/* * WINED3D draw functions * * Copyright 2002-2004 Jason Edmeades * Copyright 2002-2004 Raphael Junqueira * Copyright 2004 Christian Costa * Copyright 2005 Oliver Stieber * Copyright 2006, 2008 Henri Verbeet * Copyright 2007-2008 Stefan Dösinger for CodeWeavers * Copyright 2009 Henri Verbeet for CodeWeavers * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "config.h" #include "wine/port.h" #include "wined3d_private.h" WINE_DEFAULT_DEBUG_CHANNEL(d3d_draw); #include #include /* GL locking is done by the caller */ static void drawStridedFast(const struct wined3d_gl_info *gl_info, GLenum primitive_type, UINT count, UINT idx_size, const void *idx_data, UINT start_idx, INT base_vertex_index) { if (idx_size) { GLenum idxtype = idx_size == 2 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT; if (gl_info->supported[ARB_DRAW_ELEMENTS_BASE_VERTEX]) { GL_EXTCALL(glDrawElementsBaseVertex(primitive_type, count, idxtype, (const char *)idx_data + (idx_size * start_idx), base_vertex_index)); checkGLcall("glDrawElementsBaseVertex"); } else { gl_info->gl_ops.gl.p_glDrawElements(primitive_type, count, idxtype, (const char *)idx_data + (idx_size * start_idx)); checkGLcall("glDrawElements"); } } else { gl_info->gl_ops.gl.p_glDrawArrays(primitive_type, start_idx, count); checkGLcall("glDrawArrays"); } } /* * Actually draw using the supplied information. * Slower GL version which extracts info about each vertex in turn */ /* GL locking is done by the caller */ static void drawStridedSlow(const struct wined3d_device *device, const struct wined3d_context *context, const struct wined3d_stream_info *si, UINT NumVertexes, GLenum glPrimType, const void *idxData, UINT idxSize, UINT startIdx) { unsigned int textureNo = 0; const WORD *pIdxBufS = NULL; const DWORD *pIdxBufL = NULL; UINT vx_index; const struct wined3d_state *state = &device->stateBlock->state; LONG SkipnStrides = startIdx; BOOL pixelShader = use_ps(state); BOOL specular_fog = FALSE; const BYTE *texCoords[WINED3DDP_MAXTEXCOORD]; const BYTE *diffuse = NULL, *specular = NULL, *normal = NULL, *position = NULL; const struct wined3d_gl_info *gl_info = context->gl_info; UINT texture_stages = gl_info->limits.texture_stages; const struct wined3d_stream_info_element *element; UINT num_untracked_materials; DWORD tex_mask = 0; TRACE("Using slow vertex array code\n"); /* Variable Initialization */ if (idxSize) { /* Immediate mode drawing can't make use of indices in a vbo - get the * data from the index buffer. If the index buffer has no vbo (not * supported or other reason), or with user pointer drawing idxData * will be non-NULL. */ if (!idxData) idxData = buffer_get_sysmem(state->index_buffer, gl_info); if (idxSize == 2) pIdxBufS = idxData; else pIdxBufL = idxData; } else if (idxData) { ERR("non-NULL idxData with 0 idxSize, this should never happen\n"); return; } /* Start drawing in GL */ gl_info->gl_ops.gl.p_glBegin(glPrimType); if (si->use_map & (1 << WINED3D_FFP_POSITION)) { element = &si->elements[WINED3D_FFP_POSITION]; position = element->data.addr; } if (si->use_map & (1 << WINED3D_FFP_NORMAL)) { element = &si->elements[WINED3D_FFP_NORMAL]; normal = element->data.addr; } else { gl_info->gl_ops.gl.p_glNormal3f(0, 0, 0); } num_untracked_materials = context->num_untracked_materials; if (si->use_map & (1 << WINED3D_FFP_DIFFUSE)) { element = &si->elements[WINED3D_FFP_DIFFUSE]; diffuse = element->data.addr; if (num_untracked_materials && element->format->id != WINED3DFMT_B8G8R8A8_UNORM) FIXME("Implement diffuse color tracking from %s\n", debug_d3dformat(element->format->id)); } else { gl_info->gl_ops.gl.p_glColor4f(1.0f, 1.0f, 1.0f, 1.0f); } if (si->use_map & (1 << WINED3D_FFP_SPECULAR)) { element = &si->elements[WINED3D_FFP_SPECULAR]; specular = element->data.addr; /* special case where the fog density is stored in the specular alpha channel */ if (state->render_states[WINED3D_RS_FOGENABLE] && (state->render_states[WINED3D_RS_FOGVERTEXMODE] == WINED3D_FOG_NONE || si->elements[WINED3D_FFP_POSITION].format->id == WINED3DFMT_R32G32B32A32_FLOAT) && state->render_states[WINED3D_RS_FOGTABLEMODE] == WINED3D_FOG_NONE) { if (gl_info->supported[EXT_FOG_COORD]) { if (element->format->id == WINED3DFMT_B8G8R8A8_UNORM) specular_fog = TRUE; else FIXME("Implement fog coordinates from %s\n", debug_d3dformat(element->format->id)); } else { static BOOL warned; if (!warned) { /* TODO: Use the fog table code from old ddraw */ FIXME("Implement fog for transformed vertices in software\n"); warned = TRUE; } } } } else if (gl_info->supported[EXT_SECONDARY_COLOR]) { GL_EXTCALL(glSecondaryColor3fEXT)(0, 0, 0); } for (textureNo = 0; textureNo < texture_stages; ++textureNo) { int coordIdx = state->texture_states[textureNo][WINED3D_TSS_TEXCOORD_INDEX]; DWORD texture_idx = device->texUnitMap[textureNo]; if (!gl_info->supported[ARB_MULTITEXTURE] && textureNo > 0) { FIXME("Program using multiple concurrent textures which this opengl implementation doesn't support\n"); continue; } if (!pixelShader && !state->textures[textureNo]) continue; if (texture_idx == WINED3D_UNMAPPED_STAGE) continue; if (coordIdx > 7) { TRACE("tex: %d - Skip tex coords, as being system generated\n", textureNo); continue; } else if (coordIdx < 0) { FIXME("tex: %d - Coord index %d is less than zero, expect a crash.\n", textureNo, coordIdx); continue; } if (si->use_map & (1 << (WINED3D_FFP_TEXCOORD0 + coordIdx))) { element = &si->elements[WINED3D_FFP_TEXCOORD0 + coordIdx]; texCoords[coordIdx] = element->data.addr; tex_mask |= (1 << textureNo); } else { TRACE("tex: %d - Skipping tex coords, as no data supplied\n", textureNo); if (gl_info->supported[ARB_MULTITEXTURE]) GL_EXTCALL(glMultiTexCoord4fARB(GL_TEXTURE0_ARB + texture_idx, 0, 0, 0, 1)); else gl_info->gl_ops.gl.p_glTexCoord4f(0, 0, 0, 1); } } /* We shouldn't start this function if any VBO is involved. Should I put a safety check here? * Guess it's not necessary(we crash then anyway) and would only eat CPU time */ /* For each primitive */ for (vx_index = 0; vx_index < NumVertexes; ++vx_index) { UINT texture, tmp_tex_mask; /* Blending data and Point sizes are not supported by this function. They are not supported by the fixed * function pipeline at all. A Fixme for them is printed after decoding the vertex declaration */ /* For indexed data, we need to go a few more strides in */ if (idxData) { /* Indexed so work out the number of strides to skip */ if (idxSize == 2) SkipnStrides = pIdxBufS[startIdx + vx_index] + state->base_vertex_index; else SkipnStrides = pIdxBufL[startIdx + vx_index] + state->base_vertex_index; } tmp_tex_mask = tex_mask; for (texture = 0; tmp_tex_mask; tmp_tex_mask >>= 1, ++texture) { int coord_idx; const void *ptr; DWORD texture_idx; if (!(tmp_tex_mask & 1)) continue; coord_idx = state->texture_states[texture][WINED3D_TSS_TEXCOORD_INDEX]; ptr = texCoords[coord_idx] + (SkipnStrides * si->elements[WINED3D_FFP_TEXCOORD0 + coord_idx].stride); texture_idx = device->texUnitMap[texture]; multi_texcoord_funcs[si->elements[WINED3D_FFP_TEXCOORD0 + coord_idx].format->emit_idx]( GL_TEXTURE0_ARB + texture_idx, ptr); } /* Diffuse -------------------------------- */ if (diffuse) { const void *ptrToCoords = diffuse + SkipnStrides * si->elements[WINED3D_FFP_DIFFUSE].stride; diffuse_funcs[si->elements[WINED3D_FFP_DIFFUSE].format->emit_idx](ptrToCoords); if (num_untracked_materials) { DWORD diffuseColor = ((const DWORD *)ptrToCoords)[0]; unsigned char i; float color[4]; color[0] = D3DCOLOR_B_R(diffuseColor) / 255.0f; color[1] = D3DCOLOR_B_G(diffuseColor) / 255.0f; color[2] = D3DCOLOR_B_B(diffuseColor) / 255.0f; color[3] = D3DCOLOR_B_A(diffuseColor) / 255.0f; for (i = 0; i < num_untracked_materials; ++i) { gl_info->gl_ops.gl.p_glMaterialfv(GL_FRONT_AND_BACK, context->untracked_materials[i], color); } } } /* Specular ------------------------------- */ if (specular) { const void *ptrToCoords = specular + SkipnStrides * si->elements[WINED3D_FFP_SPECULAR].stride; specular_funcs[si->elements[WINED3D_FFP_SPECULAR].format->emit_idx](ptrToCoords); if (specular_fog) { DWORD specularColor = *(const DWORD *)ptrToCoords; GL_EXTCALL(glFogCoordfEXT((float) (specularColor >> 24))); } } /* Normal -------------------------------- */ if (normal) { const void *ptrToCoords = normal + SkipnStrides * si->elements[WINED3D_FFP_NORMAL].stride; normal_funcs[si->elements[WINED3D_FFP_NORMAL].format->emit_idx](ptrToCoords); } /* Position -------------------------------- */ if (position) { const void *ptrToCoords = position + SkipnStrides * si->elements[WINED3D_FFP_POSITION].stride; position_funcs[si->elements[WINED3D_FFP_POSITION].format->emit_idx](ptrToCoords); } /* For non indexed mode, step onto next parts */ if (!idxData) ++SkipnStrides; } gl_info->gl_ops.gl.p_glEnd(); checkGLcall("glEnd and previous calls"); } /* GL locking is done by the caller */ static inline void send_attribute(const struct wined3d_gl_info *gl_info, enum wined3d_format_id format, const UINT index, const void *ptr) { switch(format) { case WINED3DFMT_R32_FLOAT: GL_EXTCALL(glVertexAttrib1fvARB(index, ptr)); break; case WINED3DFMT_R32G32_FLOAT: GL_EXTCALL(glVertexAttrib2fvARB(index, ptr)); break; case WINED3DFMT_R32G32B32_FLOAT: GL_EXTCALL(glVertexAttrib3fvARB(index, ptr)); break; case WINED3DFMT_R32G32B32A32_FLOAT: GL_EXTCALL(glVertexAttrib4fvARB(index, ptr)); break; case WINED3DFMT_R8G8B8A8_UINT: GL_EXTCALL(glVertexAttrib4ubvARB(index, ptr)); break; case WINED3DFMT_B8G8R8A8_UNORM: if (gl_info->supported[ARB_VERTEX_ARRAY_BGRA]) { const DWORD *src = ptr; DWORD c = *src & 0xff00ff00; c |= (*src & 0xff0000) >> 16; c |= (*src & 0xff) << 16; GL_EXTCALL(glVertexAttrib4NubvARB(index, (GLubyte *)&c)); break; } /* else fallthrough */ case WINED3DFMT_R8G8B8A8_UNORM: GL_EXTCALL(glVertexAttrib4NubvARB(index, ptr)); break; case WINED3DFMT_R16G16_SINT: GL_EXTCALL(glVertexAttrib4svARB(index, ptr)); break; case WINED3DFMT_R16G16B16A16_SINT: GL_EXTCALL(glVertexAttrib4svARB(index, ptr)); break; case WINED3DFMT_R16G16_SNORM: { GLshort s[4] = {((const GLshort *)ptr)[0], ((const GLshort *)ptr)[1], 0, 1}; GL_EXTCALL(glVertexAttrib4NsvARB(index, s)); break; } case WINED3DFMT_R16G16_UNORM: { GLushort s[4] = {((const GLushort *)ptr)[0], ((const GLushort *)ptr)[1], 0, 1}; GL_EXTCALL(glVertexAttrib4NusvARB(index, s)); break; } case WINED3DFMT_R16G16B16A16_SNORM: GL_EXTCALL(glVertexAttrib4NsvARB(index, ptr)); break; case WINED3DFMT_R16G16B16A16_UNORM: GL_EXTCALL(glVertexAttrib4NusvARB(index, ptr)); break; case WINED3DFMT_R10G10B10A2_UINT: FIXME("Unsure about WINED3DDECLTYPE_UDEC3\n"); /*glVertexAttrib3usvARB(instancedData[j], (GLushort *) ptr); Does not exist */ break; case WINED3DFMT_R10G10B10A2_SNORM: FIXME("Unsure about WINED3DDECLTYPE_DEC3N\n"); /*glVertexAttrib3NusvARB(instancedData[j], (GLushort *) ptr); Does not exist */ break; case WINED3DFMT_R16G16_FLOAT: /* Are those 16 bit floats. C doesn't have a 16 bit float type. I could read the single bits and calculate a 4 * byte float according to the IEEE standard */ if (gl_info->supported[NV_HALF_FLOAT] && gl_info->supported[NV_VERTEX_PROGRAM]) { /* Not supported by GL_ARB_half_float_vertex */ GL_EXTCALL(glVertexAttrib2hvNV(index, ptr)); } else { float x = float_16_to_32(((const unsigned short *)ptr) + 0); float y = float_16_to_32(((const unsigned short *)ptr) + 1); GL_EXTCALL(glVertexAttrib2fARB(index, x, y)); } break; case WINED3DFMT_R16G16B16A16_FLOAT: if (gl_info->supported[NV_HALF_FLOAT] && gl_info->supported[NV_VERTEX_PROGRAM]) { /* Not supported by GL_ARB_half_float_vertex */ GL_EXTCALL(glVertexAttrib4hvNV(index, ptr)); } else { float x = float_16_to_32(((const unsigned short *)ptr) + 0); float y = float_16_to_32(((const unsigned short *)ptr) + 1); float z = float_16_to_32(((const unsigned short *)ptr) + 2); float w = float_16_to_32(((const unsigned short *)ptr) + 3); GL_EXTCALL(glVertexAttrib4fARB(index, x, y, z, w)); } break; default: ERR("Unexpected attribute format: %s\n", debug_d3dformat(format)); break; } } /* GL locking is done by the caller */ static void drawStridedSlowVs(const struct wined3d_gl_info *gl_info, const struct wined3d_state *state, const struct wined3d_stream_info *si, UINT numberOfVertices, GLenum glPrimitiveType, const void *idxData, UINT idxSize, UINT startIdx) { LONG SkipnStrides = startIdx + state->load_base_vertex_index; const DWORD *pIdxBufL = NULL; const WORD *pIdxBufS = NULL; UINT vx_index; int i; const BYTE *ptr; if (idxSize) { /* Immediate mode drawing can't make use of indices in a vbo - get the * data from the index buffer. If the index buffer has no vbo (not * supported or other reason), or with user pointer drawing idxData * will be non-NULL. */ if (!idxData) idxData = buffer_get_sysmem(state->index_buffer, gl_info); if (idxSize == 2) pIdxBufS = idxData; else pIdxBufL = idxData; } else if (idxData) { ERR("non-NULL idxData with 0 idxSize, this should never happen\n"); return; } /* Start drawing in GL */ gl_info->gl_ops.gl.p_glBegin(glPrimitiveType); for (vx_index = 0; vx_index < numberOfVertices; ++vx_index) { if (idxData) { /* Indexed so work out the number of strides to skip */ if (idxSize == 2) SkipnStrides = pIdxBufS[startIdx + vx_index] + state->load_base_vertex_index; else SkipnStrides = pIdxBufL[startIdx + vx_index] + state->load_base_vertex_index; } for (i = MAX_ATTRIBS - 1; i >= 0; i--) { if (!(si->use_map & (1 << i))) continue; ptr = si->elements[i].data.addr + si->elements[i].stride * SkipnStrides; send_attribute(gl_info, si->elements[i].format->id, i, ptr); } SkipnStrides++; } gl_info->gl_ops.gl.p_glEnd(); } /* GL locking is done by the caller */ static void drawStridedInstanced(const struct wined3d_gl_info *gl_info, const struct wined3d_state *state, const struct wined3d_stream_info *si, UINT numberOfVertices, GLenum glPrimitiveType, const void *idxData, UINT idxSize, UINT startIdx, UINT base_vertex_index) { UINT numInstances = 0, i; int numInstancedAttribs = 0, j; UINT instancedData[sizeof(si->elements) / sizeof(*si->elements) /* 16 */]; GLenum idxtype = idxSize == 2 ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT; if (!idxSize) { /* This is a nasty thing. MSDN says no hardware supports that and apps have to use software vertex processing. * We don't support this for now * * Shouldn't be too hard to support with opengl, in theory just call glDrawArrays instead of drawElements. * But the StreamSourceFreq value has a different meaning in that situation. */ FIXME("Non-indexed instanced drawing is not supported\n"); return; } /* First, figure out how many instances we have to draw */ for (i = 0; i < MAX_STREAMS; ++i) { /* Look at the streams and take the first one which matches */ if (state->streams[i].buffer && ((state->streams[i].flags & WINED3DSTREAMSOURCE_INSTANCEDATA) || (state->streams[i].flags & WINED3DSTREAMSOURCE_INDEXEDDATA))) { /* Use the specified number of instances from the first matched * stream. A streamFreq of 0 (with INSTANCEDATA or INDEXEDDATA) * is handled as 1. See d3d9/tests/visual.c-> stream_test(). */ numInstances = state->streams[i].frequency ? state->streams[i].frequency : 1; break; } } for (i = 0; i < sizeof(si->elements) / sizeof(*si->elements); ++i) { if (!(si->use_map & (1 << i))) continue; if (state->streams[si->elements[i].stream_idx].flags & WINED3DSTREAMSOURCE_INSTANCEDATA) { instancedData[numInstancedAttribs] = i; numInstancedAttribs++; } } /* now draw numInstances instances :-) */ for(i = 0; i < numInstances; i++) { /* Specify the instanced attributes using immediate mode calls */ for(j = 0; j < numInstancedAttribs; j++) { const BYTE *ptr = si->elements[instancedData[j]].data.addr + si->elements[instancedData[j]].stride * i; if (si->elements[instancedData[j]].data.buffer_object) { struct wined3d_buffer *vb = state->streams[si->elements[instancedData[j]].stream_idx].buffer; ptr += (ULONG_PTR)buffer_get_sysmem(vb, gl_info); } send_attribute(gl_info, si->elements[instancedData[j]].format->id, instancedData[j], ptr); } if (gl_info->supported[ARB_DRAW_ELEMENTS_BASE_VERTEX]) { GL_EXTCALL(glDrawElementsBaseVertex(glPrimitiveType, numberOfVertices, idxtype, (const char *)idxData+(idxSize * startIdx), base_vertex_index)); checkGLcall("glDrawElementsBaseVertex"); } else { gl_info->gl_ops.gl.p_glDrawElements(glPrimitiveType, numberOfVertices, idxtype, (const char *)idxData + (idxSize * startIdx)); checkGLcall("glDrawElements"); } } } static void remove_vbos(const struct wined3d_gl_info *gl_info, const struct wined3d_state *state, struct wined3d_stream_info *s) { unsigned int i; for (i = 0; i < (sizeof(s->elements) / sizeof(*s->elements)); ++i) { struct wined3d_stream_info_element *e; if (!(s->use_map & (1 << i))) continue; e = &s->elements[i]; if (e->data.buffer_object) { struct wined3d_buffer *vb = state->streams[e->stream_idx].buffer; e->data.buffer_object = 0; e->data.addr = (BYTE *)((ULONG_PTR)e->data.addr + (ULONG_PTR)buffer_get_sysmem(vb, gl_info)); } } } /* Routine common to the draw primitive and draw indexed primitive routines */ void drawPrimitive(struct wined3d_device *device, UINT index_count, UINT StartIdx, BOOL indexed, const void *idxData) { const struct wined3d_state *state = &device->stateBlock->state; const struct wined3d_gl_info *gl_info; struct wined3d_context *context; unsigned int i; if (!index_count) return; if (state->render_states[WINED3D_RS_COLORWRITEENABLE]) { /* Invalidate the back buffer memory so LockRect will read it the next time */ for (i = 0; i < device->adapter->gl_info.limits.buffers; ++i) { struct wined3d_surface *target = device->fb.render_targets[i]; if (target) { surface_load_location(target, target->draw_binding, NULL); surface_modify_location(target, target->draw_binding, TRUE); } } } /* Signals other modules that a drawing is in progress and the stateblock finalized */ device->isInDraw = TRUE; context = context_acquire(device, device->fb.render_targets[0]); if (!context->valid) { context_release(context); WARN("Invalid context, skipping draw.\n"); return; } gl_info = context->gl_info; if (device->fb.depth_stencil) { /* Note that this depends on the context_acquire() call above to set * context->render_offscreen properly. We don't currently take the * Z-compare function into account, but we could skip loading the * depthstencil for D3DCMP_NEVER and D3DCMP_ALWAYS as well. Also note * that we never copy the stencil data.*/ DWORD location = context->render_offscreen ? device->fb.depth_stencil->draw_binding : SFLAG_INDRAWABLE; if (state->render_states[WINED3D_RS_ZWRITEENABLE] || state->render_states[WINED3D_RS_ZENABLE]) { struct wined3d_surface *ds = device->fb.depth_stencil; RECT current_rect, draw_rect, r; if (!context->render_offscreen && ds != device->onscreen_depth_stencil) device_switch_onscreen_ds(device, context, ds); if (ds->flags & location) SetRect(¤t_rect, 0, 0, ds->ds_current_size.cx, ds->ds_current_size.cy); else SetRectEmpty(¤t_rect); wined3d_get_draw_rect(state, &draw_rect); IntersectRect(&r, &draw_rect, ¤t_rect); if (!EqualRect(&r, &draw_rect)) surface_load_ds_location(ds, context, location); } } if (!context_apply_draw_state(context, device)) { context_release(context); WARN("Unable to apply draw state, skipping draw.\n"); return; } if (device->fb.depth_stencil && state->render_states[WINED3D_RS_ZWRITEENABLE]) { struct wined3d_surface *ds = device->fb.depth_stencil; DWORD location = context->render_offscreen ? ds->draw_binding : SFLAG_INDRAWABLE; surface_modify_ds_location(ds, location, ds->ds_current_size.cx, ds->ds_current_size.cy); } if ((!gl_info->supported[WINED3D_GL_VERSION_2_0] || !gl_info->supported[NV_POINT_SPRITE]) && context->render_offscreen && state->render_states[WINED3D_RS_POINTSPRITEENABLE] && state->gl_primitive_type == GL_POINTS) { FIXME("Point sprite coordinate origin switching not supported.\n"); } /* Ok, we will be updating the screen from here onwards so grab the lock */ ENTER_GL(); { GLenum glPrimType = state->gl_primitive_type; INT base_vertex_index = state->base_vertex_index; BOOL emulation = FALSE; const struct wined3d_stream_info *stream_info = &device->strided_streams; struct wined3d_stream_info stridedlcl; UINT idx_size = 0; if (indexed) { if (!state->user_stream) { struct wined3d_buffer *index_buffer = state->index_buffer; if (!index_buffer->buffer_object || !stream_info->all_vbo) idxData = index_buffer->resource.allocatedMemory; else idxData = NULL; } if (state->index_format == WINED3DFMT_R16_UINT) idx_size = 2; else idx_size = 4; } if (!use_vs(state)) { if (!stream_info->position_transformed && context->num_untracked_materials && state->render_states[WINED3D_RS_LIGHTING]) { static BOOL warned; if (!warned) { FIXME("Using software emulation because not all material properties could be tracked\n"); warned = TRUE; } else { TRACE("Using software emulation because not all material properties could be tracked\n"); } emulation = TRUE; } else if (context->fog_coord && state->render_states[WINED3D_RS_FOGENABLE]) { /* Either write a pipeline replacement shader or convert the specular alpha from unsigned byte * to a float in the vertex buffer */ static BOOL warned; if (!warned) { FIXME("Using software emulation because manual fog coordinates are provided\n"); warned = TRUE; } else { TRACE("Using software emulation because manual fog coordinates are provided\n"); } emulation = TRUE; } if(emulation) { stream_info = &stridedlcl; memcpy(&stridedlcl, &device->strided_streams, sizeof(stridedlcl)); remove_vbos(gl_info, state, &stridedlcl); } } if (device->useDrawStridedSlow || emulation) { /* Immediate mode drawing */ if (use_vs(state)) { static BOOL warned; if (!warned) { FIXME("Using immediate mode with vertex shaders for half float emulation\n"); warned = TRUE; } else { TRACE("Using immediate mode with vertex shaders for half float emulation\n"); } drawStridedSlowVs(gl_info, state, stream_info, index_count, glPrimType, idxData, idx_size, StartIdx); } else { drawStridedSlow(device, context, stream_info, index_count, glPrimType, idxData, idx_size, StartIdx); } } else if (device->instancedDraw) { /* Instancing emulation with mixing immediate mode and arrays */ drawStridedInstanced(gl_info, state, stream_info, index_count, glPrimType, idxData, idx_size, StartIdx, base_vertex_index); } else { drawStridedFast(gl_info, glPrimType, index_count, idx_size, idxData, StartIdx, base_vertex_index); } } /* Finished updating the screen, restore lock */ LEAVE_GL(); for(i = 0; i < device->num_buffer_queries; ++i) { wined3d_event_query_issue(device->buffer_queries[i], device); } if (wined3d_settings.strict_draw_ordering) gl_info->gl_ops.gl.p_glFlush(); /* Flush to ensure ordering across contexts. */ context_release(context); TRACE("Done all gl drawing\n"); /* Control goes back to the device, stateblock values may change again */ device->isInDraw = FALSE; } static void normalize_normal(float *n) { float length = n[0] * n[0] + n[1] * n[1] + n[2] * n[2]; if (length == 0.0f) return; length = sqrtf(length); n[0] = n[0] / length; n[1] = n[1] / length; n[2] = n[2] / length; } /* Tesselates a high order rectangular patch into single triangles using gl evaluators * * The problem is that OpenGL does not offer a direct way to return the tesselated primitives, * and they can't be sent off for rendering directly either. Tesselating is slow, so we want * to cache the patches in a vertex buffer. But more importantly, gl can't bind generated * attributes to numbered shader attributes, so we have to store them and rebind them as needed * in drawprim. * * To read back, the opengl feedback mode is used. This creates a problem because we want * untransformed, unlit vertices, but feedback runs everything through transform and lighting. * Thus disable lighting and set identity matrices to get unmodified colors and positions. * To overcome clipping find the biggest x, y and z values of the vertices in the patch and scale * them to [-1.0;+1.0] and set the viewport up to scale them back. * * Normals are more tricky: Draw white vertices with 3 directional lights, and calculate the * resulting colors back to the normals. * * NOTE: This function activates a context for blitting, modifies matrices & viewport, but * does not restore it because normally a draw follows immediately afterwards. The caller is * responsible of taking care that either the gl states are restored, or the context activated * for drawing to reset the lastWasBlit flag. */ HRESULT tesselate_rectpatch(struct wined3d_device *This, struct wined3d_rect_patch *patch) { unsigned int i, j, num_quads, out_vertex_size, buffer_size, d3d_out_vertex_size; const struct wined3d_rect_patch_info *info = &patch->rect_patch_info; float max_x = 0.0f, max_y = 0.0f, max_z = 0.0f, neg_z = 0.0f; struct wined3d_state *state = &This->stateBlock->state; struct wined3d_stream_info stream_info; struct wined3d_stream_info_element *e; const struct wined3d_gl_info *gl_info; struct wined3d_context *context; struct wined3d_shader *vs; const BYTE *data; DWORD vtxStride; GLenum feedback_type; GLfloat *feedbuffer; /* Simply activate the context for blitting. This disables all the things we don't want and * takes care of dirtifying. Dirtifying is preferred over pushing / popping, since drawing the * patch (as opposed to normal draws) will most likely need different changes anyway. */ context = context_acquire(This, NULL); gl_info = context->gl_info; context_apply_blit_state(context, This); /* First, locate the position data. This is provided in a vertex buffer in * the stateblock. Beware of VBOs. */ vs = state->vertex_shader; state->vertex_shader = NULL; device_stream_info_from_declaration(This, &stream_info); state->vertex_shader = vs; e = &stream_info.elements[WINED3D_FFP_POSITION]; if (e->data.buffer_object) { struct wined3d_buffer *vb = state->streams[e->stream_idx].buffer; e->data.addr = (BYTE *)((ULONG_PTR)e->data.addr + (ULONG_PTR)buffer_get_sysmem(vb, context->gl_info)); } vtxStride = e->stride; data = e->data.addr + vtxStride * info->stride * info->start_vertex_offset_height + vtxStride * info->start_vertex_offset_width; /* Not entirely sure about what happens with transformed vertices */ if (stream_info.position_transformed) FIXME("Transformed position in rectpatch generation\n"); if(vtxStride % sizeof(GLfloat)) { /* glMap2f reads vertex sizes in GLfloats, the d3d stride is in bytes. * I don't see how the stride could not be a multiple of 4, but make sure * to check it */ ERR("Vertex stride is not a multiple of sizeof(GLfloat)\n"); } if (info->basis != WINED3D_BASIS_BEZIER) FIXME("Basis is %s, how to handle this?\n", debug_d3dbasis(info->basis)); if (info->degree != WINED3D_DEGREE_CUBIC) FIXME("Degree is %s, how to handle this?\n", debug_d3ddegree(info->degree)); /* First, get the boundary cube of the input data */ for (j = 0; j < info->height; ++j) { for (i = 0; i < info->width; ++i) { const float *v = (const float *)(data + vtxStride * i + vtxStride * info->stride * j); if(fabs(v[0]) > max_x) max_x = fabsf(v[0]); if(fabs(v[1]) > max_y) max_y = fabsf(v[1]); if(fabs(v[2]) > max_z) max_z = fabsf(v[2]); if(v[2] < neg_z) neg_z = v[2]; } } /* This needs some improvements in the vertex decl code */ FIXME("Cannot find data to generate. Only generating position and normals\n"); patch->has_normals = TRUE; patch->has_texcoords = FALSE; ENTER_GL(); gl_info->gl_ops.gl.p_glMatrixMode(GL_PROJECTION); checkGLcall("glMatrixMode(GL_PROJECTION)"); gl_info->gl_ops.gl.p_glLoadIdentity(); checkGLcall("glLoadIdentity()"); gl_info->gl_ops.gl.p_glScalef(1.0f / (max_x), 1.0f / (max_y), max_z == 0.0f ? 1.0f : 1.0f / (2.0f * max_z)); gl_info->gl_ops.gl.p_glTranslatef(0.0f, 0.0f, 0.5f); checkGLcall("glScalef"); gl_info->gl_ops.gl.p_glViewport(-max_x, -max_y, 2 * (max_x), 2 * (max_y)); checkGLcall("glViewport"); /* Some states to take care of. If we're in wireframe opengl will produce lines, and confuse * our feedback buffer parser */ gl_info->gl_ops.gl.p_glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); checkGLcall("glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)"); context_invalidate_state(context, STATE_RENDER(WINED3D_RS_FILLMODE)); if (patch->has_normals) { static const GLfloat black[] = {0.0f, 0.0f, 0.0f, 0.0f}; static const GLfloat red[] = {1.0f, 0.0f, 0.0f, 0.0f}; static const GLfloat green[] = {0.0f, 1.0f, 0.0f, 0.0f}; static const GLfloat blue[] = {0.0f, 0.0f, 1.0f, 0.0f}; static const GLfloat white[] = {1.0f, 1.0f, 1.0f, 1.0f}; gl_info->gl_ops.gl.p_glEnable(GL_LIGHTING); checkGLcall("glEnable(GL_LIGHTING)"); gl_info->gl_ops.gl.p_glLightModelfv(GL_LIGHT_MODEL_AMBIENT, black); checkGLcall("glLightModel for MODEL_AMBIENT"); context_invalidate_state(context, STATE_RENDER(WINED3D_RS_AMBIENT)); for (i = 3; i < context->gl_info->limits.lights; ++i) { gl_info->gl_ops.gl.p_glDisable(GL_LIGHT0 + i); checkGLcall("glDisable(GL_LIGHT0 + i)"); context_invalidate_state(context, STATE_ACTIVELIGHT(i)); } context_invalidate_state(context, STATE_ACTIVELIGHT(0)); gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT0, GL_DIFFUSE, red); gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT0, GL_SPECULAR, black); gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT0, GL_AMBIENT, black); gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT0, GL_POSITION, red); gl_info->gl_ops.gl.p_glEnable(GL_LIGHT0); checkGLcall("Setting up light 1"); context_invalidate_state(context, STATE_ACTIVELIGHT(1)); gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT1, GL_DIFFUSE, green); gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT1, GL_SPECULAR, black); gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT1, GL_AMBIENT, black); gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT1, GL_POSITION, green); gl_info->gl_ops.gl.p_glEnable(GL_LIGHT1); checkGLcall("Setting up light 2"); context_invalidate_state(context, STATE_ACTIVELIGHT(2)); gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT2, GL_DIFFUSE, blue); gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT2, GL_SPECULAR, black); gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT2, GL_AMBIENT, black); gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT2, GL_POSITION, blue); gl_info->gl_ops.gl.p_glEnable(GL_LIGHT2); checkGLcall("Setting up light 3"); context_invalidate_state(context, STATE_MATERIAL); context_invalidate_state(context, STATE_RENDER(WINED3D_RS_COLORVERTEX)); gl_info->gl_ops.gl.p_glDisable(GL_COLOR_MATERIAL); gl_info->gl_ops.gl.p_glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, black); gl_info->gl_ops.gl.p_glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, black); gl_info->gl_ops.gl.p_glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, white); checkGLcall("Setting up materials"); } /* Enable the needed maps. * GL_MAP2_VERTEX_3 is needed for positional data. * GL_AUTO_NORMAL to generate normals from the position. Do not use GL_MAP2_NORMAL. * GL_MAP2_TEXTURE_COORD_4 for texture coords */ num_quads = ceilf(patch->numSegs[0]) * ceilf(patch->numSegs[1]); out_vertex_size = 3 /* position */; d3d_out_vertex_size = 3; gl_info->gl_ops.gl.p_glEnable(GL_MAP2_VERTEX_3); if (patch->has_normals && patch->has_texcoords) { FIXME("Texcoords not handled yet\n"); feedback_type = GL_3D_COLOR_TEXTURE; out_vertex_size += 8; d3d_out_vertex_size += 7; gl_info->gl_ops.gl.p_glEnable(GL_AUTO_NORMAL); gl_info->gl_ops.gl.p_glEnable(GL_MAP2_TEXTURE_COORD_4); } else if (patch->has_texcoords) { FIXME("Texcoords not handled yet\n"); feedback_type = GL_3D_COLOR_TEXTURE; out_vertex_size += 7; d3d_out_vertex_size += 4; gl_info->gl_ops.gl.p_glEnable(GL_MAP2_TEXTURE_COORD_4); } else if (patch->has_normals) { feedback_type = GL_3D_COLOR; out_vertex_size += 4; d3d_out_vertex_size += 3; gl_info->gl_ops.gl.p_glEnable(GL_AUTO_NORMAL); } else { feedback_type = GL_3D; } checkGLcall("glEnable vertex attrib generation"); buffer_size = num_quads * out_vertex_size * 2 /* triangle list */ * 3 /* verts per tri */ + 4 * num_quads /* 2 triangle markers per quad + num verts in tri */; feedbuffer = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, buffer_size * sizeof(float) * 8); gl_info->gl_ops.gl.p_glMap2f(GL_MAP2_VERTEX_3, 0.0f, 1.0f, vtxStride / sizeof(float), info->width, 0.0f, 1.0f, info->stride * vtxStride / sizeof(float), info->height, (const GLfloat *)data); checkGLcall("glMap2f"); if (patch->has_texcoords) { gl_info->gl_ops.gl.p_glMap2f(GL_MAP2_TEXTURE_COORD_4, 0.0f, 1.0f, vtxStride / sizeof(float), info->width, 0.0f, 1.0f, info->stride * vtxStride / sizeof(float), info->height, (const GLfloat *)data); checkGLcall("glMap2f"); } gl_info->gl_ops.gl.p_glMapGrid2f(ceilf(patch->numSegs[0]), 0.0f, 1.0f, ceilf(patch->numSegs[1]), 0.0f, 1.0f); checkGLcall("glMapGrid2f"); gl_info->gl_ops.gl.p_glFeedbackBuffer(buffer_size * 2, feedback_type, feedbuffer); checkGLcall("glFeedbackBuffer"); gl_info->gl_ops.gl.p_glRenderMode(GL_FEEDBACK); gl_info->gl_ops.gl.p_glEvalMesh2(GL_FILL, 0, ceilf(patch->numSegs[0]), 0, ceilf(patch->numSegs[1])); checkGLcall("glEvalMesh2"); i = gl_info->gl_ops.gl.p_glRenderMode(GL_RENDER); if (i == -1) { LEAVE_GL(); ERR("Feedback failed. Expected %d elements back\n", buffer_size); HeapFree(GetProcessHeap(), 0, feedbuffer); context_release(context); return WINED3DERR_DRIVERINTERNALERROR; } else if(i != buffer_size) { LEAVE_GL(); ERR("Unexpected amount of elements returned. Expected %d, got %d\n", buffer_size, i); HeapFree(GetProcessHeap(), 0, feedbuffer); context_release(context); return WINED3DERR_DRIVERINTERNALERROR; } else { TRACE("Got %d elements as expected\n", i); } HeapFree(GetProcessHeap(), 0, patch->mem); patch->mem = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, num_quads * 6 * d3d_out_vertex_size * sizeof(float) * 8); i = 0; for(j = 0; j < buffer_size; j += (3 /* num verts */ * out_vertex_size + 2 /* tri marker */)) { if(feedbuffer[j] != GL_POLYGON_TOKEN) { ERR("Unexpected token: %f\n", feedbuffer[j]); continue; } if(feedbuffer[j + 1] != 3) { ERR("Unexpected polygon: %f corners\n", feedbuffer[j + 1]); continue; } /* Somehow there are different ideas about back / front facing, so fix up the * vertex order */ patch->mem[i + 0] = feedbuffer[j + out_vertex_size * 2 + 2]; /* x, triangle 2 */ patch->mem[i + 1] = feedbuffer[j + out_vertex_size * 2 + 3]; /* y, triangle 2 */ patch->mem[i + 2] = (feedbuffer[j + out_vertex_size * 2 + 4] - 0.5f) * 4.0f * max_z; /* z, triangle 3 */ if(patch->has_normals) { patch->mem[i + 3] = feedbuffer[j + out_vertex_size * 2 + 5]; patch->mem[i + 4] = feedbuffer[j + out_vertex_size * 2 + 6]; patch->mem[i + 5] = feedbuffer[j + out_vertex_size * 2 + 7]; } i += d3d_out_vertex_size; patch->mem[i + 0] = feedbuffer[j + out_vertex_size * 1 + 2]; /* x, triangle 2 */ patch->mem[i + 1] = feedbuffer[j + out_vertex_size * 1 + 3]; /* y, triangle 2 */ patch->mem[i + 2] = (feedbuffer[j + out_vertex_size * 1 + 4] - 0.5f) * 4.0f * max_z; /* z, triangle 2 */ if(patch->has_normals) { patch->mem[i + 3] = feedbuffer[j + out_vertex_size * 1 + 5]; patch->mem[i + 4] = feedbuffer[j + out_vertex_size * 1 + 6]; patch->mem[i + 5] = feedbuffer[j + out_vertex_size * 1 + 7]; } i += d3d_out_vertex_size; patch->mem[i + 0] = feedbuffer[j + out_vertex_size * 0 + 2]; /* x, triangle 1 */ patch->mem[i + 1] = feedbuffer[j + out_vertex_size * 0 + 3]; /* y, triangle 1 */ patch->mem[i + 2] = (feedbuffer[j + out_vertex_size * 0 + 4] - 0.5f) * 4.0f * max_z; /* z, triangle 1 */ if(patch->has_normals) { patch->mem[i + 3] = feedbuffer[j + out_vertex_size * 0 + 5]; patch->mem[i + 4] = feedbuffer[j + out_vertex_size * 0 + 6]; patch->mem[i + 5] = feedbuffer[j + out_vertex_size * 0 + 7]; } i += d3d_out_vertex_size; } if(patch->has_normals) { /* Now do the same with reverse light directions */ static const GLfloat x[] = {-1.0f, 0.0f, 0.0f, 0.0f}; static const GLfloat y[] = { 0.0f, -1.0f, 0.0f, 0.0f}; static const GLfloat z[] = { 0.0f, 0.0f, -1.0f, 0.0f}; gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT0, GL_POSITION, x); gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT1, GL_POSITION, y); gl_info->gl_ops.gl.p_glLightfv(GL_LIGHT2, GL_POSITION, z); checkGLcall("Setting up reverse light directions"); gl_info->gl_ops.gl.p_glRenderMode(GL_FEEDBACK); checkGLcall("glRenderMode(GL_FEEDBACK)"); gl_info->gl_ops.gl.p_glEvalMesh2(GL_FILL, 0, ceilf(patch->numSegs[0]), 0, ceilf(patch->numSegs[1])); checkGLcall("glEvalMesh2"); i = gl_info->gl_ops.gl.p_glRenderMode(GL_RENDER); checkGLcall("glRenderMode(GL_RENDER)"); i = 0; for(j = 0; j < buffer_size; j += (3 /* num verts */ * out_vertex_size + 2 /* tri marker */)) { if(feedbuffer[j] != GL_POLYGON_TOKEN) { ERR("Unexpected token: %f\n", feedbuffer[j]); continue; } if(feedbuffer[j + 1] != 3) { ERR("Unexpected polygon: %f corners\n", feedbuffer[j + 1]); continue; } if(patch->mem[i + 3] == 0.0f) patch->mem[i + 3] = -feedbuffer[j + out_vertex_size * 2 + 5]; if(patch->mem[i + 4] == 0.0f) patch->mem[i + 4] = -feedbuffer[j + out_vertex_size * 2 + 6]; if(patch->mem[i + 5] == 0.0f) patch->mem[i + 5] = -feedbuffer[j + out_vertex_size * 2 + 7]; normalize_normal(patch->mem + i + 3); i += d3d_out_vertex_size; if(patch->mem[i + 3] == 0.0f) patch->mem[i + 3] = -feedbuffer[j + out_vertex_size * 1 + 5]; if(patch->mem[i + 4] == 0.0f) patch->mem[i + 4] = -feedbuffer[j + out_vertex_size * 1 + 6]; if(patch->mem[i + 5] == 0.0f) patch->mem[i + 5] = -feedbuffer[j + out_vertex_size * 1 + 7]; normalize_normal(patch->mem + i + 3); i += d3d_out_vertex_size; if(patch->mem[i + 3] == 0.0f) patch->mem[i + 3] = -feedbuffer[j + out_vertex_size * 0 + 5]; if(patch->mem[i + 4] == 0.0f) patch->mem[i + 4] = -feedbuffer[j + out_vertex_size * 0 + 6]; if(patch->mem[i + 5] == 0.0f) patch->mem[i + 5] = -feedbuffer[j + out_vertex_size * 0 + 7]; normalize_normal(patch->mem + i + 3); i += d3d_out_vertex_size; } } gl_info->gl_ops.gl.p_glDisable(GL_MAP2_VERTEX_3); gl_info->gl_ops.gl.p_glDisable(GL_AUTO_NORMAL); gl_info->gl_ops.gl.p_glDisable(GL_MAP2_NORMAL); gl_info->gl_ops.gl.p_glDisable(GL_MAP2_TEXTURE_COORD_4); checkGLcall("glDisable vertex attrib generation"); LEAVE_GL(); context_release(context); HeapFree(GetProcessHeap(), 0, feedbuffer); vtxStride = 3 * sizeof(float); if(patch->has_normals) { vtxStride += 3 * sizeof(float); } if(patch->has_texcoords) { vtxStride += 4 * sizeof(float); } memset(&patch->strided, 0, sizeof(patch->strided)); patch->strided.position.format = WINED3DFMT_R32G32B32_FLOAT; patch->strided.position.data = (BYTE *)patch->mem; patch->strided.position.stride = vtxStride; if (patch->has_normals) { patch->strided.normal.format = WINED3DFMT_R32G32B32_FLOAT; patch->strided.normal.data = (BYTE *)patch->mem + 3 * sizeof(float) /* pos */; patch->strided.normal.stride = vtxStride; } if (patch->has_texcoords) { patch->strided.tex_coords[0].format = WINED3DFMT_R32G32B32A32_FLOAT; patch->strided.tex_coords[0].data = (BYTE *)patch->mem + 3 * sizeof(float) /* pos */; if (patch->has_normals) patch->strided.tex_coords[0].data += 3 * sizeof(float); patch->strided.tex_coords[0].stride = vtxStride; } return WINED3D_OK; }