/* * RPC transport layer * * Copyright 2001 Ove Kåven, TransGaming Technologies * Copyright 2003 Mike Hearn * Copyright 2004 Filip Navara * Copyright 2006 Mike McCormack * Copyright 2006 Damjan Jovanovic * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA * */ #include "config.h" #include #include #include #include #include #include #if defined(__MINGW32__) || defined (_MSC_VER) # include # ifndef EADDRINUSE # define EADDRINUSE WSAEADDRINUSE # endif # ifndef EAGAIN # define EAGAIN WSAEWOULDBLOCK # endif #else # include # ifdef HAVE_UNISTD_H # include # endif # include # ifdef HAVE_SYS_SOCKET_H # include # endif # ifdef HAVE_NETINET_IN_H # include # endif # ifdef HAVE_NETINET_TCP_H # include # endif # ifdef HAVE_ARPA_INET_H # include # endif # ifdef HAVE_NETDB_H # include # endif # ifdef HAVE_SYS_POLL_H # include # endif # define closesocket close #endif /* defined(__MINGW32__) || defined (_MSC_VER) */ #include "windef.h" #include "winbase.h" #include "winnls.h" #include "winerror.h" #include "winternl.h" #include "wine/unicode.h" #include "rpc.h" #include "rpcndr.h" #include "wine/debug.h" #include "rpc_binding.h" #include "rpc_message.h" #include "rpc_server.h" #include "epm_towers.h" #ifndef SOL_TCP # define SOL_TCP IPPROTO_TCP #endif WINE_DEFAULT_DEBUG_CHANNEL(rpc); /**** ncacn_np support ****/ typedef struct _RpcConnection_np { RpcConnection common; HANDLE pipe; OVERLAPPED ovl; BOOL listening; } RpcConnection_np; static RpcConnection *rpcrt4_conn_np_alloc(void) { RpcConnection_np *npc = HeapAlloc(GetProcessHeap(), 0, sizeof(RpcConnection_np)); if (npc) { npc->pipe = NULL; memset(&npc->ovl, 0, sizeof(npc->ovl)); npc->listening = FALSE; } return &npc->common; } static RPC_STATUS rpcrt4_conn_listen_pipe(RpcConnection_np *npc) { if (npc->listening) return RPC_S_OK; npc->listening = TRUE; if (ConnectNamedPipe(npc->pipe, &npc->ovl)) return RPC_S_OK; if (GetLastError() == ERROR_PIPE_CONNECTED) { SetEvent(npc->ovl.hEvent); return RPC_S_OK; } if (GetLastError() == ERROR_IO_PENDING) { /* will be completed in rpcrt4_protseq_np_wait_for_new_connection */ return RPC_S_OK; } npc->listening = FALSE; WARN("Couldn't ConnectNamedPipe (error was %d)\n", GetLastError()); return RPC_S_OUT_OF_RESOURCES; } static RPC_STATUS rpcrt4_conn_create_pipe(RpcConnection *Connection, LPCSTR pname) { RpcConnection_np *npc = (RpcConnection_np *) Connection; TRACE("listening on %s\n", pname); npc->pipe = CreateNamedPipeA(pname, PIPE_ACCESS_DUPLEX, PIPE_TYPE_MESSAGE | PIPE_READMODE_MESSAGE, PIPE_UNLIMITED_INSTANCES, RPC_MAX_PACKET_SIZE, RPC_MAX_PACKET_SIZE, 5000, NULL); if (npc->pipe == INVALID_HANDLE_VALUE) { WARN("CreateNamedPipe failed with error %d\n", GetLastError()); if (GetLastError() == ERROR_FILE_EXISTS) return RPC_S_DUPLICATE_ENDPOINT; else return RPC_S_CANT_CREATE_ENDPOINT; } memset(&npc->ovl, 0, sizeof(npc->ovl)); npc->ovl.hEvent = CreateEventW(NULL, TRUE, FALSE, NULL); /* Note: we don't call ConnectNamedPipe here because it must be done in the * server thread as the thread must be alertable */ return RPC_S_OK; } static RPC_STATUS rpcrt4_conn_open_pipe(RpcConnection *Connection, LPCSTR pname, BOOL wait) { RpcConnection_np *npc = (RpcConnection_np *) Connection; HANDLE pipe; DWORD err, dwMode; TRACE("connecting to %s\n", pname); while (TRUE) { DWORD dwFlags = 0; if (Connection->QOS) { dwFlags = SECURITY_SQOS_PRESENT; switch (Connection->QOS->qos->ImpersonationType) { case RPC_C_IMP_LEVEL_DEFAULT: /* FIXME: what to do here? */ break; case RPC_C_IMP_LEVEL_ANONYMOUS: dwFlags |= SECURITY_ANONYMOUS; break; case RPC_C_IMP_LEVEL_IDENTIFY: dwFlags |= SECURITY_IDENTIFICATION; break; case RPC_C_IMP_LEVEL_IMPERSONATE: dwFlags |= SECURITY_IMPERSONATION; break; case RPC_C_IMP_LEVEL_DELEGATE: dwFlags |= SECURITY_DELEGATION; break; } if (Connection->QOS->qos->IdentityTracking == RPC_C_QOS_IDENTIFY_DYNAMIC) dwFlags |= SECURITY_CONTEXT_TRACKING; } pipe = CreateFileA(pname, GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, dwFlags, 0); if (pipe != INVALID_HANDLE_VALUE) break; err = GetLastError(); if (err == ERROR_PIPE_BUSY) { TRACE("connection failed, error=%x\n", err); return RPC_S_SERVER_TOO_BUSY; } if (!wait) return RPC_S_SERVER_UNAVAILABLE; if (!WaitNamedPipeA(pname, NMPWAIT_WAIT_FOREVER)) { err = GetLastError(); WARN("connection failed, error=%x\n", err); return RPC_S_SERVER_UNAVAILABLE; } } /* success */ memset(&npc->ovl, 0, sizeof(npc->ovl)); /* pipe is connected; change to message-read mode. */ dwMode = PIPE_READMODE_MESSAGE; SetNamedPipeHandleState(pipe, &dwMode, NULL, NULL); npc->ovl.hEvent = CreateEventW(NULL, TRUE, FALSE, NULL); npc->pipe = pipe; return RPC_S_OK; } static RPC_STATUS rpcrt4_ncalrpc_open(RpcConnection* Connection) { RpcConnection_np *npc = (RpcConnection_np *) Connection; static const char prefix[] = "\\\\.\\pipe\\lrpc\\"; RPC_STATUS r; LPSTR pname; /* already connected? */ if (npc->pipe) return RPC_S_OK; /* protseq=ncalrpc: supposed to use NT LPC ports, * but we'll implement it with named pipes for now */ pname = I_RpcAllocate(strlen(prefix) + strlen(Connection->Endpoint) + 1); strcat(strcpy(pname, prefix), Connection->Endpoint); r = rpcrt4_conn_open_pipe(Connection, pname, TRUE); I_RpcFree(pname); return r; } static RPC_STATUS rpcrt4_protseq_ncalrpc_open_endpoint(RpcServerProtseq* protseq, LPSTR endpoint) { static const char prefix[] = "\\\\.\\pipe\\lrpc\\"; RPC_STATUS r; LPSTR pname; RpcConnection *Connection; r = RPCRT4_CreateConnection(&Connection, TRUE, protseq->Protseq, NULL, endpoint, NULL, NULL, NULL); if (r != RPC_S_OK) return r; /* protseq=ncalrpc: supposed to use NT LPC ports, * but we'll implement it with named pipes for now */ pname = I_RpcAllocate(strlen(prefix) + strlen(Connection->Endpoint) + 1); strcat(strcpy(pname, prefix), Connection->Endpoint); r = rpcrt4_conn_create_pipe(Connection, pname); I_RpcFree(pname); EnterCriticalSection(&protseq->cs); Connection->Next = protseq->conn; protseq->conn = Connection; LeaveCriticalSection(&protseq->cs); return r; } static RPC_STATUS rpcrt4_ncacn_np_open(RpcConnection* Connection) { RpcConnection_np *npc = (RpcConnection_np *) Connection; static const char prefix[] = "\\\\."; RPC_STATUS r; LPSTR pname; /* already connected? */ if (npc->pipe) return RPC_S_OK; /* protseq=ncacn_np: named pipes */ pname = I_RpcAllocate(strlen(prefix) + strlen(Connection->Endpoint) + 1); strcat(strcpy(pname, prefix), Connection->Endpoint); r = rpcrt4_conn_open_pipe(Connection, pname, FALSE); I_RpcFree(pname); return r; } static RPC_STATUS rpcrt4_protseq_ncacn_np_open_endpoint(RpcServerProtseq *protseq, LPSTR endpoint) { static const char prefix[] = "\\\\."; RPC_STATUS r; LPSTR pname; RpcConnection *Connection; r = RPCRT4_CreateConnection(&Connection, TRUE, protseq->Protseq, NULL, endpoint, NULL, NULL, NULL); if (r != RPC_S_OK) return r; /* protseq=ncacn_np: named pipes */ pname = I_RpcAllocate(strlen(prefix) + strlen(Connection->Endpoint) + 1); strcat(strcpy(pname, prefix), Connection->Endpoint); r = rpcrt4_conn_create_pipe(Connection, pname); I_RpcFree(pname); EnterCriticalSection(&protseq->cs); Connection->Next = protseq->conn; protseq->conn = Connection; LeaveCriticalSection(&protseq->cs); return r; } static void rpcrt4_conn_np_handoff(RpcConnection_np *old_npc, RpcConnection_np *new_npc) { /* because of the way named pipes work, we'll transfer the connected pipe * to the child, then reopen the server binding to continue listening */ new_npc->pipe = old_npc->pipe; new_npc->ovl = old_npc->ovl; old_npc->pipe = 0; memset(&old_npc->ovl, 0, sizeof(old_npc->ovl)); old_npc->listening = FALSE; } static RPC_STATUS rpcrt4_ncacn_np_handoff(RpcConnection *old_conn, RpcConnection *new_conn) { RPC_STATUS status; LPSTR pname; static const char prefix[] = "\\\\."; rpcrt4_conn_np_handoff((RpcConnection_np *)old_conn, (RpcConnection_np *)new_conn); pname = I_RpcAllocate(strlen(prefix) + strlen(old_conn->Endpoint) + 1); strcat(strcpy(pname, prefix), old_conn->Endpoint); status = rpcrt4_conn_create_pipe(old_conn, pname); I_RpcFree(pname); return status; } static RPC_STATUS rpcrt4_ncalrpc_handoff(RpcConnection *old_conn, RpcConnection *new_conn) { RPC_STATUS status; LPSTR pname; static const char prefix[] = "\\\\.\\pipe\\lrpc\\"; TRACE("%s\n", old_conn->Endpoint); rpcrt4_conn_np_handoff((RpcConnection_np *)old_conn, (RpcConnection_np *)new_conn); pname = I_RpcAllocate(strlen(prefix) + strlen(old_conn->Endpoint) + 1); strcat(strcpy(pname, prefix), old_conn->Endpoint); status = rpcrt4_conn_create_pipe(old_conn, pname); I_RpcFree(pname); return status; } static int rpcrt4_conn_np_read(RpcConnection *Connection, void *buffer, unsigned int count) { RpcConnection_np *npc = (RpcConnection_np *) Connection; char *buf = buffer; BOOL ret = TRUE; unsigned int bytes_left = count; while (bytes_left) { DWORD bytes_read; ret = ReadFile(npc->pipe, buf, bytes_left, &bytes_read, NULL); if (!ret || !bytes_read) break; bytes_left -= bytes_read; buf += bytes_read; } return ret ? count : -1; } static int rpcrt4_conn_np_write(RpcConnection *Connection, const void *buffer, unsigned int count) { RpcConnection_np *npc = (RpcConnection_np *) Connection; const char *buf = buffer; BOOL ret = TRUE; unsigned int bytes_left = count; while (bytes_left) { DWORD bytes_written; ret = WriteFile(npc->pipe, buf, bytes_left, &bytes_written, NULL); if (!ret || !bytes_written) break; bytes_left -= bytes_written; buf += bytes_written; } return ret ? count : -1; } static int rpcrt4_conn_np_close(RpcConnection *Connection) { RpcConnection_np *npc = (RpcConnection_np *) Connection; if (npc->pipe) { FlushFileBuffers(npc->pipe); CloseHandle(npc->pipe); npc->pipe = 0; } if (npc->ovl.hEvent) { CloseHandle(npc->ovl.hEvent); npc->ovl.hEvent = 0; } return 0; } static void rpcrt4_conn_np_cancel_call(RpcConnection *Connection) { /* FIXME: implement when named pipe writes use overlapped I/O */ } static int rpcrt4_conn_np_wait_for_incoming_data(RpcConnection *Connection) { /* FIXME: implement when named pipe writes use overlapped I/O */ return -1; } static size_t rpcrt4_ncacn_np_get_top_of_tower(unsigned char *tower_data, const char *networkaddr, const char *endpoint) { twr_empty_floor_t *smb_floor; twr_empty_floor_t *nb_floor; size_t size; size_t networkaddr_size; size_t endpoint_size; TRACE("(%p, %s, %s)\n", tower_data, networkaddr, endpoint); networkaddr_size = networkaddr ? strlen(networkaddr) + 1 : 1; endpoint_size = endpoint ? strlen(endpoint) + 1 : 1; size = sizeof(*smb_floor) + endpoint_size + sizeof(*nb_floor) + networkaddr_size; if (!tower_data) return size; smb_floor = (twr_empty_floor_t *)tower_data; tower_data += sizeof(*smb_floor); smb_floor->count_lhs = sizeof(smb_floor->protid); smb_floor->protid = EPM_PROTOCOL_SMB; smb_floor->count_rhs = endpoint_size; if (endpoint) memcpy(tower_data, endpoint, endpoint_size); else tower_data[0] = 0; tower_data += endpoint_size; nb_floor = (twr_empty_floor_t *)tower_data; tower_data += sizeof(*nb_floor); nb_floor->count_lhs = sizeof(nb_floor->protid); nb_floor->protid = EPM_PROTOCOL_NETBIOS; nb_floor->count_rhs = networkaddr_size; if (networkaddr) memcpy(tower_data, networkaddr, networkaddr_size); else tower_data[0] = 0; tower_data += networkaddr_size; return size; } static RPC_STATUS rpcrt4_ncacn_np_parse_top_of_tower(const unsigned char *tower_data, size_t tower_size, char **networkaddr, char **endpoint) { const twr_empty_floor_t *smb_floor = (const twr_empty_floor_t *)tower_data; const twr_empty_floor_t *nb_floor; TRACE("(%p, %d, %p, %p)\n", tower_data, (int)tower_size, networkaddr, endpoint); if (tower_size < sizeof(*smb_floor)) return EPT_S_NOT_REGISTERED; tower_data += sizeof(*smb_floor); tower_size -= sizeof(*smb_floor); if ((smb_floor->count_lhs != sizeof(smb_floor->protid)) || (smb_floor->protid != EPM_PROTOCOL_SMB) || (smb_floor->count_rhs > tower_size)) return EPT_S_NOT_REGISTERED; if (endpoint) { *endpoint = I_RpcAllocate(smb_floor->count_rhs); if (!*endpoint) return RPC_S_OUT_OF_RESOURCES; memcpy(*endpoint, tower_data, smb_floor->count_rhs); } tower_data += smb_floor->count_rhs; tower_size -= smb_floor->count_rhs; if (tower_size < sizeof(*nb_floor)) return EPT_S_NOT_REGISTERED; nb_floor = (const twr_empty_floor_t *)tower_data; tower_data += sizeof(*nb_floor); tower_size -= sizeof(*nb_floor); if ((nb_floor->count_lhs != sizeof(nb_floor->protid)) || (nb_floor->protid != EPM_PROTOCOL_NETBIOS) || (nb_floor->count_rhs > tower_size)) return EPT_S_NOT_REGISTERED; if (networkaddr) { *networkaddr = I_RpcAllocate(nb_floor->count_rhs); if (!*networkaddr) { if (endpoint) { I_RpcFree(*endpoint); *endpoint = NULL; } return RPC_S_OUT_OF_RESOURCES; } memcpy(*networkaddr, tower_data, nb_floor->count_rhs); } return RPC_S_OK; } typedef struct _RpcServerProtseq_np { RpcServerProtseq common; HANDLE mgr_event; } RpcServerProtseq_np; static RpcServerProtseq *rpcrt4_protseq_np_alloc(void) { RpcServerProtseq_np *ps = HeapAlloc(GetProcessHeap(), 0, sizeof(*ps)); if (ps) ps->mgr_event = CreateEventW(NULL, FALSE, FALSE, NULL); return &ps->common; } static void rpcrt4_protseq_np_signal_state_changed(RpcServerProtseq *protseq) { RpcServerProtseq_np *npps = CONTAINING_RECORD(protseq, RpcServerProtseq_np, common); SetEvent(npps->mgr_event); } static void *rpcrt4_protseq_np_get_wait_array(RpcServerProtseq *protseq, void *prev_array, unsigned int *count) { HANDLE *objs = prev_array; RpcConnection_np *conn; RpcServerProtseq_np *npps = CONTAINING_RECORD(protseq, RpcServerProtseq_np, common); EnterCriticalSection(&protseq->cs); /* open and count connections */ *count = 1; conn = CONTAINING_RECORD(protseq->conn, RpcConnection_np, common); while (conn) { rpcrt4_conn_listen_pipe(conn); if (conn->ovl.hEvent) (*count)++; conn = CONTAINING_RECORD(conn->common.Next, RpcConnection_np, common); } /* make array of connections */ if (objs) objs = HeapReAlloc(GetProcessHeap(), 0, objs, *count*sizeof(HANDLE)); else objs = HeapAlloc(GetProcessHeap(), 0, *count*sizeof(HANDLE)); if (!objs) { ERR("couldn't allocate objs\n"); LeaveCriticalSection(&protseq->cs); return NULL; } objs[0] = npps->mgr_event; *count = 1; conn = CONTAINING_RECORD(protseq->conn, RpcConnection_np, common); while (conn) { if ((objs[*count] = conn->ovl.hEvent)) (*count)++; conn = CONTAINING_RECORD(conn->common.Next, RpcConnection_np, common); } LeaveCriticalSection(&protseq->cs); return objs; } static void rpcrt4_protseq_np_free_wait_array(RpcServerProtseq *protseq, void *array) { HeapFree(GetProcessHeap(), 0, array); } static int rpcrt4_protseq_np_wait_for_new_connection(RpcServerProtseq *protseq, unsigned int count, void *wait_array) { HANDLE b_handle; HANDLE *objs = wait_array; DWORD res; RpcConnection *cconn; RpcConnection_np *conn; if (!objs) return -1; do { /* an alertable wait isn't strictly necessary, but due to our * overlapped I/O implementation in Wine we need to free some memory * by the file user APC being called, even if no completion routine was * specified at the time of starting the async operation */ res = WaitForMultipleObjectsEx(count, objs, FALSE, INFINITE, TRUE); } while (res == WAIT_IO_COMPLETION); if (res == WAIT_OBJECT_0) return 0; else if (res == WAIT_FAILED) { ERR("wait failed with error %d\n", GetLastError()); return -1; } else { b_handle = objs[res - WAIT_OBJECT_0]; /* find which connection got a RPC */ EnterCriticalSection(&protseq->cs); conn = CONTAINING_RECORD(protseq->conn, RpcConnection_np, common); while (conn) { if (b_handle == conn->ovl.hEvent) break; conn = CONTAINING_RECORD(conn->common.Next, RpcConnection_np, common); } cconn = NULL; if (conn) RPCRT4_SpawnConnection(&cconn, &conn->common); else ERR("failed to locate connection for handle %p\n", b_handle); LeaveCriticalSection(&protseq->cs); if (cconn) { RPCRT4_new_client(cconn); return 1; } else return -1; } } static size_t rpcrt4_ncalrpc_get_top_of_tower(unsigned char *tower_data, const char *networkaddr, const char *endpoint) { twr_empty_floor_t *pipe_floor; size_t size; size_t endpoint_size; TRACE("(%p, %s, %s)\n", tower_data, networkaddr, endpoint); endpoint_size = strlen(networkaddr) + 1; size = sizeof(*pipe_floor) + endpoint_size; if (!tower_data) return size; pipe_floor = (twr_empty_floor_t *)tower_data; tower_data += sizeof(*pipe_floor); pipe_floor->count_lhs = sizeof(pipe_floor->protid); pipe_floor->protid = EPM_PROTOCOL_SMB; pipe_floor->count_rhs = endpoint_size; memcpy(tower_data, endpoint, endpoint_size); tower_data += endpoint_size; return size; } static RPC_STATUS rpcrt4_ncalrpc_parse_top_of_tower(const unsigned char *tower_data, size_t tower_size, char **networkaddr, char **endpoint) { const twr_empty_floor_t *pipe_floor = (const twr_empty_floor_t *)tower_data; TRACE("(%p, %d, %p, %p)\n", tower_data, (int)tower_size, networkaddr, endpoint); *networkaddr = NULL; *endpoint = NULL; if (tower_size < sizeof(*pipe_floor)) return EPT_S_NOT_REGISTERED; tower_data += sizeof(*pipe_floor); tower_size -= sizeof(*pipe_floor); if ((pipe_floor->count_lhs != sizeof(pipe_floor->protid)) || (pipe_floor->protid != EPM_PROTOCOL_SMB) || (pipe_floor->count_rhs > tower_size)) return EPT_S_NOT_REGISTERED; if (endpoint) { *endpoint = I_RpcAllocate(pipe_floor->count_rhs); if (!*endpoint) return RPC_S_OUT_OF_RESOURCES; memcpy(*endpoint, tower_data, pipe_floor->count_rhs); } return RPC_S_OK; } /**** ncacn_ip_tcp support ****/ typedef struct _RpcConnection_tcp { RpcConnection common; int sock; int cancel_fds[2]; } RpcConnection_tcp; static RpcConnection *rpcrt4_conn_tcp_alloc(void) { RpcConnection_tcp *tcpc; tcpc = HeapAlloc(GetProcessHeap(), 0, sizeof(RpcConnection_tcp)); if (tcpc == NULL) return NULL; tcpc->sock = -1; if (socketpair(PF_UNIX, SOCK_STREAM, 0, tcpc->cancel_fds) < 0) { ERR("socketpair() failed: %s\n", strerror(errno)); HeapFree(GetProcessHeap(), 0, tcpc); return NULL; } return &tcpc->common; } static RPC_STATUS rpcrt4_ncacn_ip_tcp_open(RpcConnection* Connection) { RpcConnection_tcp *tcpc = (RpcConnection_tcp *) Connection; int sock; int ret; struct addrinfo *ai; struct addrinfo *ai_cur; struct addrinfo hints; TRACE("(%s, %s)\n", Connection->NetworkAddr, Connection->Endpoint); if (tcpc->sock != -1) return RPC_S_OK; hints.ai_flags = 0; hints.ai_family = PF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; hints.ai_addrlen = 0; hints.ai_addr = NULL; hints.ai_canonname = NULL; hints.ai_next = NULL; ret = getaddrinfo(Connection->NetworkAddr, Connection->Endpoint, &hints, &ai); if (ret) { ERR("getaddrinfo for %s:%s failed: %s\n", Connection->NetworkAddr, Connection->Endpoint, gai_strerror(ret)); return RPC_S_SERVER_UNAVAILABLE; } for (ai_cur = ai; ai_cur; ai_cur = ai_cur->ai_next) { int val; if (TRACE_ON(rpc)) { char host[256]; char service[256]; getnameinfo(ai_cur->ai_addr, ai_cur->ai_addrlen, host, sizeof(host), service, sizeof(service), NI_NUMERICHOST | NI_NUMERICSERV); TRACE("trying %s:%s\n", host, service); } sock = socket(ai_cur->ai_family, ai_cur->ai_socktype, ai_cur->ai_protocol); if (sock == -1) { WARN("socket() failed: %s\n", strerror(errno)); continue; } if (0>connect(sock, ai_cur->ai_addr, ai_cur->ai_addrlen)) { WARN("connect() failed: %s\n", strerror(errno)); closesocket(sock); continue; } /* RPC depends on having minimal latency so disable the Nagle algorithm */ val = 1; setsockopt(sock, SOL_TCP, TCP_NODELAY, &val, sizeof(val)); fcntl(sock, F_SETFL, O_NONBLOCK); /* make socket nonblocking */ tcpc->sock = sock; freeaddrinfo(ai); TRACE("connected\n"); return RPC_S_OK; } freeaddrinfo(ai); ERR("couldn't connect to %s:%s\n", Connection->NetworkAddr, Connection->Endpoint); return RPC_S_SERVER_UNAVAILABLE; } static RPC_STATUS rpcrt4_protseq_ncacn_ip_tcp_open_endpoint(RpcServerProtseq *protseq, LPSTR endpoint) { RPC_STATUS status = RPC_S_CANT_CREATE_ENDPOINT; int sock; int ret; struct addrinfo *ai; struct addrinfo *ai_cur; struct addrinfo hints; RpcConnection *first_connection = NULL; TRACE("(%p, %s)\n", protseq, endpoint); hints.ai_flags = AI_PASSIVE /* for non-localhost addresses */; hints.ai_family = PF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; hints.ai_addrlen = 0; hints.ai_addr = NULL; hints.ai_canonname = NULL; hints.ai_next = NULL; ret = getaddrinfo(NULL, endpoint, &hints, &ai); if (ret) { ERR("getaddrinfo for port %s failed: %s\n", endpoint, gai_strerror(ret)); if ((ret == EAI_SERVICE) || (ret == EAI_NONAME)) return RPC_S_INVALID_ENDPOINT_FORMAT; return RPC_S_CANT_CREATE_ENDPOINT; } for (ai_cur = ai; ai_cur; ai_cur = ai_cur->ai_next) { RpcConnection_tcp *tcpc; RPC_STATUS create_status; if (TRACE_ON(rpc)) { char host[256]; char service[256]; getnameinfo(ai_cur->ai_addr, ai_cur->ai_addrlen, host, sizeof(host), service, sizeof(service), NI_NUMERICHOST | NI_NUMERICSERV); TRACE("trying %s:%s\n", host, service); } sock = socket(ai_cur->ai_family, ai_cur->ai_socktype, ai_cur->ai_protocol); if (sock == -1) { WARN("socket() failed: %s\n", strerror(errno)); status = RPC_S_CANT_CREATE_ENDPOINT; continue; } ret = bind(sock, ai_cur->ai_addr, ai_cur->ai_addrlen); if (ret < 0) { WARN("bind failed: %s\n", strerror(errno)); closesocket(sock); if (errno == EADDRINUSE) status = RPC_S_DUPLICATE_ENDPOINT; else status = RPC_S_CANT_CREATE_ENDPOINT; continue; } create_status = RPCRT4_CreateConnection((RpcConnection **)&tcpc, TRUE, protseq->Protseq, NULL, endpoint, NULL, NULL, NULL); if (create_status != RPC_S_OK) { closesocket(sock); status = create_status; continue; } tcpc->sock = sock; ret = listen(sock, protseq->MaxCalls); if (ret < 0) { WARN("listen failed: %s\n", strerror(errno)); RPCRT4_DestroyConnection(&tcpc->common); status = RPC_S_OUT_OF_RESOURCES; continue; } /* need a non-blocking socket, otherwise accept() has a potential * race-condition (poll() says it is readable, connection drops, * and accept() blocks until the next connection comes...) */ ret = fcntl(sock, F_SETFL, O_NONBLOCK); if (ret < 0) { WARN("couldn't make socket non-blocking, error %d\n", ret); RPCRT4_DestroyConnection(&tcpc->common); status = RPC_S_OUT_OF_RESOURCES; continue; } tcpc->common.Next = first_connection; first_connection = &tcpc->common; } freeaddrinfo(ai); /* if at least one connection was created for an endpoint then * return success */ if (first_connection) { RpcConnection *conn; /* find last element in list */ for (conn = first_connection; conn->Next; conn = conn->Next) ; EnterCriticalSection(&protseq->cs); conn->Next = protseq->conn; protseq->conn = first_connection; LeaveCriticalSection(&protseq->cs); TRACE("listening on %s\n", endpoint); return RPC_S_OK; } ERR("couldn't listen on port %s\n", endpoint); return status; } static RPC_STATUS rpcrt4_conn_tcp_handoff(RpcConnection *old_conn, RpcConnection *new_conn) { int ret; struct sockaddr_in address; socklen_t addrsize; RpcConnection_tcp *server = (RpcConnection_tcp*) old_conn; RpcConnection_tcp *client = (RpcConnection_tcp*) new_conn; addrsize = sizeof(address); ret = accept(server->sock, (struct sockaddr*) &address, &addrsize); if (ret < 0) { ERR("Failed to accept a TCP connection: error %d\n", ret); return RPC_S_OUT_OF_RESOURCES; } /* reset to blocking behaviour */ fcntl(ret, F_SETFL, 0); client->sock = ret; TRACE("Accepted a new TCP connection\n"); return RPC_S_OK; } static int rpcrt4_conn_tcp_read(RpcConnection *Connection, void *buffer, unsigned int count) { RpcConnection_tcp *tcpc = (RpcConnection_tcp *) Connection; int bytes_read = 0; do { int r = recv(tcpc->sock, (char *)buffer + bytes_read, count - bytes_read, 0); if (!r) return -1; else if (r > 0) bytes_read += r; else if (errno != EAGAIN) { WARN("recv() failed: %s\n", strerror(errno)); return -1; } else { struct pollfd pfds[2]; pfds[0].fd = tcpc->sock; pfds[0].events = POLLIN; pfds[1].fd = tcpc->cancel_fds[0]; pfds[1].events = POLLIN; if (poll(pfds, 2, -1 /* infinite */) == -1 && errno != EINTR) { ERR("poll() failed: %s\n", strerror(errno)); return -1; } if (pfds[1].revents & POLLIN) /* canceled */ { char dummy; read(pfds[1].fd, &dummy, sizeof(dummy)); return -1; } } } while (bytes_read != count); TRACE("%d %p %u -> %d\n", tcpc->sock, buffer, count, bytes_read); return bytes_read; } static int rpcrt4_conn_tcp_write(RpcConnection *Connection, const void *buffer, unsigned int count) { RpcConnection_tcp *tcpc = (RpcConnection_tcp *) Connection; int bytes_written = 0; do { int r = send(tcpc->sock, (const char *)buffer + bytes_written, count - bytes_written, 0); if (r >= 0) bytes_written += r; else if (errno != EAGAIN) return -1; else { struct pollfd pfd; pfd.fd = tcpc->sock; pfd.events = POLLOUT; if (poll(&pfd, 1, -1 /* infinite */) == -1 && errno != EINTR) { ERR("poll() failed: %s\n", strerror(errno)); return -1; } } } while (bytes_written != count); TRACE("%d %p %u -> %d\n", tcpc->sock, buffer, count, bytes_written); return bytes_written; } static int rpcrt4_conn_tcp_close(RpcConnection *Connection) { RpcConnection_tcp *tcpc = (RpcConnection_tcp *) Connection; TRACE("%d\n", tcpc->sock); if (tcpc->sock != -1) closesocket(tcpc->sock); tcpc->sock = -1; close(tcpc->cancel_fds[0]); close(tcpc->cancel_fds[1]); return 0; } static void rpcrt4_conn_tcp_cancel_call(RpcConnection *Connection) { RpcConnection_tcp *tcpc = (RpcConnection_tcp *) Connection; char dummy = 1; TRACE("%p\n", Connection); write(tcpc->cancel_fds[1], &dummy, 1); } static int rpcrt4_conn_tcp_wait_for_incoming_data(RpcConnection *Connection) { RpcConnection_tcp *tcpc = (RpcConnection_tcp *) Connection; struct pollfd pfds[2]; TRACE("%p\n", Connection); pfds[0].fd = tcpc->sock; pfds[0].events = POLLIN; pfds[1].fd = tcpc->cancel_fds[0]; pfds[1].events = POLLIN; if (poll(pfds, 2, -1 /* infinite */) == -1 && errno != EINTR) { ERR("poll() failed: %s\n", strerror(errno)); return -1; } if (pfds[1].revents & POLLIN) /* canceled */ { char dummy; read(pfds[1].fd, &dummy, sizeof(dummy)); return -1; } return 0; } static size_t rpcrt4_ncacn_ip_tcp_get_top_of_tower(unsigned char *tower_data, const char *networkaddr, const char *endpoint) { twr_tcp_floor_t *tcp_floor; twr_ipv4_floor_t *ipv4_floor; struct addrinfo *ai; struct addrinfo hints; int ret; size_t size = sizeof(*tcp_floor) + sizeof(*ipv4_floor); TRACE("(%p, %s, %s)\n", tower_data, networkaddr, endpoint); if (!tower_data) return size; tcp_floor = (twr_tcp_floor_t *)tower_data; tower_data += sizeof(*tcp_floor); ipv4_floor = (twr_ipv4_floor_t *)tower_data; tcp_floor->count_lhs = sizeof(tcp_floor->protid); tcp_floor->protid = EPM_PROTOCOL_TCP; tcp_floor->count_rhs = sizeof(tcp_floor->port); ipv4_floor->count_lhs = sizeof(ipv4_floor->protid); ipv4_floor->protid = EPM_PROTOCOL_IP; ipv4_floor->count_rhs = sizeof(ipv4_floor->ipv4addr); hints.ai_flags = AI_NUMERICHOST; /* FIXME: only support IPv4 at the moment. how is IPv6 represented by the EPM? */ hints.ai_family = PF_INET; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; hints.ai_addrlen = 0; hints.ai_addr = NULL; hints.ai_canonname = NULL; hints.ai_next = NULL; ret = getaddrinfo(networkaddr, endpoint, &hints, &ai); if (ret) { ret = getaddrinfo("0.0.0.0", endpoint, &hints, &ai); if (ret) { ERR("getaddrinfo failed: %s\n", gai_strerror(ret)); return 0; } } if (ai->ai_family == PF_INET) { const struct sockaddr_in *sin = (const struct sockaddr_in *)ai->ai_addr; tcp_floor->port = sin->sin_port; ipv4_floor->ipv4addr = sin->sin_addr.s_addr; } else { ERR("unexpected protocol family %d\n", ai->ai_family); return 0; } freeaddrinfo(ai); return size; } static RPC_STATUS rpcrt4_ncacn_ip_tcp_parse_top_of_tower(const unsigned char *tower_data, size_t tower_size, char **networkaddr, char **endpoint) { const twr_tcp_floor_t *tcp_floor = (const twr_tcp_floor_t *)tower_data; const twr_ipv4_floor_t *ipv4_floor; struct in_addr in_addr; TRACE("(%p, %d, %p, %p)\n", tower_data, (int)tower_size, networkaddr, endpoint); if (tower_size < sizeof(*tcp_floor)) return EPT_S_NOT_REGISTERED; tower_data += sizeof(*tcp_floor); tower_size -= sizeof(*tcp_floor); if (tower_size < sizeof(*ipv4_floor)) return EPT_S_NOT_REGISTERED; ipv4_floor = (const twr_ipv4_floor_t *)tower_data; if ((tcp_floor->count_lhs != sizeof(tcp_floor->protid)) || (tcp_floor->protid != EPM_PROTOCOL_TCP) || (tcp_floor->count_rhs != sizeof(tcp_floor->port)) || (ipv4_floor->count_lhs != sizeof(ipv4_floor->protid)) || (ipv4_floor->protid != EPM_PROTOCOL_IP) || (ipv4_floor->count_rhs != sizeof(ipv4_floor->ipv4addr))) return EPT_S_NOT_REGISTERED; if (endpoint) { *endpoint = I_RpcAllocate(6 /* sizeof("65535") + 1 */); if (!*endpoint) return RPC_S_OUT_OF_RESOURCES; sprintf(*endpoint, "%u", ntohs(tcp_floor->port)); } if (networkaddr) { *networkaddr = I_RpcAllocate(INET_ADDRSTRLEN); if (!*networkaddr) { if (endpoint) { I_RpcFree(*endpoint); *endpoint = NULL; } return RPC_S_OUT_OF_RESOURCES; } in_addr.s_addr = ipv4_floor->ipv4addr; if (!inet_ntop(AF_INET, &in_addr, *networkaddr, INET_ADDRSTRLEN)) { ERR("inet_ntop: %s\n", strerror(errno)); I_RpcFree(*networkaddr); *networkaddr = NULL; if (endpoint) { I_RpcFree(*endpoint); *endpoint = NULL; } return EPT_S_NOT_REGISTERED; } } return RPC_S_OK; } typedef struct _RpcServerProtseq_sock { RpcServerProtseq common; int mgr_event_rcv; int mgr_event_snd; } RpcServerProtseq_sock; static RpcServerProtseq *rpcrt4_protseq_sock_alloc(void) { RpcServerProtseq_sock *ps = HeapAlloc(GetProcessHeap(), 0, sizeof(*ps)); if (ps) { int fds[2]; if (!socketpair(PF_UNIX, SOCK_DGRAM, 0, fds)) { fcntl(fds[0], F_SETFL, O_NONBLOCK); fcntl(fds[1], F_SETFL, O_NONBLOCK); ps->mgr_event_rcv = fds[0]; ps->mgr_event_snd = fds[1]; } else { ERR("socketpair failed with error %s\n", strerror(errno)); HeapFree(GetProcessHeap(), 0, ps); return NULL; } } return &ps->common; } static void rpcrt4_protseq_sock_signal_state_changed(RpcServerProtseq *protseq) { RpcServerProtseq_sock *sockps = CONTAINING_RECORD(protseq, RpcServerProtseq_sock, common); char dummy = 1; write(sockps->mgr_event_snd, &dummy, sizeof(dummy)); } static void *rpcrt4_protseq_sock_get_wait_array(RpcServerProtseq *protseq, void *prev_array, unsigned int *count) { struct pollfd *poll_info = prev_array; RpcConnection_tcp *conn; RpcServerProtseq_sock *sockps = CONTAINING_RECORD(protseq, RpcServerProtseq_sock, common); EnterCriticalSection(&protseq->cs); /* open and count connections */ *count = 1; conn = (RpcConnection_tcp *)protseq->conn; while (conn) { if (conn->sock != -1) (*count)++; conn = (RpcConnection_tcp *)conn->common.Next; } /* make array of connections */ if (poll_info) poll_info = HeapReAlloc(GetProcessHeap(), 0, poll_info, *count*sizeof(*poll_info)); else poll_info = HeapAlloc(GetProcessHeap(), 0, *count*sizeof(*poll_info)); if (!poll_info) { ERR("couldn't allocate poll_info\n"); LeaveCriticalSection(&protseq->cs); return NULL; } poll_info[0].fd = sockps->mgr_event_rcv; poll_info[0].events = POLLIN; *count = 1; conn = CONTAINING_RECORD(protseq->conn, RpcConnection_tcp, common); while (conn) { if (conn->sock != -1) { poll_info[*count].fd = conn->sock; poll_info[*count].events = POLLIN; (*count)++; } conn = CONTAINING_RECORD(conn->common.Next, RpcConnection_tcp, common); } LeaveCriticalSection(&protseq->cs); return poll_info; } static void rpcrt4_protseq_sock_free_wait_array(RpcServerProtseq *protseq, void *array) { HeapFree(GetProcessHeap(), 0, array); } static int rpcrt4_protseq_sock_wait_for_new_connection(RpcServerProtseq *protseq, unsigned int count, void *wait_array) { struct pollfd *poll_info = wait_array; int ret, i; RpcConnection *cconn; RpcConnection_tcp *conn; if (!poll_info) return -1; ret = poll(poll_info, count, -1); if (ret < 0) { ERR("poll failed with error %d\n", ret); return -1; } for (i = 0; i < count; i++) if (poll_info[i].revents & POLLIN) { /* RPC server event */ if (i == 0) { char dummy; read(poll_info[0].fd, &dummy, sizeof(dummy)); return 0; } /* find which connection got a RPC */ EnterCriticalSection(&protseq->cs); conn = CONTAINING_RECORD(protseq->conn, RpcConnection_tcp, common); while (conn) { if (poll_info[i].fd == conn->sock) break; conn = CONTAINING_RECORD(conn->common.Next, RpcConnection_tcp, common); } cconn = NULL; if (conn) RPCRT4_SpawnConnection(&cconn, &conn->common); else ERR("failed to locate connection for fd %d\n", poll_info[i].fd); LeaveCriticalSection(&protseq->cs); if (cconn) RPCRT4_new_client(cconn); else return -1; } return 1; } static const struct connection_ops conn_protseq_list[] = { { "ncacn_np", { EPM_PROTOCOL_NCACN, EPM_PROTOCOL_SMB }, rpcrt4_conn_np_alloc, rpcrt4_ncacn_np_open, rpcrt4_ncacn_np_handoff, rpcrt4_conn_np_read, rpcrt4_conn_np_write, rpcrt4_conn_np_close, rpcrt4_conn_np_cancel_call, rpcrt4_conn_np_wait_for_incoming_data, rpcrt4_ncacn_np_get_top_of_tower, rpcrt4_ncacn_np_parse_top_of_tower, }, { "ncalrpc", { EPM_PROTOCOL_NCALRPC, EPM_PROTOCOL_PIPE }, rpcrt4_conn_np_alloc, rpcrt4_ncalrpc_open, rpcrt4_ncalrpc_handoff, rpcrt4_conn_np_read, rpcrt4_conn_np_write, rpcrt4_conn_np_close, rpcrt4_conn_np_cancel_call, rpcrt4_conn_np_wait_for_incoming_data, rpcrt4_ncalrpc_get_top_of_tower, rpcrt4_ncalrpc_parse_top_of_tower, }, { "ncacn_ip_tcp", { EPM_PROTOCOL_NCACN, EPM_PROTOCOL_TCP }, rpcrt4_conn_tcp_alloc, rpcrt4_ncacn_ip_tcp_open, rpcrt4_conn_tcp_handoff, rpcrt4_conn_tcp_read, rpcrt4_conn_tcp_write, rpcrt4_conn_tcp_close, rpcrt4_conn_tcp_cancel_call, rpcrt4_conn_tcp_wait_for_incoming_data, rpcrt4_ncacn_ip_tcp_get_top_of_tower, rpcrt4_ncacn_ip_tcp_parse_top_of_tower, } }; static const struct protseq_ops protseq_list[] = { { "ncacn_np", rpcrt4_protseq_np_alloc, rpcrt4_protseq_np_signal_state_changed, rpcrt4_protseq_np_get_wait_array, rpcrt4_protseq_np_free_wait_array, rpcrt4_protseq_np_wait_for_new_connection, rpcrt4_protseq_ncacn_np_open_endpoint, }, { "ncalrpc", rpcrt4_protseq_np_alloc, rpcrt4_protseq_np_signal_state_changed, rpcrt4_protseq_np_get_wait_array, rpcrt4_protseq_np_free_wait_array, rpcrt4_protseq_np_wait_for_new_connection, rpcrt4_protseq_ncalrpc_open_endpoint, }, { "ncacn_ip_tcp", rpcrt4_protseq_sock_alloc, rpcrt4_protseq_sock_signal_state_changed, rpcrt4_protseq_sock_get_wait_array, rpcrt4_protseq_sock_free_wait_array, rpcrt4_protseq_sock_wait_for_new_connection, rpcrt4_protseq_ncacn_ip_tcp_open_endpoint, }, }; #define ARRAYSIZE(a) (sizeof((a)) / sizeof((a)[0])) const struct protseq_ops *rpcrt4_get_protseq_ops(const char *protseq) { int i; for(i=0; iserver); return Connection->ops->open_connection_client(Connection); } RPC_STATUS RPCRT4_CloseConnection(RpcConnection* Connection) { TRACE("(Connection == ^%p)\n", Connection); if (SecIsValidHandle(&Connection->ctx)) { DeleteSecurityContext(&Connection->ctx); SecInvalidateHandle(&Connection->ctx); } rpcrt4_conn_close(Connection); return RPC_S_OK; } RPC_STATUS RPCRT4_CreateConnection(RpcConnection** Connection, BOOL server, LPCSTR Protseq, LPCSTR NetworkAddr, LPCSTR Endpoint, LPCWSTR NetworkOptions, RpcAuthInfo* AuthInfo, RpcQualityOfService *QOS) { const struct connection_ops *ops; RpcConnection* NewConnection; ops = rpcrt4_get_conn_protseq_ops(Protseq); if (!ops) { FIXME("not supported for protseq %s\n", Protseq); return RPC_S_PROTSEQ_NOT_SUPPORTED; } NewConnection = ops->alloc(); NewConnection->Next = NULL; NewConnection->server_binding = NULL; NewConnection->server = server; NewConnection->ops = ops; NewConnection->NetworkAddr = RPCRT4_strdupA(NetworkAddr); NewConnection->Endpoint = RPCRT4_strdupA(Endpoint); NewConnection->NetworkOptions = RPCRT4_strdupW(NetworkOptions); NewConnection->MaxTransmissionSize = RPC_MAX_PACKET_SIZE; memset(&NewConnection->ActiveInterface, 0, sizeof(NewConnection->ActiveInterface)); NewConnection->NextCallId = 1; SecInvalidateHandle(&NewConnection->ctx); memset(&NewConnection->exp, 0, sizeof(NewConnection->exp)); NewConnection->attr = 0; if (AuthInfo) RpcAuthInfo_AddRef(AuthInfo); NewConnection->AuthInfo = AuthInfo; NewConnection->encryption_auth_len = 0; NewConnection->signature_auth_len = 0; if (QOS) RpcQualityOfService_AddRef(QOS); NewConnection->QOS = QOS; list_init(&NewConnection->conn_pool_entry); NewConnection->async_state = NULL; TRACE("connection: %p\n", NewConnection); *Connection = NewConnection; return RPC_S_OK; } RPC_STATUS RPCRT4_SpawnConnection(RpcConnection** Connection, RpcConnection* OldConnection) { RPC_STATUS err; err = RPCRT4_CreateConnection(Connection, OldConnection->server, rpcrt4_conn_get_name(OldConnection), OldConnection->NetworkAddr, OldConnection->Endpoint, NULL, OldConnection->AuthInfo, OldConnection->QOS); if (err == RPC_S_OK) rpcrt4_conn_handoff(OldConnection, *Connection); return err; } RPC_STATUS RPCRT4_DestroyConnection(RpcConnection* Connection) { TRACE("connection: %p\n", Connection); RPCRT4_CloseConnection(Connection); RPCRT4_strfree(Connection->Endpoint); RPCRT4_strfree(Connection->NetworkAddr); HeapFree(GetProcessHeap(), 0, Connection->NetworkOptions); if (Connection->AuthInfo) RpcAuthInfo_Release(Connection->AuthInfo); if (Connection->QOS) RpcQualityOfService_Release(Connection->QOS); /* server-only */ if (Connection->server_binding) RPCRT4_DestroyBinding(Connection->server_binding); HeapFree(GetProcessHeap(), 0, Connection); return RPC_S_OK; } RPC_STATUS RpcTransport_GetTopOfTower(unsigned char *tower_data, size_t *tower_size, const char *protseq, const char *networkaddr, const char *endpoint) { twr_empty_floor_t *protocol_floor; const struct connection_ops *protseq_ops = rpcrt4_get_conn_protseq_ops(protseq); *tower_size = 0; if (!protseq_ops) return RPC_S_INVALID_RPC_PROTSEQ; if (!tower_data) { *tower_size = sizeof(*protocol_floor); *tower_size += protseq_ops->get_top_of_tower(NULL, networkaddr, endpoint); return RPC_S_OK; } protocol_floor = (twr_empty_floor_t *)tower_data; protocol_floor->count_lhs = sizeof(protocol_floor->protid); protocol_floor->protid = protseq_ops->epm_protocols[0]; protocol_floor->count_rhs = 0; tower_data += sizeof(*protocol_floor); *tower_size = protseq_ops->get_top_of_tower(tower_data, networkaddr, endpoint); if (!*tower_size) return EPT_S_NOT_REGISTERED; *tower_size += sizeof(*protocol_floor); return RPC_S_OK; } RPC_STATUS RpcTransport_ParseTopOfTower(const unsigned char *tower_data, size_t tower_size, char **protseq, char **networkaddr, char **endpoint) { const twr_empty_floor_t *protocol_floor; const twr_empty_floor_t *floor4; const struct connection_ops *protseq_ops = NULL; RPC_STATUS status; int i; if (tower_size < sizeof(*protocol_floor)) return EPT_S_NOT_REGISTERED; protocol_floor = (const twr_empty_floor_t *)tower_data; tower_data += sizeof(*protocol_floor); tower_size -= sizeof(*protocol_floor); if ((protocol_floor->count_lhs != sizeof(protocol_floor->protid)) || (protocol_floor->count_rhs > tower_size)) return EPT_S_NOT_REGISTERED; tower_data += protocol_floor->count_rhs; tower_size -= protocol_floor->count_rhs; floor4 = (const twr_empty_floor_t *)tower_data; if ((tower_size < sizeof(*floor4)) || (floor4->count_lhs != sizeof(floor4->protid))) return EPT_S_NOT_REGISTERED; for(i = 0; i < ARRAYSIZE(conn_protseq_list); i++) if ((protocol_floor->protid == conn_protseq_list[i].epm_protocols[0]) && (floor4->protid == conn_protseq_list[i].epm_protocols[1])) { protseq_ops = &conn_protseq_list[i]; break; } if (!protseq_ops) return EPT_S_NOT_REGISTERED; status = protseq_ops->parse_top_of_tower(tower_data, tower_size, networkaddr, endpoint); if ((status == RPC_S_OK) && protseq) { *protseq = I_RpcAllocate(strlen(protseq_ops->name) + 1); strcpy(*protseq, protseq_ops->name); } return status; } /*********************************************************************** * RpcNetworkIsProtseqValidW (RPCRT4.@) * * Checks if the given protocol sequence is known by the RPC system. * If it is, returns RPC_S_OK, otherwise RPC_S_PROTSEQ_NOT_SUPPORTED. * */ RPC_STATUS WINAPI RpcNetworkIsProtseqValidW(RPC_WSTR protseq) { char ps[0x10]; WideCharToMultiByte(CP_ACP, 0, protseq, -1, ps, sizeof ps, NULL, NULL); if (rpcrt4_get_conn_protseq_ops(ps)) return RPC_S_OK; FIXME("Unknown protseq %s\n", debugstr_w(protseq)); return RPC_S_INVALID_RPC_PROTSEQ; } /*********************************************************************** * RpcNetworkIsProtseqValidA (RPCRT4.@) */ RPC_STATUS WINAPI RpcNetworkIsProtseqValidA(RPC_CSTR protseq) { UNICODE_STRING protseqW; if (RtlCreateUnicodeStringFromAsciiz(&protseqW, (char*)protseq)) { RPC_STATUS ret = RpcNetworkIsProtseqValidW(protseqW.Buffer); RtlFreeUnicodeString(&protseqW); return ret; } return RPC_S_OUT_OF_MEMORY; }