrno(h_errno)); #endif if (host) retval = WS_dup_he(host); #ifdef HAVE_LINUX_GETHOSTBYNAME_R_6 HeapFree(GetProcessHeap(),0,extrabuf); #else LeaveCriticalSection( &csWSgetXXXbyYYY ); #endif } if (retval && retval->h_addr_list[0][0] == 127 && strcmp(name, "localhost") != 0) { /* hostname != "localhost" but has loopback address. replace by our * special address.*/ memcpy(retval->h_addr_list[0], magic_loopback_addr, 4); } TRACE( "%s ret %p\n", debugstr_a(name), retval ); return retval; } /*********************************************************************** * getprotobyname (WS2_32.53) */ struct WS_protoent* WINAPI WS_getprotobyname(const char* name) { struct WS_protoent* retval = NULL; #ifdef HAVE_GETPROTOBYNAME struct protoent* proto; EnterCriticalSection( &csWSgetXXXbyYYY ); if( (proto = getprotobyname(name)) != NULL ) { retval = WS_dup_pe(proto); } else { MESSAGE("protocol %s not found; You might want to add " "this to /etc/protocols\n", debugstr_a(name) ); SetLastError(WSANO_DATA); } LeaveCriticalSection( &csWSgetXXXbyYYY ); #endif TRACE( "%s ret %p\n", debugstr_a(name), retval ); return retval; } /*********************************************************************** * getprotobynumber (WS2_32.54) */ struct WS_protoent* WINAPI WS_getprotobynumber(int number) { struct WS_protoent* retval = NULL; #ifdef HAVE_GETPROTOBYNUMBER struct protoent* proto; EnterCriticalSection( &csWSgetXXXbyYYY ); if( (proto = getprotobynumber(number)) != NULL ) { retval = WS_dup_pe(proto); } else { MESSAGE("protocol number %d not found; You might want to add " "this to /etc/protocols\n", number ); SetLastError(WSANO_DATA); } LeaveCriticalSection( &csWSgetXXXbyYYY ); #endif TRACE("%i ret %p\n", number, retval); return retval; } /*********************************************************************** * getservbyname (WS2_32.55) */ struct WS_servent* WINAPI WS_getservbyname(const char *name, const char *proto) { struct WS_servent* retval = NULL; struct servent* serv; char *name_str; char *proto_str = NULL; if (!(name_str = strdup_lower(name))) return NULL; if (proto && *proto) { if (!(proto_str = strdup_lower(proto))) { HeapFree( GetProcessHeap(), 0, name_str ); return NULL; } } EnterCriticalSection( &csWSgetXXXbyYYY ); serv = getservbyname(name_str, proto_str); if( serv != NULL ) { retval = WS_dup_se(serv); } else SetLastError(WSANO_DATA); LeaveCriticalSection( &csWSgetXXXbyYYY ); HeapFree( GetProcessHeap(), 0, proto_str ); HeapFree( GetProcessHeap(), 0, name_str ); TRACE( "%s, %s ret %p\n", debugstr_a(name), debugstr_a(proto), retval ); return retval; } /*********************************************************************** * freeaddrinfo (WS2_32.@) */ void WINAPI WS_freeaddrinfo(struct WS_addrinfo *res) { while (res) { struct WS_addrinfo *next; HeapFree(GetProcessHeap(),0,res->ai_canonname); HeapFree(GetProcessHeap(),0,res->ai_addr); next = res->ai_next; HeapFree(GetProcessHeap(),0,res); res = next; } } /* helper functions for getaddrinfo()/getnameinfo() */ static int convert_aiflag_w2u(int winflags) { unsigned int i; int unixflags = 0; for (i=0;iai_flags = convert_aiflag_w2u(hints->ai_flags); /* zero is a wildcard, no need to convert */ if (hints->ai_family) punixhints->ai_family = convert_af_w2u(hints->ai_family); if (hints->ai_socktype) punixhints->ai_socktype = convert_socktype_w2u(hints->ai_socktype); if (hints->ai_protocol) punixhints->ai_protocol = max(convert_proto_w2u(hints->ai_protocol), 0); if (punixhints->ai_socktype < 0) { SetLastError(WSAESOCKTNOSUPPORT); HeapFree(GetProcessHeap(), 0, hostname); return SOCKET_ERROR; } /* windows allows invalid combinations of socket type and protocol, unix does not. * fix the parameters here to make getaddrinfo call always work */ if (punixhints->ai_protocol == IPPROTO_TCP && punixhints->ai_socktype != SOCK_STREAM && punixhints->ai_socktype != SOCK_SEQPACKET) punixhints->ai_socktype = 0; else if (punixhints->ai_protocol == IPPROTO_UDP && punixhints->ai_socktype != SOCK_DGRAM) punixhints->ai_socktype = 0; else if (IS_IPX_PROTO(punixhints->ai_protocol) && punixhints->ai_socktype != SOCK_DGRAM) punixhints->ai_socktype = 0; } /* getaddrinfo(3) is thread safe, no need to wrap in CS */ result = getaddrinfo(node, servname, punixhints, &unixaires); TRACE("%s, %s %p -> %p %d\n", debugstr_a(nodename), debugstr_a(servname), hints, res, result); HeapFree(GetProcessHeap(), 0, hostname); if (!result) { struct addrinfo *xuai = unixaires; struct WS_addrinfo **xai = res; *xai = NULL; while (xuai) { struct WS_addrinfo *ai = HeapAlloc(GetProcessHeap(),HEAP_ZERO_MEMORY, sizeof(struct WS_addrinfo)); SIZE_T len; if (!ai) goto outofmem; *xai = ai;xai = &ai->ai_next; ai->ai_flags = convert_aiflag_u2w(xuai->ai_flags); ai->ai_family = convert_af_u2w(xuai->ai_family); /* copy whatever was sent in the hints */ if(hints) { ai->ai_socktype = hints->ai_socktype; ai->ai_protocol = hints->ai_protocol; } else { ai->ai_socktype = convert_socktype_u2w(xuai->ai_socktype); ai->ai_protocol = convert_proto_u2w(xuai->ai_protocol); } if (xuai->ai_canonname) { TRACE("canon name - %s\n",debugstr_a(xuai->ai_canonname)); ai->ai_canonname = HeapAlloc(GetProcessHeap(),0,strlen(xuai->ai_canonname)+1); if (!ai->ai_canonname) goto outofmem; strcpy(ai->ai_canonname,xuai->ai_canonname); } len = xuai->ai_addrlen; ai->ai_addr = HeapAlloc(GetProcessHeap(),0,len); if (!ai->ai_addr) goto outofmem; ai->ai_addrlen = len; do { int winlen = ai->ai_addrlen; if (!ws_sockaddr_u2ws(xuai->ai_addr, ai->ai_addr, &winlen)) { ai->ai_addrlen = winlen; break; } len = 2*len; ai->ai_addr = HeapReAlloc(GetProcessHeap(),0,ai->ai_addr,len); if (!ai->ai_addr) goto outofmem; ai->ai_addrlen = len; } while (1); xuai = xuai->ai_next; } freeaddrinfo(unixaires); if (TRACE_ON(winsock)) { struct WS_addrinfo *ai = *res; while (ai) { TRACE("=> %p, flags %#x, family %d, type %d, protocol %d, len %ld, name %s, addr %s\n", ai, ai->ai_flags, ai->ai_family, ai->ai_socktype, ai->ai_protocol, ai->ai_addrlen, ai->ai_canonname, debugstr_sockaddr(ai->ai_addr)); ai = ai->ai_next; } } } else result = convert_eai_u2w(result); SetLastError(result); return result; outofmem: if (*res) WS_freeaddrinfo(*res); if (unixaires) freeaddrinfo(unixaires); return WSA_NOT_ENOUGH_MEMORY; #else FIXME("getaddrinfo() failed, not found during buildtime.\n"); return EAI_FAIL; #endif } static struct WS_addrinfoW *addrinfo_AtoW(const struct WS_addrinfo *ai) { struct WS_addrinfoW *ret; if (!(ret = HeapAlloc(GetProcessHeap(), 0, sizeof(struct WS_addrinfoW)))) return NULL; ret->ai_flags = ai->ai_flags; ret->ai_family = ai->ai_family; ret->ai_socktype = ai->ai_socktype; ret->ai_protocol = ai->ai_protocol; ret->ai_addrlen = ai->ai_addrlen; ret->ai_canonname = NULL; ret->ai_addr = NULL; ret->ai_next = NULL; if (ai->ai_canonname) { int len = MultiByteToWideChar(CP_ACP, 0, ai->ai_canonname, -1, NULL, 0); if (!(ret->ai_canonname = HeapAlloc(GetProcessHeap(), 0, len*sizeof(WCHAR)))) { HeapFree(GetProcessHeap(), 0, ret); return NULL; } MultiByteToWideChar(CP_ACP, 0, ai->ai_canonname, -1, ret->ai_canonname, len); } if (ai->ai_addr) { if (!(ret->ai_addr = HeapAlloc(GetProcessHeap(), 0, ai->ai_addrlen))) { HeapFree(GetProcessHeap(), 0, ret->ai_canonname); HeapFree(GetProcessHeap(), 0, ret); return NULL; } memcpy(ret->ai_addr, ai->ai_addr, ai->ai_addrlen); } return ret; } static struct WS_addrinfoW *addrinfo_list_AtoW(const struct WS_addrinfo *info) { struct WS_addrinfoW *ret, *infoW; if (!(ret = infoW = addrinfo_AtoW(info))) return NULL; while (info->ai_next) { if (!(infoW->ai_next = addrinfo_AtoW(info->ai_next))) { FreeAddrInfoW(ret); return NULL; } infoW = infoW->ai_next; info = info->ai_next; } return ret; } static struct WS_addrinfo *addrinfo_WtoA(const struct WS_addrinfoW *ai) { struct WS_addrinfo *ret; if (!(ret = HeapAlloc(GetProcessHeap(), 0, sizeof(struct WS_addrinfo)))) return NULL; ret->ai_flags = ai->ai_flags; ret->ai_family = ai->ai_family; ret->ai_socktype = ai->ai_socktype; ret->ai_protocol = ai->ai_protocol; ret->ai_addrlen = ai->ai_addrlen; ret->ai_canonname = NULL; ret->ai_addr = NULL; ret->ai_next = NULL; if (ai->ai_canonname) { int len = WideCharToMultiByte(CP_ACP, 0, ai->ai_canonname, -1, NULL, 0, NULL, NULL); if (!(ret->ai_canonname = HeapAlloc(GetProcessHeap(), 0, len))) { HeapFree(GetProcessHeap(), 0, ret); return NULL; } WideCharToMultiByte(CP_ACP, 0, ai->ai_canonname, -1, ret->ai_canonname, len, NULL, NULL); } if (ai->ai_addr) { if (!(ret->ai_addr = HeapAlloc(GetProcessHeap(), 0, sizeof(struct WS_sockaddr)))) { HeapFree(GetProcessHeap(), 0, ret->ai_canonname); HeapFree(GetProcessHeap(), 0, ret); return NULL; } memcpy(ret->ai_addr, ai->ai_addr, sizeof(struct WS_sockaddr)); } return ret; } /*********************************************************************** * GetAddrInfoW (WS2_32.@) */ int WINAPI GetAddrInfoW(LPCWSTR nodename, LPCWSTR servname, const ADDRINFOW *hints, PADDRINFOW *res) { int ret, len; char *nodenameA = NULL, *servnameA = NULL; struct WS_addrinfo *resA, *hintsA = NULL; *res = NULL; if (nodename) { len = WideCharToMultiByte(CP_ACP, 0, nodename, -1, NULL, 0, NULL, NULL); if (!(nodenameA = HeapAlloc(GetProcessHeap(), 0, len))) return EAI_MEMORY; WideCharToMultiByte(CP_ACP, 0, nodename, -1, nodenameA, len, NULL, NULL); } if (servname) { len = WideCharToMultiByte(CP_ACP, 0, servname, -1, NULL, 0, NULL, NULL); if (!(servnameA = HeapAlloc(GetProcessHeap(), 0, len))) { HeapFree(GetProcessHeap(), 0, nodenameA); return EAI_MEMORY; } WideCharToMultiByte(CP_ACP, 0, servname, -1, servnameA, len, NULL, NULL); } if (hints) hintsA = addrinfo_WtoA(hints); ret = WS_getaddrinfo(nodenameA, servnameA, hintsA, &resA); WS_freeaddrinfo(hintsA); if (!ret) { *res = addrinfo_list_AtoW(resA); WS_freeaddrinfo(resA); } HeapFree(GetProcessHeap(), 0, nodenameA); HeapFree(GetProcessHeap(), 0, servnameA); return ret; } /*********************************************************************** * FreeAddrInfoW (WS2_32.@) */ void WINAPI FreeAddrInfoW(PADDRINFOW ai) { while (ai) { ADDRINFOW *next; HeapFree(GetProcessHeap(), 0, ai->ai_canonname); HeapFree(GetProcessHeap(), 0, ai->ai_addr); next = ai->ai_next; HeapFree(GetProcessHeap(), 0, ai); ai = next; } } int WINAPI WS_getnameinfo(const SOCKADDR *sa, WS_socklen_t salen, PCHAR host, DWORD hostlen, PCHAR serv, DWORD servlen, INT flags) { #ifdef HAVE_GETNAMEINFO int ret; union generic_unix_sockaddr sa_u; unsigned int size; TRACE("%s %d %p %d %p %d %d\n", debugstr_sockaddr(sa), salen, host, hostlen, serv, servlen, flags); size = ws_sockaddr_ws2u(sa, salen, &sa_u); if (!size) { SetLastError(WSAEFAULT); return WSA_NOT_ENOUGH_MEMORY; } ret = getnameinfo(&sa_u.addr, size, host, hostlen, serv, servlen, convert_niflag_w2u(flags)); return convert_eai_u2w(ret); #else FIXME("getnameinfo() failed, not found during buildtime.\n"); return EAI_FAIL; #endif } int WINAPI GetNameInfoW(const SOCKADDR *sa, WS_socklen_t salen, PWCHAR host, DWORD hostlen, PWCHAR serv, DWORD servlen, INT flags) { int ret; char *hostA = NULL, *servA = NULL; if (host && (!(hostA = HeapAlloc(GetProcessHeap(), 0, hostlen)))) return EAI_MEMORY; if (serv && (!(servA = HeapAlloc(GetProcessHeap(), 0, servlen)))) { HeapFree(GetProcessHeap(), 0, hostA); return EAI_MEMORY; } ret = WS_getnameinfo(sa, salen, hostA, hostlen, servA, servlen, flags); if (!ret) { if (host) MultiByteToWideChar(CP_ACP, 0, hostA, -1, host, hostlen); if (serv) MultiByteToWideChar(CP_ACP, 0, servA, -1, serv, servlen); } HeapFree(GetProcessHeap(), 0, hostA); HeapFree(GetProcessHeap(), 0, servA); return ret; } /*********************************************************************** * getservbyport (WS2_32.56) */ struct WS_servent* WINAPI WS_getservbyport(int port, const char *proto) { struct WS_servent* retval = NULL; #ifdef HAVE_GETSERVBYPORT struct servent* serv; char *proto_str = NULL; if (proto && *proto) { if (!(proto_str = strdup_lower(proto))) return NULL; } EnterCriticalSection( &csWSgetXXXbyYYY ); if( (serv = getservbyport(port, proto_str)) != NULL ) { retval = WS_dup_se(serv); } else SetLastError(WSANO_DATA); LeaveCriticalSection( &csWSgetXXXbyYYY ); HeapFree( GetProcessHeap(), 0, proto_str ); #endif TRACE("%d (i.e. port %d), %s ret %p\n", port, (int)ntohl(port), debugstr_a(proto), retval); return retval; } /*********************************************************************** * gethostname (WS2_32.57) */ int WINAPI WS_gethostname(char *name, int namelen) { char buf[256]; int len; TRACE("name %p, len %d\n", name, namelen); if (!name) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } if (gethostname(buf, sizeof(buf)) != 0) { SetLastError(wsaErrno()); return SOCKET_ERROR; } TRACE("<- '%s'\n", buf); len = strlen(buf); if (len > 15) WARN("Windows supports NetBIOS name length up to 15 bytes!\n"); if (namelen <= len) { SetLastError(WSAEFAULT); WARN("<- not enough space for hostname, required %d, got %d!\n", len + 1, namelen); return SOCKET_ERROR; } strcpy(name, buf); return 0; } /* ------------------------------------- Windows sockets extensions -- * * * * ------------------------------------------------------------------- */ /*********************************************************************** * WSAEnumNetworkEvents (WS2_32.36) */ int WINAPI WSAEnumNetworkEvents(SOCKET s, WSAEVENT hEvent, LPWSANETWORKEVENTS lpEvent) { int ret; int i; int errors[FD_MAX_EVENTS]; TRACE("%04lx, hEvent %p, lpEvent %p\n", s, hEvent, lpEvent ); SERVER_START_REQ( get_socket_event ) { req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) ); req->service = TRUE; req->c_event = wine_server_obj_handle( hEvent ); wine_server_set_reply( req, errors, sizeof(errors) ); if (!(ret = wine_server_call(req))) lpEvent->lNetworkEvents = reply->pmask & reply->mask; } SERVER_END_REQ; if (!ret) { for (i = 0; i < FD_MAX_EVENTS; i++) lpEvent->iErrorCode[i] = NtStatusToWSAError(errors[i]); return 0; } SetLastError(WSAEINVAL); return SOCKET_ERROR; } /*********************************************************************** * WSAEventSelect (WS2_32.39) */ int WINAPI WSAEventSelect(SOCKET s, WSAEVENT hEvent, LONG lEvent) { int ret; TRACE("%04lx, hEvent %p, event %08x\n", s, hEvent, lEvent); SERVER_START_REQ( set_socket_event ) { req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) ); req->mask = lEvent; req->event = wine_server_obj_handle( hEvent ); req->window = 0; req->msg = 0; ret = wine_server_call( req ); } SERVER_END_REQ; if (!ret) return 0; SetLastError(WSAEINVAL); return SOCKET_ERROR; } /********************************************************************** * WSAGetOverlappedResult (WS2_32.40) */ BOOL WINAPI WSAGetOverlappedResult( SOCKET s, LPWSAOVERLAPPED lpOverlapped, LPDWORD lpcbTransfer, BOOL fWait, LPDWORD lpdwFlags ) { NTSTATUS status; TRACE( "socket %04lx ovl %p trans %p, wait %d flags %p\n", s, lpOverlapped, lpcbTransfer, fWait, lpdwFlags ); if ( lpOverlapped == NULL ) { ERR( "Invalid pointer\n" ); SetLastError(WSA_INVALID_PARAMETER); return FALSE; } status = lpOverlapped->Internal; if (status == STATUS_PENDING) { if (!fWait) { SetLastError( WSA_IO_INCOMPLETE ); return FALSE; } if (WaitForSingleObject( lpOverlapped->hEvent ? lpOverlapped->hEvent : SOCKET2HANDLE(s), INFINITE ) == WAIT_FAILED) return FALSE; status = lpOverlapped->Internal; } if ( lpcbTransfer ) *lpcbTransfer = lpOverlapped->InternalHigh; if ( lpdwFlags ) *lpdwFlags = lpOverlapped->u.s.Offset; if (status) SetLastError( RtlNtStatusToDosError(status) ); return !status; } /*********************************************************************** * WSAAsyncSelect (WS2_32.101) */ INT WINAPI WSAAsyncSelect(SOCKET s, HWND hWnd, UINT uMsg, LONG lEvent) { int ret; TRACE("%04lx, hWnd %p, uMsg %08x, event %08x\n", s, hWnd, uMsg, lEvent); SERVER_START_REQ( set_socket_event ) { req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) ); req->mask = lEvent; req->event = 0; req->window = wine_server_user_handle( hWnd ); req->msg = uMsg; ret = wine_server_call( req ); } SERVER_END_REQ; if (!ret) return 0; SetLastError(WSAEINVAL); return SOCKET_ERROR; } /*********************************************************************** * WSACreateEvent (WS2_32.31) * */ WSAEVENT WINAPI WSACreateEvent(void) { /* Create a manual-reset event, with initial state: unsignaled */ TRACE("\n"); return CreateEventW(NULL, TRUE, FALSE, NULL); } /*********************************************************************** * WSACloseEvent (WS2_32.29) * */ BOOL WINAPI WSACloseEvent(WSAEVENT event) { TRACE ("event=%p\n", event); return CloseHandle(event); } /*********************************************************************** * WSASocketA (WS2_32.78) * */ SOCKET WINAPI WSASocketA(int af, int type, int protocol, LPWSAPROTOCOL_INFOA lpProtocolInfo, GROUP g, DWORD dwFlags) { INT len; WSAPROTOCOL_INFOW info; TRACE("af=%d type=%d protocol=%d protocol_info=%p group=%d flags=0x%x\n", af, type, protocol, lpProtocolInfo, g, dwFlags); if (!lpProtocolInfo) return WSASocketW(af, type, protocol, NULL, g, dwFlags); memcpy(&info, lpProtocolInfo, FIELD_OFFSET(WSAPROTOCOL_INFOW, szProtocol)); len = MultiByteToWideChar(CP_ACP, 0, lpProtocolInfo->szProtocol, -1, info.szProtocol, WSAPROTOCOL_LEN + 1); if (!len) { SetLastError(WSAEINVAL); return SOCKET_ERROR; } return WSASocketW(af, type, protocol, &info, g, dwFlags); } /*********************************************************************** * WSASocketW (WS2_32.79) * */ SOCKET WINAPI WSASocketW(int af, int type, int protocol, LPWSAPROTOCOL_INFOW lpProtocolInfo, GROUP g, DWORD dwFlags) { SOCKET ret; DWORD err; int unixaf, unixtype, ipxptype = -1; /* FIXME: The "advanced" parameters of WSASocketW (lpProtocolInfo, g, dwFlags except WSA_FLAG_OVERLAPPED) are ignored. */ TRACE("af=%d type=%d protocol=%d protocol_info=%p group=%d flags=0x%x\n", af, type, protocol, lpProtocolInfo, g, dwFlags ); if (!num_startup) { err = WSANOTINITIALISED; goto done; } /* hack for WSADuplicateSocket */ if (lpProtocolInfo && lpProtocolInfo->dwServiceFlags4 == 0xff00ff00) { ret = lpProtocolInfo->dwServiceFlags3; TRACE("\tgot duplicate %04lx\n", ret); return ret; } if (lpProtocolInfo) { if (af == FROM_PROTOCOL_INFO || !af) af = lpProtocolInfo->iAddressFamily; if (type == FROM_PROTOCOL_INFO || !type) type = lpProtocolInfo->iSocketType; if (protocol == FROM_PROTOCOL_INFO || !protocol) protocol = lpProtocolInfo->iProtocol; } if (!type && (af || protocol)) { int autoproto = protocol; WSAPROTOCOL_INFOW infow; /* default to the first valid protocol */ if (!autoproto) autoproto = valid_protocols[0]; else if(IS_IPX_PROTO(autoproto)) autoproto = WS_NSPROTO_IPX; if (WS_EnterSingleProtocolW(autoproto, &infow)) { type = infow.iSocketType; /* after win2003 it's no longer possible to pass AF_UNSPEC using the protocol info struct */ if (!lpProtocolInfo && af == WS_AF_UNSPEC) af = infow.iAddressFamily; } } /* Windows has an extension to the IPX protocol that allows one to create sockets and set the IPX packet type at the same time, to do that a caller will use a protocol like NSPROTO_IPX + */ if (IS_IPX_PROTO(protocol)) ipxptype = protocol - WS_NSPROTO_IPX; /* convert the socket family, type and protocol */ unixaf = convert_af_w2u(af); unixtype = convert_socktype_w2u(type); protocol = convert_proto_w2u(protocol); if (unixaf == AF_UNSPEC) unixaf = -1; /* filter invalid parameters */ if (protocol < 0) { /* the type could not be converted */ if (type && unixtype < 0) { err = WSAESOCKTNOSUPPORT; goto done; } err = WSAEPROTONOSUPPORT; goto done; } if (unixaf < 0) { /* both family and protocol can't be invalid */ if (protocol <= 0) { err = WSAEINVAL; goto done; } /* family could not be converted and neither socket type */ if (unixtype < 0 && af >= 0) { err = WSAESOCKTNOSUPPORT; goto done; } err = WSAEAFNOSUPPORT; goto done; } SERVER_START_REQ( create_socket ) { req->family = unixaf; req->type = unixtype; req->protocol = protocol; req->access = GENERIC_READ|GENERIC_WRITE|SYNCHRONIZE; req->attributes = (dwFlags & WSA_FLAG_NO_HANDLE_INHERIT) ? 0 : OBJ_INHERIT; req->flags = dwFlags & ~WSA_FLAG_NO_HANDLE_INHERIT; set_error( wine_server_call( req ) ); ret = HANDLE2SOCKET( wine_server_ptr_handle( reply->handle )); } SERVER_END_REQ; if (ret) { TRACE("\tcreated %04lx\n", ret ); if (ipxptype > 0) set_ipx_packettype(ret, ipxptype); return ret; } err = GetLastError(); if (err == WSAEACCES) /* raw socket denied */ { if (type == SOCK_RAW) ERR_(winediag)("Failed to create a socket of type SOCK_RAW, this requires special permissions.\n"); else ERR_(winediag)("Failed to create socket, this requires special permissions.\n"); } else { /* invalid combination of valid parameters, like SOCK_STREAM + IPPROTO_UDP */ if (err == WSAEINVAL) err = WSAESOCKTNOSUPPORT; else if (err == WSAEOPNOTSUPP) err = WSAEPROTONOSUPPORT; } done: WARN("\t\tfailed, error %d!\n", err); SetLastError(err); return INVALID_SOCKET; } /*********************************************************************** * WSAJoinLeaf (WS2_32.58) * */ SOCKET WINAPI WSAJoinLeaf( SOCKET s, const struct WS_sockaddr *addr, int addrlen, LPWSABUF lpCallerData, LPWSABUF lpCalleeData, LPQOS lpSQOS, LPQOS lpGQOS, DWORD dwFlags) { FIXME("stub.\n"); return INVALID_SOCKET; } /*********************************************************************** * __WSAFDIsSet (WS2_32.151) */ int WINAPI __WSAFDIsSet(SOCKET s, WS_fd_set *set) { int i = set->fd_count, ret = 0; while (i--) if (set->fd_array[i] == s) { ret = 1; break; } TRACE("(socket %04lx, fd_set %p, count %i) <- %d\n", s, set, set->fd_count, ret); return ret; } /*********************************************************************** * WSAIsBlocking (WS2_32.114) */ BOOL WINAPI WSAIsBlocking(void) { /* By default WinSock should set all its sockets to non-blocking mode * and poll in PeekMessage loop when processing "blocking" ones. This * function is supposed to tell if the program is in this loop. Our * blocking calls are truly blocking so we always return FALSE. * * Note: It is allowed to call this function without prior WSAStartup(). */ TRACE("\n"); return FALSE; } /*********************************************************************** * WSACancelBlockingCall (WS2_32.113) */ INT WINAPI WSACancelBlockingCall(void) { TRACE("\n"); return 0; } static INT WINAPI WSA_DefaultBlockingHook( FARPROC x ) { FIXME("How was this called?\n"); return x(); } /*********************************************************************** * WSASetBlockingHook (WS2_32.109) */ FARPROC WINAPI WSASetBlockingHook(FARPROC lpBlockFunc) { FARPROC prev = blocking_hook; blocking_hook = lpBlockFunc; TRACE("hook %p\n", lpBlockFunc); return prev; } /*********************************************************************** * WSAUnhookBlockingHook (WS2_32.110) */ INT WINAPI WSAUnhookBlockingHook(void) { blocking_hook = (FARPROC)WSA_DefaultBlockingHook; return 0; } /* ----------------------------------- end of API stuff */ /* ----------------------------------- helper functions - * * TODO: Merge WS_dup_..() stuff into one function that * would operate with a generic structure containing internal * pointers (via a template of some kind). */ static int list_size(char** l, int item_size) { int i,j = 0; if(l) { for(i=0;l[i];i++) j += (item_size) ? item_size : strlen(l[i]) + 1; j += (i + 1) * sizeof(char*); } return j; } static int list_dup(char** l_src, char** l_to, int item_size) { char *p; int i; for (i = 0; l_src[i]; i++) ; p = (char *)(l_to + i + 1); for (i = 0; l_src[i]; i++) { int count = ( item_size ) ? item_size : strlen(l_src[i]) + 1; memcpy(p, l_src[i], count); l_to[i] = p; p += count; } l_to[i] = NULL; return p - (char *)l_to; } /* ----- hostent */ /* create a hostent entry * * Creates the entry with enough memory for the name, aliases * addresses, and the address pointers. Also copies the name * and sets up all the pointers. * * NOTE: The alias and address lists must be allocated with room * for the NULL item terminating the list. This is true even if * the list has no items ("aliases" and "addresses" must be * at least "1", a truly empty list is invalid). */ static struct WS_hostent *WS_create_he(char *name, int aliases, int aliases_size, int addresses, int address_length) { struct WS_hostent *p_to; char *p; int size = (sizeof(struct WS_hostent) + strlen(name) + 1 + sizeof(char *) * aliases + aliases_size + sizeof(char *) * addresses + address_length * (addresses - 1)), i; if (!(p_to = check_buffer_he(size))) return NULL; memset(p_to, 0, size); /* Use the memory in the same way winsock does. * First set the pointer for aliases, second set the pointers for addresses. * Third fill the addresses indexes, fourth jump aliases names size. * Fifth fill the hostname. * NOTE: This method is valid for OS version's >= XP. */ p = (char *)(p_to + 1); p_to->h_aliases = (char **)p; p += sizeof(char *)*aliases; p_to->h_addr_list = (char **)p; p += sizeof(char *)*addresses; for (i = 0, addresses--; i < addresses; i++, p += address_length) p_to->h_addr_list[i] = p; /* NOTE: h_aliases must be filled in manually because we don't know each string * size, leave these pointers NULL (already set to NULL by memset earlier). */ p += aliases_size; p_to->h_name = p; strcpy(p, name); return p_to; } /* duplicate hostent entry * and handle all Win16/Win32 dependent things (struct size, ...) *correctly*. * Ditto for protoent and servent. */ static struct WS_hostent *WS_dup_he(const struct hostent* p_he) { int i, addresses = 0, alias_size = 0; struct WS_hostent *p_to; char *p; for( i = 0; p_he->h_aliases[i]; i++) alias_size += strlen(p_he->h_aliases[i]) + 1; while (p_he->h_addr_list[addresses]) addresses++; p_to = WS_create_he(p_he->h_name, i + 1, alias_size, addresses + 1, p_he->h_length); if (!p_to) return NULL; p_to->h_addrtype = convert_af_u2w(p_he->h_addrtype); p_to->h_length = p_he->h_length; for(i = 0, p = p_to->h_addr_list[0]; p_he->h_addr_list[i]; i++, p += p_to->h_length) memcpy(p, p_he->h_addr_list[i], p_to->h_length); /* Fill the aliases after the IP data */ for(i = 0; p_he->h_aliases[i]; i++) { p_to->h_aliases[i] = p; strcpy(p, p_he->h_aliases[i]); p += strlen(p) + 1; } return p_to; } /* ----- protoent */ static struct WS_protoent *WS_dup_pe(const struct protoent* p_pe) { char *p; struct WS_protoent *p_to; int size = (sizeof(*p_pe) + strlen(p_pe->p_name) + 1 + list_size(p_pe->p_aliases, 0)); if (!(p_to = check_buffer_pe(size))) return NULL; p_to->p_proto = p_pe->p_proto; p = (char *)(p_to + 1); p_to->p_name = p; strcpy(p, p_pe->p_name); p += strlen(p) + 1; p_to->p_aliases = (char **)p; list_dup(p_pe->p_aliases, p_to->p_aliases, 0); return p_to; } /* ----- servent */ static struct WS_servent *WS_dup_se(const struct servent* p_se) { char *p; struct WS_servent *p_to; int size = (sizeof(*p_se) + strlen(p_se->s_proto) + 1 + strlen(p_se->s_name) + 1 + list_size(p_se->s_aliases, 0)); if (!(p_to = check_buffer_se(size))) return NULL; p_to->s_port = p_se->s_port; p = (char *)(p_to + 1); p_to->s_name = p; strcpy(p, p_se->s_name); p += strlen(p) + 1; p_to->s_proto = p; strcpy(p, p_se->s_proto); p += strlen(p) + 1; p_to->s_aliases = (char **)p; list_dup(p_se->s_aliases, p_to->s_aliases, 0); return p_to; } /*********************************************************************** * WSARecv (WS2_32.67) */ int WINAPI WSARecv(SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount, LPDWORD NumberOfBytesReceived, LPDWORD lpFlags, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine) { return WS2_recv_base(s, lpBuffers, dwBufferCount, NumberOfBytesReceived, lpFlags, NULL, NULL, lpOverlapped, lpCompletionRoutine, NULL); } static int WS2_recv_base( SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount, LPDWORD lpNumberOfBytesRecvd, LPDWORD lpFlags, struct WS_sockaddr *lpFrom, LPINT lpFromlen, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine, LPWSABUF lpControlBuffer ) { unsigned int i, options; int n, fd, err, overlapped, flags; struct ws2_async *wsa = NULL, localwsa; BOOL is_blocking; DWORD timeout_start = GetTickCount(); ULONG_PTR cvalue = (lpOverlapped && ((ULONG_PTR)lpOverlapped->hEvent & 1) == 0) ? (ULONG_PTR)lpOverlapped : 0; TRACE("socket %04lx, wsabuf %p, nbufs %d, flags %d, from %p, fromlen %d, ovl %p, func %p\n", s, lpBuffers, dwBufferCount, *lpFlags, lpFrom, (lpFromlen ? *lpFromlen : -1), lpOverlapped, lpCompletionRoutine); fd = get_sock_fd( s, FILE_READ_DATA, &options ); TRACE( "fd=%d, options=%x\n", fd, options ); if (fd == -1) return SOCKET_ERROR; if (*lpFlags & WS_MSG_OOB) { /* It's invalid to receive OOB data from an OOBINLINED socket * as OOB data is turned into normal data. */ i = sizeof(n); if (!getsockopt(fd, SOL_SOCKET, SO_OOBINLINE, (char*) &n, &i) && n) { err = WSAEINVAL; goto error; } } overlapped = (lpOverlapped || lpCompletionRoutine) && !(options & (FILE_SYNCHRONOUS_IO_ALERT | FILE_SYNCHRONOUS_IO_NONALERT)); if (overlapped || dwBufferCount > 1) { if (!(wsa = (struct ws2_async *)alloc_async_io( offsetof(struct ws2_async, iovec[dwBufferCount])))) { err = WSAEFAULT; goto error; } } else wsa = &localwsa; wsa->hSocket = SOCKET2HANDLE(s); wsa->flags = *lpFlags; wsa->lpFlags = lpFlags; wsa->addr = lpFrom; wsa->addrlen.ptr = lpFromlen; wsa->control = lpControlBuffer; wsa->n_iovecs = dwBufferCount; wsa->first_iovec = 0; for (i = 0; i < dwBufferCount; i++) { /* check buffer first to trigger write watches */ if (IsBadWritePtr( lpBuffers[i].buf, lpBuffers[i].len )) { err = WSAEFAULT; goto error; } wsa->iovec[i].iov_base = lpBuffers[i].buf; wsa->iovec[i].iov_len = lpBuffers[i].len; } flags = convert_flags(wsa->flags); for (;;) { n = WS2_recv( fd, wsa, flags ); if (n == -1) { /* Unix-like systems return EINVAL when attempting to read OOB data from * an empty socket buffer, convert that to a Windows expected return. */ if ((flags & MSG_OOB) && errno == EINVAL) errno = EWOULDBLOCK; if (errno != EAGAIN) { int loc_errno = errno; err = wsaErrno(); if (cvalue) WS_AddCompletion( s, cvalue, sock_get_ntstatus(loc_errno), 0 ); goto error; } } else if (lpNumberOfBytesRecvd) *lpNumberOfBytesRecvd = n; if (overlapped) { IO_STATUS_BLOCK *iosb = lpOverlapped ? (IO_STATUS_BLOCK *)lpOverlapped : &wsa->local_iosb; wsa->user_overlapped = lpOverlapped; wsa->completion_func = lpCompletionRoutine; release_sock_fd( s, fd ); if (n == -1) { iosb->u.Status = STATUS_PENDING; iosb->Information = 0; SERVER_START_REQ( register_async ) { req->type = ASYNC_TYPE_READ; req->async.handle = wine_server_obj_handle( wsa->hSocket ); req->async.callback = wine_server_client_ptr( WS2_async_recv ); req->async.iosb = wine_server_client_ptr( iosb ); req->async.arg = wine_server_client_ptr( wsa ); req->async.event = wine_server_obj_handle( lpCompletionRoutine ? 0 : lpOverlapped->hEvent ); req->async.cvalue = cvalue; err = wine_server_call( req ); } SERVER_END_REQ; if (err != STATUS_PENDING) HeapFree( GetProcessHeap(), 0, wsa ); SetLastError(NtStatusToWSAError( err )); return SOCKET_ERROR; } iosb->u.Status = STATUS_SUCCESS; iosb->Information = n; if (!wsa->completion_func) { if (cvalue) WS_AddCompletion( s, cvalue, STATUS_SUCCESS, n ); if (lpOverlapped->hEvent) SetEvent( lpOverlapped->hEvent ); HeapFree( GetProcessHeap(), 0, wsa ); } else NtQueueApcThread( GetCurrentThread(), (PNTAPCFUNC)ws2_async_apc, (ULONG_PTR)wsa, (ULONG_PTR)iosb, 0 ); _enable_event(SOCKET2HANDLE(s), FD_READ, 0, 0); return 0; } if (n != -1) break; if ((err = _is_blocking( s, &is_blocking ))) { err = NtStatusToWSAError( err ); goto error; } if ( is_blocking ) { struct pollfd pfd; int poll_timeout = -1; INT64 timeout = get_rcvsnd_timeo(fd, TRUE); if (timeout) { timeout -= GetTickCount() - timeout_start; if (timeout < 0) poll_timeout = 0; else poll_timeout = timeout <= INT_MAX ? timeout : INT_MAX; } pfd.fd = fd; pfd.events = POLLIN; if (*lpFlags & WS_MSG_OOB) pfd.events |= POLLPRI; if (!poll_timeout || !poll( &pfd, 1, poll_timeout )) { err = WSAETIMEDOUT; /* a timeout is not fatal */ _enable_event(SOCKET2HANDLE(s), FD_READ, 0, 0); goto error; } } else { _enable_event(SOCKET2HANDLE(s), FD_READ, 0, 0); err = WSAEWOULDBLOCK; goto error; } } TRACE(" -> %i bytes\n", n); if (wsa != &localwsa) HeapFree( GetProcessHeap(), 0, wsa ); release_sock_fd( s, fd ); _enable_event(SOCKET2HANDLE(s), FD_READ, 0, 0); SetLastError(ERROR_SUCCESS); return 0; error: if (wsa != &localwsa) HeapFree( GetProcessHeap(), 0, wsa ); release_sock_fd( s, fd ); WARN(" -> ERROR %d\n", err); SetLastError( err ); return SOCKET_ERROR; } /*********************************************************************** * WSARecvFrom (WS2_32.69) */ INT WINAPI WSARecvFrom( SOCKET s, LPWSABUF lpBuffers, DWORD dwBufferCount, LPDWORD lpNumberOfBytesRecvd, LPDWORD lpFlags, struct WS_sockaddr *lpFrom, LPINT lpFromlen, LPWSAOVERLAPPED lpOverlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine ) { return WS2_recv_base( s, lpBuffers, dwBufferCount, lpNumberOfBytesRecvd, lpFlags, lpFrom, lpFromlen, lpOverlapped, lpCompletionRoutine, NULL ); } /*********************************************************************** * WSCInstallProvider (WS2_32.88) */ INT WINAPI WSCInstallProvider( const LPGUID lpProviderId, LPCWSTR lpszProviderDllPath, const LPWSAPROTOCOL_INFOW lpProtocolInfoList, DWORD dwNumberOfEntries, LPINT lpErrno ) { FIXME("(%s, %s, %p, %d, %p): stub !\n", debugstr_guid(lpProviderId), debugstr_w(lpszProviderDllPath), lpProtocolInfoList, dwNumberOfEntries, lpErrno); *lpErrno = 0; return 0; } /*********************************************************************** * WSCDeinstallProvider (WS2_32.83) */ INT WINAPI WSCDeinstallProvider(LPGUID lpProviderId, LPINT lpErrno) { FIXME("(%s, %p): stub !\n", debugstr_guid(lpProviderId), lpErrno); *lpErrno = 0; return 0; } /*********************************************************************** * WSAAccept (WS2_32.26) */ SOCKET WINAPI WSAAccept( SOCKET s, struct WS_sockaddr *addr, LPINT addrlen, LPCONDITIONPROC lpfnCondition, DWORD_PTR dwCallbackData) { int ret = 0, size; WSABUF CallerId, CallerData, CalleeId, CalleeData; /* QOS SQOS, GQOS; */ GROUP g; SOCKET cs; SOCKADDR src_addr, dst_addr; TRACE("socket %04lx, sockaddr %p, addrlen %p, fnCondition %p, dwCallbackData %ld\n", s, addr, addrlen, lpfnCondition, dwCallbackData); cs = WS_accept(s, addr, addrlen); if (cs == SOCKET_ERROR) return SOCKET_ERROR; if (!lpfnCondition) return cs; if (addr && addrlen) { CallerId.buf = (char *)addr; CallerId.len = *addrlen; } else { size = sizeof(src_addr); WS_getpeername(cs, &src_addr, &size); CallerId.buf = (char *)&src_addr; CallerId.len = size; } CallerData.buf = NULL; CallerData.len = 0; size = sizeof(dst_addr); WS_getsockname(cs, &dst_addr, &size); CalleeId.buf = (char *)&dst_addr; CalleeId.len = sizeof(dst_addr); ret = (*lpfnCondition)(&CallerId, &CallerData, NULL, NULL, &CalleeId, &CalleeData, &g, dwCallbackData); switch (ret) { case CF_ACCEPT: return cs; case CF_DEFER: SERVER_START_REQ( set_socket_deferred ) { req->handle = wine_server_obj_handle( SOCKET2HANDLE(s) ); req->deferred = wine_server_obj_handle( SOCKET2HANDLE(cs) ); if ( !wine_server_call_err ( req ) ) { SetLastError( WSATRY_AGAIN ); WS_closesocket( cs ); } } SERVER_END_REQ; return SOCKET_ERROR; case CF_REJECT: WS_closesocket(cs); SetLastError(WSAECONNREFUSED); return SOCKET_ERROR; default: FIXME("Unknown return type from Condition function\n"); SetLastError(WSAENOTSOCK); return SOCKET_ERROR; } } /*********************************************************************** * WSADuplicateSocketA (WS2_32.32) */ int WINAPI WSADuplicateSocketA( SOCKET s, DWORD dwProcessId, LPWSAPROTOCOL_INFOA lpProtocolInfo ) { return WS_DuplicateSocket(FALSE, s, dwProcessId, (LPWSAPROTOCOL_INFOW) lpProtocolInfo); } /*********************************************************************** * WSADuplicateSocketW (WS2_32.33) */ int WINAPI WSADuplicateSocketW( SOCKET s, DWORD dwProcessId, LPWSAPROTOCOL_INFOW lpProtocolInfo ) { return WS_DuplicateSocket(TRUE, s, dwProcessId, lpProtocolInfo); } /*********************************************************************** * WSAInstallServiceClassA (WS2_32.48) */ int WINAPI WSAInstallServiceClassA(LPWSASERVICECLASSINFOA info) { FIXME("Request to install service %s\n",debugstr_a(info->lpszServiceClassName)); SetLastError(WSAEACCES); return SOCKET_ERROR; } /*********************************************************************** * WSAInstallServiceClassW (WS2_32.49) */ int WINAPI WSAInstallServiceClassW(LPWSASERVICECLASSINFOW info) { FIXME("Request to install service %s\n",debugstr_w(info->lpszServiceClassName)); SetLastError(WSAEACCES); return SOCKET_ERROR; } /*********************************************************************** * WSARemoveServiceClass (WS2_32.70) */ int WINAPI WSARemoveServiceClass(LPGUID info) { FIXME("Request to remove service %p\n",info); SetLastError(WSATYPE_NOT_FOUND); return SOCKET_ERROR; } /*********************************************************************** * inet_ntop (WS2_32.@) */ PCSTR WINAPI WS_inet_ntop( INT family, PVOID addr, PSTR buffer, SIZE_T len ) { #ifdef HAVE_INET_NTOP struct WS_in6_addr *in6; struct WS_in_addr *in; PCSTR pdst; TRACE("family %d, addr (%p), buffer (%p), len %ld\n", family, addr, buffer, len); if (!buffer) { SetLastError( STATUS_INVALID_PARAMETER ); return NULL; } switch (family) { case WS_AF_INET: { in = addr; pdst = inet_ntop( AF_INET, &in->WS_s_addr, buffer, len ); break; } case WS_AF_INET6: { in6 = addr; pdst = inet_ntop( AF_INET6, in6->WS_s6_addr, buffer, len ); break; } default: SetLastError( WSAEAFNOSUPPORT ); return NULL; } if (!pdst) SetLastError( STATUS_INVALID_PARAMETER ); return pdst; #else FIXME( "not supported on this platform\n" ); SetLastError( WSAEAFNOSUPPORT ); return NULL; #endif } /*********************************************************************** * inet_pton (WS2_32.@) */ INT WINAPI WS_inet_pton( INT family, PCSTR addr, PVOID buffer) { #ifdef HAVE_INET_PTON int unixaf, ret; TRACE("family %d, addr '%s', buffer (%p)\n", family, addr ? addr : "(null)", buffer); if (!addr || !buffer) { SetLastError(WSAEFAULT); return SOCKET_ERROR; } unixaf = convert_af_w2u(family); if (unixaf != AF_INET && unixaf != AF_INET6) { SetLastError(WSAEAFNOSUPPORT); return SOCKET_ERROR; } ret = inet_pton(unixaf, addr, buffer); if (ret == -1) SetLastError(wsaErrno()); return ret; #else FIXME( "not supported on this platform\n" ); SetLastError( WSAEAFNOSUPPORT ); return SOCKET_ERROR; #endif } /*********************************************************************** * WSAStringToAddressA (WS2_32.80) */ INT WINAPI WSAStringToAddressA(LPSTR AddressString, INT AddressFamily, LPWSAPROTOCOL_INFOA lpProtocolInfo, LPSOCKADDR lpAddress, LPINT lpAddressLength) { INT res=0; LPSTR workBuffer=NULL,ptrPort; TRACE( "(%s, %x, %p, %p, %p)\n", debugstr_a(AddressString), AddressFamily, lpProtocolInfo, lpAddress, lpAddressLength ); if (!lpAddressLength || !lpAddress) return SOCKET_ERROR; if (!AddressString) { SetLastError(WSAEINVAL); return SOCKET_ERROR; } if (lpProtocolInfo) FIXME("ProtocolInfo not implemented.\n"); workBuffer = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, strlen(AddressString) + 1); if (!workBuffer) { SetLastError(WSA_NOT_ENOUGH_MEMORY); return SOCKET_ERROR; } strcpy(workBuffer, AddressString); switch(AddressFamily) { case WS_AF_INET: { struct in_addr inetaddr; /* If lpAddressLength is too small, tell caller the size we need */ if (*lpAddressLength < sizeof(SOCKADDR_IN)) { *lpAddressLength = sizeof(SOCKADDR_IN); res = WSAEFAULT; break; } *lpAddressLength = sizeof(SOCKADDR_IN); memset(lpAddress, 0, sizeof(SOCKADDR_IN)); ((LPSOCKADDR_IN)lpAddress)->sin_family = WS_AF_INET; ptrPort = strchr(workBuffer, ':'); if(ptrPort) { /* User may have entered an IPv6 and asked to parse as IPv4 */ if(strchr(ptrPort + 1, ':')) { res = WSAEINVAL; break; } ((LPSOCKADDR_IN)lpAddress)->sin_port = htons(atoi(ptrPort+1)); *ptrPort = '\0'; } else { ((LPSOCKADDR_IN)lpAddress)->sin_port = 0; } if(inet_aton(workBuffer, &inetaddr) > 0) { ((LPSOCKADDR_IN)lpAddress)->sin_addr.WS_s_addr = inetaddr.s_addr; res = 0; } else res = WSAEINVAL; break; } case WS_AF_INET6: { struct in6_addr inetaddr; /* If lpAddressLength is too small, tell caller the size we need */ if (*lpAddressLength < sizeof(SOCKADDR_IN6)) { *lpAddressLength = sizeof(SOCKADDR_IN6); res = WSAEFAULT; break; } #ifdef HAVE_INET_PTON *lpAddressLength = sizeof(SOCKADDR_IN6); memset(lpAddress, 0, sizeof(SOCKADDR_IN6)); ((LPSOCKADDR_IN6)lpAddress)->sin6_family = WS_AF_INET6; /* This one is a bit tricky. An IPv6 address contains colons, so the * check from IPv4 doesn't work like that. However, IPv6 addresses that * contain a port are written with braces like [fd12:3456:7890::1]:12345 * so what we will do is to look for ']', check if the next char is a * colon, and if it is, parse the port as in IPv4. */ ptrPort = strchr(workBuffer, ']'); if(ptrPort && *(++ptrPort) == ':') { ((LPSOCKADDR_IN6)lpAddress)->sin6_port = htons(atoi(ptrPort+1)); *ptrPort = '\0'; } else { ((LPSOCKADDR_IN6)lpAddress)->sin6_port = 0; } if(inet_pton(AF_INET6, workBuffer, &inetaddr) > 0) { memcpy(&((LPSOCKADDR_IN6)lpAddress)->sin6_addr, &inetaddr, sizeof(struct in6_addr)); res = 0; } else #endif /* HAVE_INET_PTON */ res = WSAEINVAL; break; } default: /* According to MSDN, only AF_INET and AF_INET6 are supported. */ TRACE("Unsupported address family specified: %d.\n", AddressFamily); res = WSAEINVAL; } HeapFree(GetProcessHeap(), 0, workBuffer); if (!res) return 0; SetLastError(res); return SOCKET_ERROR; } /*********************************************************************** * WSAStringToAddressW (WS2_32.81) * * FIXME: Does anybody know if this function allows using Hebrew/Arabic/Chinese... digits? * If this should be the case, it would be required to map these digits * to Unicode digits (0-9) using FoldString first. */ INT WINAPI WSAStringToAddressW(LPWSTR AddressString, INT AddressFamily, LPWSAPROTOCOL_INFOW lpProtocolInfo, LPSOCKADDR lpAddress, LPINT lpAddressLength) { INT sBuffer,res=0; LPSTR workBuffer=NULL; WSAPROTOCOL_INFOA infoA; LPWSAPROTOCOL_INFOA lpProtoInfoA = NULL; TRACE( "(%s, %x, %p, %p, %p)\n", debugstr_w(AddressString), AddressFamily, lpProtocolInfo, lpAddress, lpAddressLength ); if (!lpAddressLength || !lpAddress) return SOCKET_ERROR; /* if ProtocolInfo is available - convert to ANSI variant */ if (lpProtocolInfo) { lpProtoInfoA = &infoA; memcpy( lpProtoInfoA, lpProtocolInfo, FIELD_OFFSET( WSAPROTOCOL_INFOA, szProtocol ) ); if (!WideCharToMultiByte( CP_ACP, 0, lpProtocolInfo->szProtocol, -1, lpProtoInfoA->szProtocol, WSAPROTOCOL_LEN+1, NULL, NULL )) { SetLastError(WSAEINVAL); return SOCKET_ERROR; } } if (AddressString) { /* Translate AddressString to ANSI code page - assumes that only standard digits 0-9 are used with this API call */ sBuffer = WideCharToMultiByte( CP_ACP, 0, AddressString, -1, NULL, 0, NULL, NULL ); workBuffer = HeapAlloc( GetProcessHeap(), 0, sBuffer ); if (workBuffer) { WideCharToMultiByte( CP_ACP, 0, AddressString, -1, workBuffer, sBuffer, NULL, NULL ); res = WSAStringToAddressA(workBuffer,AddressFamily,lpProtoInfoA, lpAddress,lpAddressLength); HeapFree( GetProcessHeap(), 0, workBuffer ); return res; } else res = WSA_NOT_ENOUGH_MEMORY; } else res = WSAEINVAL; SetLastError(res); return SOCKET_ERROR; } /*********************************************************************** * WSAAddressToStringA (WS2_32.27) * * See WSAAddressToStringW */ INT WINAPI WSAAddressToStringA( LPSOCKADDR sockaddr, DWORD len, LPWSAPROTOCOL_INFOA info, LPSTR string, LPDWORD lenstr ) { DWORD size; CHAR buffer[54]; /* 32 digits + 7':' + '[' + '%" + 5 digits + ']:' + 5 digits + '\0' */ CHAR *p; TRACE( "(%p, %d, %p, %p, %p)\n", sockaddr, len, info, string, lenstr ); if (!sockaddr) return SOCKET_ERROR; if (!string || !lenstr) return SOCKET_ERROR; switch(sockaddr->sa_family) { case WS_AF_INET: if (len < sizeof(SOCKADDR_IN)) return SOCKET_ERROR; sprintf( buffer, "%u.%u.%u.%u:%u", (unsigned int)(ntohl( ((SOCKADDR_IN *)sockaddr)->sin_addr.WS_s_addr ) >> 24 & 0xff), (unsigned int)(ntohl( ((SOCKADDR_IN *)sockaddr)->sin_addr.WS_s_addr ) >> 16 & 0xff), (unsigned int)(ntohl( ((SOCKADDR_IN *)sockaddr)->sin_addr.WS_s_addr ) >> 8 & 0xff), (unsigned int)(ntohl( ((SOCKADDR_IN *)sockaddr)->sin_addr.WS_s_addr ) & 0xff), ntohs( ((SOCKADDR_IN *)sockaddr)->sin_port ) ); p = strchr( buffer, ':' ); if (!((SOCKADDR_IN *)sockaddr)->sin_port) *p = 0; break; case WS_AF_INET6: { struct WS_sockaddr_in6 *sockaddr6 = (LPSOCKADDR_IN6) sockaddr; buffer[0] = 0; if (len < sizeof(SOCKADDR_IN6)) return SOCKET_ERROR; if ((sockaddr6->sin6_port)) strcpy(buffer, "["); if (!WS_inet_ntop(WS_AF_INET6, &sockaddr6->sin6_addr, buffer+strlen(buffer), sizeof(buffer))) { SetLastError(WSAEINVAL); return SOCKET_ERROR; } if ((sockaddr6->sin6_scope_id)) sprintf(buffer+strlen(buffer), "%%%u", sockaddr6->sin6_scope_id); if ((sockaddr6->sin6_port)) sprintf(buffer+strlen(buffer), "]:%u", ntohs(sockaddr6->sin6_port)); break; } default: SetLastError(WSAEINVAL); return SOCKET_ERROR; } size = strlen( buffer ) + 1; if (*lenstr < size) { *lenstr = size; SetLastError(WSAEFAULT); return SOCKET_ERROR; } TRACE("=> %s,%u bytes\n", debugstr_a(buffer), size); *lenstr = size; strcpy( string, buffer ); return 0; } /*********************************************************************** * WSAAddressToStringW (WS2_32.28) * * Convert a sockaddr address into a readable address string. * * PARAMS * sockaddr [I] Pointer to a sockaddr structure. * len [I] Size of the sockaddr structure. * info [I] Pointer to a WSAPROTOCOL_INFOW structure (optional). * string [I/O] Pointer to a buffer to receive the address string. * lenstr [I/O] Size of the receive buffer in WCHARs. * * RETURNS * Success: 0 * Failure: SOCKET_ERROR * * NOTES * The 'info' parameter is ignored. */ INT WINAPI WSAAddressToStringW( LPSOCKADDR sockaddr, DWORD len, LPWSAPROTOCOL_INFOW info, LPWSTR string, LPDWORD lenstr ) { INT ret; DWORD size; WCHAR buffer[54]; /* 32 digits + 7':' + '[' + '%" + 5 digits + ']:' + 5 digits + '\0' */ CHAR bufAddr[54]; TRACE( "(%p, %d, %p, %p, %p)\n", sockaddr, len, info, string, lenstr ); size = *lenstr; ret = WSAAddressToStringA(sockaddr, len, NULL, bufAddr, &size); if (ret) return ret; MultiByteToWideChar( CP_ACP, 0, bufAddr, size, buffer, sizeof( buffer )/sizeof(WCHAR)); if (*lenstr < size) { *lenstr = size; SetLastError(WSAEFAULT); return SOCKET_ERROR; } TRACE("=> %s,%u bytes\n", debugstr_w(buffer), size); *lenstr = size; lstrcpyW( string, buffer ); return 0; } /*********************************************************************** * WSAEnumNameSpaceProvidersA (WS2_32.34) */ INT WINAPI WSAEnumNameSpaceProvidersA( LPDWORD len, LPWSANAMESPACE_INFOA buffer ) { FIXME( "(%p %p) Stub!\n", len, buffer ); return 0; } /*********************************************************************** * WSAEnumNameSpaceProvidersW (WS2_32.35) */ INT WINAPI WSAEnumNameSpaceProvidersW( LPDWORD len, LPWSANAMESPACE_INFOW buffer ) { FIXME( "(%p %p) Stub!\n", len, buffer ); return 0; } /*********************************************************************** * WSAGetQOSByName (WS2_32.41) */ BOOL WINAPI WSAGetQOSByName( SOCKET s, LPWSABUF lpQOSName, LPQOS lpQOS ) { FIXME( "(0x%04lx %p %p) Stub!\n", s, lpQOSName, lpQOS ); return FALSE; } /*********************************************************************** * WSAGetServiceClassInfoA (WS2_32.42) */ INT WINAPI WSAGetServiceClassInfoA( LPGUID provider, LPGUID service, LPDWORD len, LPWSASERVICECLASSINFOA info ) { FIXME( "(%s %s %p %p) Stub!\n", debugstr_guid(provider), debugstr_guid(service), len, info ); SetLastError(WSA_NOT_ENOUGH_MEMORY); return SOCKET_ERROR; } /*********************************************************************** * WSAGetServiceClassInfoW (WS2_32.43) */ INT WINAPI WSAGetServiceClassInfoW( LPGUID provider, LPGUID service, LPDWORD len, LPWSASERVICECLASSINFOW info ) { FIXME( "(%s %s %p %p) Stub!\n", debugstr_guid(provider), debugstr_guid(service), len, info ); SetLastError(WSA_NOT_ENOUGH_MEMORY); return SOCKET_ERROR; } /*********************************************************************** * WSAGetServiceClassNameByClassIdA (WS2_32.44) */ INT WINAPI WSAGetServiceClassNameByClassIdA( LPGUID class, LPSTR service, LPDWORD len ) { FIXME( "(%s %p %p) Stub!\n", debugstr_guid(class), service, len ); SetLastError(WSA_NOT_ENOUGH_MEMORY); return SOCKET_ERROR; } /*********************************************************************** * WSAGetServiceClassNameByClassIdW (WS2_32.45) */ INT WINAPI WSAGetServiceClassNameByClassIdW( LPGUID class, LPWSTR service, LPDWORD len ) { FIXME( "(%s %p %p) Stub!\n", debugstr_guid(class), service, len ); SetLastError(WSA_NOT_ENOUGH_MEMORY); return SOCKET_ERROR; } /*********************************************************************** * WSALookupServiceBeginA (WS2_32.59) */ INT WINAPI WSALookupServiceBeginA( LPWSAQUERYSETA lpqsRestrictions, DWORD dwControlFlags, LPHANDLE lphLookup) { FIXME("(%p 0x%08x %p) Stub!\n", lpqsRestrictions, dwControlFlags, lphLookup); SetLastError(WSA_NOT_ENOUGH_MEMORY); return SOCKET_ERROR; } /*********************************************************************** * WSALookupServiceBeginW (WS2_32.60) */ INT WINAPI WSALookupServiceBeginW( LPWSAQUERYSETW lpqsRestrictions, DWORD dwControlFlags, LPHANDLE lphLookup) { FIXME("(%p 0x%08x %p) Stub!\n", lpqsRestrictions, dwControlFlags, lphLookup); SetLastError(WSA_NOT_ENOUGH_MEMORY); return SOCKET_ERROR; } /*********************************************************************** * WSALookupServiceEnd (WS2_32.61) */ INT WINAPI WSALookupServiceEnd( HANDLE lookup ) { FIXME("(%p) Stub!\n", lookup ); return 0; } /*********************************************************************** * WSALookupServiceNextA (WS2_32.62) */ INT WINAPI WSALookupServiceNextA( HANDLE lookup, DWORD flags, LPDWORD len, LPWSAQUERYSETA results ) { FIXME( "(%p 0x%08x %p %p) Stub!\n", lookup, flags, len, results ); SetLastError(WSA_E_NO_MORE); return SOCKET_ERROR; } /*********************************************************************** * WSALookupServiceNextW (WS2_32.63) */ INT WINAPI WSALookupServiceNextW( HANDLE lookup, DWORD flags, LPDWORD len, LPWSAQUERYSETW results ) { FIXME( "(%p 0x%08x %p %p) Stub!\n", lookup, flags, len, results ); SetLastError(WSA_E_NO_MORE); return SOCKET_ERROR; } /*********************************************************************** * WSANtohl (WS2_32.64) */ INT WINAPI WSANtohl( SOCKET s, WS_u_long netlong, WS_u_long* lphostlong ) { TRACE( "(%04lx 0x%08x %p)\n", s, netlong, lphostlong ); if (!lphostlong) return WSAEFAULT; *lphostlong = ntohl( netlong ); return 0; } /*********************************************************************** * WSANtohs (WS2_32.65) */ INT WINAPI WSANtohs( SOCKET s, WS_u_short netshort, WS_u_short* lphostshort ) { TRACE( "(%04lx 0x%08x %p)\n", s, netshort, lphostshort ); if (!lphostshort) return WSAEFAULT; *lphostshort = ntohs( netshort ); return 0; } /*********************************************************************** * WSAProviderConfigChange (WS2_32.66) */ INT WINAPI WSAProviderConfigChange( LPHANDLE handle, LPWSAOVERLAPPED overlapped, LPWSAOVERLAPPED_COMPLETION_ROUTINE completion ) { FIXME( "(%p %p %p) Stub!\n", handle, overlapped, completion ); return SOCKET_ERROR; } /*********************************************************************** * WSARecvDisconnect (WS2_32.68) */ INT WINAPI WSARecvDisconnect( SOCKET s, LPWSABUF disconnectdata ) { TRACE( "(%04lx %p)\n", s, disconnectdata ); return WS_shutdown( s, SD_RECEIVE ); } /*********************************************************************** * WSASetServiceA (WS2_32.76) */ INT WINAPI WSASetServiceA( LPWSAQUERYSETA query, WSAESETSERVICEOP operation, DWORD flags ) { FIXME( "(%p 0x%08x 0x%08x) Stub!\n", query, operation, flags ); return 0; } /*********************************************************************** * WSASetServiceW (WS2_32.77) */ INT WINAPI WSASetServiceW( LPWSAQUERYSETW query, WSAESETSERVICEOP operation, DWORD flags ) { FIXME( "(%p 0x%08x 0x%08x) Stub!\n", query, operation, flags ); return 0; } /*********************************************************************** * WSCEnableNSProvider (WS2_32.84) */ INT WINAPI WSCEnableNSProvider( LPGUID provider, BOOL enable ) { FIXME( "(%s 0x%08x) Stub!\n", debugstr_guid(provider), enable ); return 0; } /*********************************************************************** * WSCGetProviderPath (WS2_32.86) */ INT WINAPI WSCGetProviderPath( LPGUID provider, LPWSTR path, LPINT len, LPINT errcode ) { FIXME( "(%s %p %p %p) Stub!\n", debugstr_guid(provider), path, len, errcode ); if (!errcode || !provider || !len) return WSAEFAULT; *errcode = WSAEINVAL; return SOCKET_ERROR; } /*********************************************************************** * WSCInstallNameSpace (WS2_32.87) */ INT WINAPI WSCInstallNameSpace( LPWSTR identifier, LPWSTR path, DWORD namespace, DWORD version, LPGUID provider ) { FIXME( "(%s %s 0x%08x 0x%08x %s) Stub!\n", debugstr_w(identifier), debugstr_w(path), namespace, version, debugstr_guid(provider) ); return 0; } /*********************************************************************** * WSCUnInstallNameSpace (WS2_32.89) */ INT WINAPI WSCUnInstallNameSpace( LPGUID lpProviderId ) { FIXME("(%p) Stub!\n", lpProviderId); return NO_ERROR; } /*********************************************************************** * WSCWriteProviderOrder (WS2_32.91) */ INT WINAPI WSCWriteProviderOrder( LPDWORD entry, DWORD number ) { FIXME("(%p 0x%08x) Stub!\n", entry, number); return 0; } /*********************************************************************** * WSANSPIoctl (WS2_32.91) */ INT WINAPI WSANSPIoctl( HANDLE hLookup, DWORD dwControlCode, LPVOID lpvInBuffer, DWORD cbInBuffer, LPVOID lpvOutBuffer, DWORD cbOutBuffer, LPDWORD lpcbBytesReturned, LPWSACOMPLETION lpCompletion ) { FIXME("(%p, 0x%08x, %p, 0x%08x, %p, 0x%08x, %p, %p) Stub!\n", hLookup, dwControlCode, lpvInBuffer, cbInBuffer, lpvOutBuffer, cbOutBuffer, lpcbBytesReturned, lpCompletion); SetLastError(WSA_NOT_ENOUGH_MEMORY); return SOCKET_ERROR; } /***************************************************************************** * WSAEnumProtocolsA [WS2_32.@] * * see function WSAEnumProtocolsW */ INT WINAPI WSAEnumProtocolsA( LPINT protocols, LPWSAPROTOCOL_INFOA buffer, LPDWORD len ) { return WS_EnumProtocols( FALSE, protocols, (LPWSAPROTOCOL_INFOW) buffer, len); } /***************************************************************************** * WSAEnumProtocolsW [WS2_32.@] * * Retrieves information about specified set of active network protocols. * * PARAMS * protocols [I] Pointer to null-terminated array of protocol id's. NULL * retrieves information on all available protocols. * buffer [I] Pointer to a buffer to be filled with WSAPROTOCOL_INFO * structures. * len [I/O] Pointer to a variable specifying buffer size. On output * the variable holds the number of bytes needed when the * specified size is too small. * * RETURNS * Success: number of WSAPROTOCOL_INFO structures in buffer. * Failure: SOCKET_ERROR * * NOTES * NT4SP5 does not return SPX if protocols == NULL * * BUGS * - NT4SP5 returns in addition these list of NETBIOS protocols * (address family 17), each entry two times one for socket type 2 and 5 * * iProtocol szProtocol * 0x80000000 \Device\NwlnkNb * 0xfffffffa \Device\NetBT_CBENT7 * 0xfffffffb \Device\Nbf_CBENT7 * 0xfffffffc \Device\NetBT_NdisWan5 * 0xfffffffd \Device\NetBT_El9202 * 0xfffffffe \Device\Nbf_El9202 * 0xffffffff \Device\Nbf_NdisWan4 * * - there is no check that the operating system supports the returned * protocols */ INT WINAPI WSAEnumProtocolsW( LPINT protocols, LPWSAPROTOCOL_INFOW buffer, LPDWORD len ) { return WS_EnumProtocols( TRUE, protocols, buffer, len); } /***************************************************************************** * WSCEnumProtocols [WS2_32.@] * * PARAMS * protocols [I] Null-terminated array of iProtocol values. * buffer [O] Buffer of WSAPROTOCOL_INFOW structures. * len [I/O] Size of buffer on input/output. * errno [O] Error code. * * RETURNS * Success: number of protocols to be reported on. * Failure: SOCKET_ERROR. error is in errno. * * BUGS * Doesn't supply info on layered protocols. * */ INT WINAPI WSCEnumProtocols( LPINT protocols, LPWSAPROTOCOL_INFOW buffer, LPDWORD len, LPINT err ) { INT ret = WSAEnumProtocolsW( protocols, buffer, len ); if (ret == SOCKET_ERROR) *err = WSAENOBUFS; return ret; }