/* * Server-side registry management * * Copyright (C) 1999 Alexandre Julliard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* To do: * - behavior with deleted keys * - values larger than request buffer * - symbolic links */ #include "config.h" #include "wine/port.h" #include #include #include #include #include #include #include #include #include #include #include #include "object.h" #include "file.h" #include "handle.h" #include "request.h" #include "unicode.h" #include "winbase.h" #include "winreg.h" #include "winternl.h" #include "wine/library.h" struct notify { struct event *event; /* event to set when changing this key */ int subtree; /* true if subtree notification */ unsigned int filter; /* which events to notify on */ obj_handle_t hkey; /* hkey associated with this notification */ struct notify *next; /* list of notifications */ struct notify *prev; /* list of notifications */ }; /* a registry key */ struct key { struct object obj; /* object header */ WCHAR *name; /* key name */ WCHAR *class; /* key class */ struct key *parent; /* parent key */ int last_subkey; /* last in use subkey */ int nb_subkeys; /* count of allocated subkeys */ struct key **subkeys; /* subkeys array */ int last_value; /* last in use value */ int nb_values; /* count of allocated values in array */ struct key_value *values; /* values array */ short flags; /* flags */ short level; /* saving level */ time_t modif; /* last modification time */ struct notify *first_notify; /* list of notifications */ struct notify *last_notify; /* list of notifications */ }; /* key flags */ #define KEY_VOLATILE 0x0001 /* key is volatile (not saved to disk) */ #define KEY_DELETED 0x0002 /* key has been deleted */ #define KEY_DIRTY 0x0004 /* key has been modified */ #define KEY_ROOT 0x0008 /* key is a root key */ /* a key value */ struct key_value { WCHAR *name; /* value name */ int type; /* value type */ size_t len; /* value data length in bytes */ void *data; /* pointer to value data */ }; #define MIN_SUBKEYS 8 /* min. number of allocated subkeys per key */ #define MIN_VALUES 8 /* min. number of allocated values per key */ /* the special root keys */ #define HKEY_SPECIAL_ROOT_FIRST ((unsigned int)HKEY_CLASSES_ROOT) #define HKEY_SPECIAL_ROOT_LAST ((unsigned int)HKEY_DYN_DATA) #define NB_SPECIAL_ROOT_KEYS (HKEY_SPECIAL_ROOT_LAST - HKEY_SPECIAL_ROOT_FIRST + 1) #define IS_SPECIAL_ROOT_HKEY(h) (((unsigned int)(h) >= HKEY_SPECIAL_ROOT_FIRST) && \ ((unsigned int)(h) <= HKEY_SPECIAL_ROOT_LAST)) static struct key *special_root_keys[NB_SPECIAL_ROOT_KEYS]; /* the real root key */ static struct key *root_key; /* the special root key names */ static const char * const special_root_names[NB_SPECIAL_ROOT_KEYS] = { "Machine\\Software\\Classes", /* HKEY_CLASSES_ROOT */ "User\\", /* we append the user name dynamically */ /* HKEY_CURRENT_USER */ "Machine", /* HKEY_LOCAL_MACHINE */ "User", /* HKEY_USERS */ "PerfData", /* HKEY_PERFORMANCE_DATA */ "Machine\\System\\CurrentControlSet\\HardwareProfiles\\Current", /* HKEY_CURRENT_CONFIG */ "DynData" /* HKEY_DYN_DATA */ }; /* keys saving level */ /* current_level is the level that is put into all newly created or modified keys */ /* saving_level is the minimum level that a key needs in order to get saved */ static int current_level; static int saving_level; static struct timeval next_save_time; /* absolute time of next periodic save */ static int save_period; /* delay between periodic saves (ms) */ static struct timeout_user *save_timeout_user; /* saving timer */ /* information about where to save a registry branch */ struct save_branch_info { struct key *key; char *path; }; #define MAX_SAVE_BRANCH_INFO 8 static int save_branch_count; static struct save_branch_info save_branch_info[MAX_SAVE_BRANCH_INFO]; /* information about a file being loaded */ struct file_load_info { FILE *file; /* input file */ char *buffer; /* line buffer */ int len; /* buffer length */ int line; /* current input line */ char *tmp; /* temp buffer to use while parsing input */ int tmplen; /* length of temp buffer */ }; static void key_dump( struct object *obj, int verbose ); static void key_destroy( struct object *obj ); static const struct object_ops key_ops = { sizeof(struct key), /* size */ key_dump, /* dump */ no_add_queue, /* add_queue */ NULL, /* remove_queue */ NULL, /* signaled */ NULL, /* satisfied */ no_get_fd, /* get_fd */ key_destroy /* destroy */ }; /* * The registry text file format v2 used by this code is similar to the one * used by REGEDIT import/export functionality, with the following differences: * - strings and key names can contain \x escapes for Unicode * - key names use escapes too in order to support Unicode * - the modification time optionally follows the key name * - REG_EXPAND_SZ and REG_MULTI_SZ are saved as strings instead of hex */ static inline char to_hex( char ch ) { if (isdigit(ch)) return ch - '0'; return tolower(ch) - 'a' + 10; } /* dump the full path of a key */ static void dump_path( const struct key *key, const struct key *base, FILE *f ) { if (key->parent && key->parent != base) { dump_path( key->parent, base, f ); fprintf( f, "\\\\" ); } dump_strW( key->name, strlenW(key->name), f, "[]" ); } /* dump a value to a text file */ static void dump_value( const struct key_value *value, FILE *f ) { int i, count; if (value->name[0]) { fputc( '\"', f ); count = 1 + dump_strW( value->name, strlenW(value->name), f, "\"\"" ); count += fprintf( f, "\"=" ); } else count = fprintf( f, "@=" ); switch(value->type) { case REG_SZ: case REG_EXPAND_SZ: case REG_MULTI_SZ: if (value->type != REG_SZ) fprintf( f, "str(%d):", value->type ); fputc( '\"', f ); if (value->data) dump_strW( (WCHAR *)value->data, value->len / sizeof(WCHAR), f, "\"\"" ); fputc( '\"', f ); break; case REG_DWORD: if (value->len == sizeof(DWORD)) { DWORD dw; memcpy( &dw, value->data, sizeof(DWORD) ); fprintf( f, "dword:%08lx", dw ); break; } /* else fall through */ default: if (value->type == REG_BINARY) count += fprintf( f, "hex:" ); else count += fprintf( f, "hex(%x):", value->type ); for (i = 0; i < value->len; i++) { count += fprintf( f, "%02x", *((unsigned char *)value->data + i) ); if (i < value->len-1) { fputc( ',', f ); if (++count > 76) { fprintf( f, "\\\n " ); count = 2; } } } break; } fputc( '\n', f ); } /* save a registry and all its subkeys to a text file */ static void save_subkeys( const struct key *key, const struct key *base, FILE *f ) { int i; if (key->flags & KEY_VOLATILE) return; /* save key if it has the proper level, and has either some values or no subkeys */ /* keys with no values but subkeys are saved implicitly by saving the subkeys */ if ((key->level >= saving_level) && ((key->last_value >= 0) || (key->last_subkey == -1))) { fprintf( f, "\n[" ); if (key != base) dump_path( key, base, f ); fprintf( f, "] %ld\n", key->modif ); for (i = 0; i <= key->last_value; i++) dump_value( &key->values[i], f ); } for (i = 0; i <= key->last_subkey; i++) save_subkeys( key->subkeys[i], base, f ); } static void dump_operation( const struct key *key, const struct key_value *value, const char *op ) { fprintf( stderr, "%s key ", op ); if (key) dump_path( key, NULL, stderr ); else fprintf( stderr, "ERROR" ); if (value) { fprintf( stderr, " value "); dump_value( value, stderr ); } else fprintf( stderr, "\n" ); } static void key_dump( struct object *obj, int verbose ) { struct key *key = (struct key *)obj; assert( obj->ops == &key_ops ); fprintf( stderr, "Key flags=%x ", key->flags ); dump_path( key, NULL, stderr ); fprintf( stderr, "\n" ); } /* notify waiter and maybe delete the notification */ static void do_notification( struct key *key, struct notify *notify, int del ) { if( notify->event ) { set_event( notify->event ); release_object( notify->event ); notify->event = NULL; } if ( !del ) return; if( notify->next ) notify->next->prev = notify->prev; else key->last_notify = notify->prev; if( notify->prev ) notify->prev->next = notify->next; else key->first_notify = notify->next; free( notify ); } static struct notify *find_notify( struct key *key, obj_handle_t hkey) { struct notify *n; for( n=key->first_notify; n; n = n->next) if( n->hkey == hkey ) break; return n; } /* close the notification associated with a handle */ void registry_close_handle( struct object *obj, obj_handle_t hkey ) { struct key * key = (struct key *) obj; struct notify *notify; if( obj->ops != &key_ops ) return; notify = find_notify( key, hkey ); if( !notify ) return; do_notification( key, notify, 1 ); } static void key_destroy( struct object *obj ) { int i; struct key *key = (struct key *)obj; assert( obj->ops == &key_ops ); if (key->name) free( key->name ); if (key->class) free( key->class ); for (i = 0; i <= key->last_value; i++) { free( key->values[i].name ); if (key->values[i].data) free( key->values[i].data ); } for (i = 0; i <= key->last_subkey; i++) { key->subkeys[i]->parent = NULL; release_object( key->subkeys[i] ); } /* unconditionally notify everything waiting on this key */ while ( key->first_notify ) do_notification( key, key->first_notify, 1 ); } /* duplicate a key path */ /* returns a pointer to a static buffer, so only useable once per request */ static WCHAR *copy_path( const WCHAR *path, size_t len, int skip_root ) { static WCHAR buffer[MAX_PATH+1]; static const WCHAR root_name[] = { '\\','R','e','g','i','s','t','r','y','\\',0 }; if (len > sizeof(buffer)-sizeof(buffer[0])) { set_error( STATUS_BUFFER_OVERFLOW ); return NULL; } memcpy( buffer, path, len ); buffer[len / sizeof(WCHAR)] = 0; if (skip_root && !strncmpiW( buffer, root_name, 10 )) return buffer + 10; return buffer; } /* copy a path from the request buffer */ static WCHAR *copy_req_path( size_t len, int skip_root ) { const WCHAR *name_ptr = get_req_data(); if (len > get_req_data_size()) { fatal_protocol_error( current, "copy_req_path: invalid length %d/%d\n", len, get_req_data_size() ); return NULL; } return copy_path( name_ptr, len, skip_root ); } /* return the next token in a given path */ /* returns a pointer to a static buffer, so only useable once per request */ static WCHAR *get_path_token( WCHAR *initpath ) { static WCHAR *path; WCHAR *ret; if (initpath) { /* path cannot start with a backslash */ if (*initpath == '\\') { set_error( STATUS_OBJECT_PATH_INVALID ); return NULL; } path = initpath; } else while (*path == '\\') path++; ret = path; while (*path && *path != '\\') path++; if (*path) *path++ = 0; return ret; } /* duplicate a Unicode string from the request buffer */ static WCHAR *req_strdupW( const void *req, const WCHAR *str, size_t len ) { WCHAR *name; if ((name = mem_alloc( len + sizeof(WCHAR) )) != NULL) { memcpy( name, str, len ); name[len / sizeof(WCHAR)] = 0; } return name; } /* allocate a key object */ static struct key *alloc_key( const WCHAR *name, time_t modif ) { struct key *key; if ((key = alloc_object( &key_ops ))) { key->class = NULL; key->flags = 0; key->last_subkey = -1; key->nb_subkeys = 0; key->subkeys = NULL; key->nb_values = 0; key->last_value = -1; key->values = NULL; key->level = current_level; key->modif = modif; key->parent = NULL; key->first_notify = NULL; key->last_notify = NULL; if (!(key->name = strdupW( name ))) { release_object( key ); key = NULL; } } return key; } /* mark a key and all its parents as dirty (modified) */ static void make_dirty( struct key *key ) { while (key) { if (key->flags & (KEY_DIRTY|KEY_VOLATILE)) return; /* nothing to do */ key->flags |= KEY_DIRTY; key = key->parent; } } /* mark a key and all its subkeys as clean (not modified) */ static void make_clean( struct key *key ) { int i; if (key->flags & KEY_VOLATILE) return; if (!(key->flags & KEY_DIRTY)) return; key->flags &= ~KEY_DIRTY; for (i = 0; i <= key->last_subkey; i++) make_clean( key->subkeys[i] ); } /* go through all the notifications and send them if necessary */ void check_notify( struct key *key, unsigned int change, int not_subtree ) { struct notify *n = key->first_notify; while (n) { struct notify *next = n->next; if ( ( not_subtree || n->subtree ) && ( change & n->filter ) ) do_notification( key, n, 0 ); n = next; } } /* update key modification time */ static void touch_key( struct key *key, unsigned int change ) { struct key *k; key->modif = time(NULL); key->level = max( key->level, current_level ); make_dirty( key ); /* do notifications */ check_notify( key, change, 1 ); for ( k = key->parent; k; k = k->parent ) check_notify( k, change & ~REG_NOTIFY_CHANGE_LAST_SET, 0 ); } /* try to grow the array of subkeys; return 1 if OK, 0 on error */ static int grow_subkeys( struct key *key ) { struct key **new_subkeys; int nb_subkeys; if (key->nb_subkeys) { nb_subkeys = key->nb_subkeys + (key->nb_subkeys / 2); /* grow by 50% */ if (!(new_subkeys = realloc( key->subkeys, nb_subkeys * sizeof(*new_subkeys) ))) { set_error( STATUS_NO_MEMORY ); return 0; } } else { nb_subkeys = MIN_VALUES; if (!(new_subkeys = mem_alloc( nb_subkeys * sizeof(*new_subkeys) ))) return 0; } key->subkeys = new_subkeys; key->nb_subkeys = nb_subkeys; return 1; } /* allocate a subkey for a given key, and return its index */ static struct key *alloc_subkey( struct key *parent, const WCHAR *name, int index, time_t modif ) { struct key *key; int i; if (parent->last_subkey + 1 == parent->nb_subkeys) { /* need to grow the array */ if (!grow_subkeys( parent )) return NULL; } if ((key = alloc_key( name, modif )) != NULL) { key->parent = parent; for (i = ++parent->last_subkey; i > index; i--) parent->subkeys[i] = parent->subkeys[i-1]; parent->subkeys[index] = key; } return key; } /* free a subkey of a given key */ static void free_subkey( struct key *parent, int index ) { struct key *key; int i, nb_subkeys; assert( index >= 0 ); assert( index <= parent->last_subkey ); key = parent->subkeys[index]; for (i = index; i < parent->last_subkey; i++) parent->subkeys[i] = parent->subkeys[i + 1]; parent->last_subkey--; key->flags |= KEY_DELETED; key->parent = NULL; release_object( key ); /* try to shrink the array */ nb_subkeys = parent->nb_subkeys; if (nb_subkeys > MIN_SUBKEYS && parent->last_subkey < nb_subkeys / 2) { struct key **new_subkeys; nb_subkeys -= nb_subkeys / 3; /* shrink by 33% */ if (nb_subkeys < MIN_SUBKEYS) nb_subkeys = MIN_SUBKEYS; if (!(new_subkeys = realloc( parent->subkeys, nb_subkeys * sizeof(*new_subkeys) ))) return; parent->subkeys = new_subkeys; parent->nb_subkeys = nb_subkeys; } } /* find the named child of a given key and return its index */ static struct key *find_subkey( const struct key *key, const WCHAR *name, int *index ) { int i, min, max, res; min = 0; max = key->last_subkey; while (min <= max) { i = (min + max) / 2; if (!(res = strcmpiW( key->subkeys[i]->name, name ))) { *index = i; return key->subkeys[i]; } if (res > 0) max = i - 1; else min = i + 1; } *index = min; /* this is where we should insert it */ return NULL; } /* open a subkey */ /* warning: the key name must be writeable (use copy_path) */ static struct key *open_key( struct key *key, WCHAR *name ) { int index; WCHAR *path; if (!(path = get_path_token( name ))) return NULL; while (*path) { if (!(key = find_subkey( key, path, &index ))) { set_error( STATUS_OBJECT_NAME_NOT_FOUND ); break; } path = get_path_token( NULL ); } if (debug_level > 1) dump_operation( key, NULL, "Open" ); if (key) grab_object( key ); return key; } /* create a subkey */ /* warning: the key name must be writeable (use copy_path) */ static struct key *create_key( struct key *key, WCHAR *name, WCHAR *class, int flags, time_t modif, int *created ) { struct key *base; int base_idx, index; WCHAR *path; if (key->flags & KEY_DELETED) /* we cannot create a subkey under a deleted key */ { set_error( STATUS_KEY_DELETED ); return NULL; } if (!(flags & KEY_VOLATILE) && (key->flags & KEY_VOLATILE)) { set_error( STATUS_CHILD_MUST_BE_VOLATILE ); return NULL; } if (!modif) modif = time(NULL); if (!(path = get_path_token( name ))) return NULL; *created = 0; while (*path) { struct key *subkey; if (!(subkey = find_subkey( key, path, &index ))) break; key = subkey; path = get_path_token( NULL ); } /* create the remaining part */ if (!*path) goto done; *created = 1; if (flags & KEY_DIRTY) make_dirty( key ); base = key; base_idx = index; key = alloc_subkey( key, path, index, modif ); while (key) { key->flags |= flags; path = get_path_token( NULL ); if (!*path) goto done; /* we know the index is always 0 in a new key */ key = alloc_subkey( key, path, 0, modif ); } if (base_idx != -1) free_subkey( base, base_idx ); return NULL; done: if (debug_level > 1) dump_operation( key, NULL, "Create" ); if (class) key->class = strdupW(class); grab_object( key ); return key; } /* query information about a key or a subkey */ static void enum_key( const struct key *key, int index, int info_class, struct enum_key_reply *reply ) { int i; size_t len, namelen, classlen; int max_subkey = 0, max_class = 0; int max_value = 0, max_data = 0; WCHAR *data; if (index != -1) /* -1 means use the specified key directly */ { if ((index < 0) || (index > key->last_subkey)) { set_error( STATUS_NO_MORE_ENTRIES ); return; } key = key->subkeys[index]; } namelen = strlenW(key->name) * sizeof(WCHAR); classlen = key->class ? strlenW(key->class) * sizeof(WCHAR) : 0; switch(info_class) { case KeyBasicInformation: classlen = 0; /* only return the name */ /* fall through */ case KeyNodeInformation: reply->max_subkey = 0; reply->max_class = 0; reply->max_value = 0; reply->max_data = 0; break; case KeyFullInformation: for (i = 0; i <= key->last_subkey; i++) { struct key *subkey = key->subkeys[i]; len = strlenW( subkey->name ); if (len > max_subkey) max_subkey = len; if (!subkey->class) continue; len = strlenW( subkey->class ); if (len > max_class) max_class = len; } for (i = 0; i <= key->last_value; i++) { len = strlenW( key->values[i].name ); if (len > max_value) max_value = len; len = key->values[i].len; if (len > max_data) max_data = len; } reply->max_subkey = max_subkey; reply->max_class = max_class; reply->max_value = max_value; reply->max_data = max_data; namelen = 0; /* only return the class */ break; default: set_error( STATUS_INVALID_PARAMETER ); return; } reply->subkeys = key->last_subkey + 1; reply->values = key->last_value + 1; reply->modif = key->modif; reply->total = namelen + classlen; len = min( reply->total, get_reply_max_size() ); if (len && (data = set_reply_data_size( len ))) { if (len > namelen) { reply->namelen = namelen; memcpy( data, key->name, namelen ); memcpy( (char *)data + namelen, key->class, len - namelen ); } else { reply->namelen = len; memcpy( data, key->name, len ); } } if (debug_level > 1) dump_operation( key, NULL, "Enum" ); } /* delete a key and its values */ static int delete_key( struct key *key, int recurse ) { int index; struct key *parent; /* must find parent and index */ if (key->flags & KEY_ROOT) { set_error( STATUS_ACCESS_DENIED ); return -1; } if (!(parent = key->parent) || (key->flags & KEY_DELETED)) { set_error( STATUS_KEY_DELETED ); return -1; } while (recurse && (key->last_subkey>=0)) if(0>delete_key(key->subkeys[key->last_subkey], 1)) return -1; for (index = 0; index <= parent->last_subkey; index++) if (parent->subkeys[index] == key) break; assert( index <= parent->last_subkey ); /* we can only delete a key that has no subkeys (FIXME) */ if ((key->flags & KEY_ROOT) || (key->last_subkey >= 0)) { set_error( STATUS_ACCESS_DENIED ); return -1; } if (debug_level > 1) dump_operation( key, NULL, "Delete" ); free_subkey( parent, index ); touch_key( parent, REG_NOTIFY_CHANGE_NAME ); return 0; } /* try to grow the array of values; return 1 if OK, 0 on error */ static int grow_values( struct key *key ) { struct key_value *new_val; int nb_values; if (key->nb_values) { nb_values = key->nb_values + (key->nb_values / 2); /* grow by 50% */ if (!(new_val = realloc( key->values, nb_values * sizeof(*new_val) ))) { set_error( STATUS_NO_MEMORY ); return 0; } } else { nb_values = MIN_VALUES; if (!(new_val = mem_alloc( nb_values * sizeof(*new_val) ))) return 0; } key->values = new_val; key->nb_values = nb_values; return 1; } /* find the named value of a given key and return its index in the array */ static struct key_value *find_value( const struct key *key, const WCHAR *name, int *index ) { int i, min, max, res; min = 0; max = key->last_value; while (min <= max) { i = (min + max) / 2; if (!(res = strcmpiW( key->values[i].name, name ))) { *index = i; return &key->values[i]; } if (res > 0) max = i - 1; else min = i + 1; } *index = min; /* this is where we should insert it */ return NULL; } /* insert a new value; the index must have been returned by find_value */ static struct key_value *insert_value( struct key *key, const WCHAR *name, int index ) { struct key_value *value; WCHAR *new_name; int i; if (key->last_value + 1 == key->nb_values) { if (!grow_values( key )) return NULL; } if (!(new_name = strdupW(name))) return NULL; for (i = ++key->last_value; i > index; i--) key->values[i] = key->values[i - 1]; value = &key->values[index]; value->name = new_name; value->len = 0; value->data = NULL; return value; } /* set a key value */ static void set_value( struct key *key, WCHAR *name, int type, const void *data, size_t len ) { struct key_value *value; void *ptr = NULL; int index; if ((value = find_value( key, name, &index ))) { /* check if the new value is identical to the existing one */ if (value->type == type && value->len == len && value->data && !memcmp( value->data, data, len )) { if (debug_level > 1) dump_operation( key, value, "Skip setting" ); return; } } if (len && !(ptr = memdup( data, len ))) return; if (!value) { if (!(value = insert_value( key, name, index ))) { if (ptr) free( ptr ); return; } } else if (value->data) free( value->data ); /* already existing, free previous data */ value->type = type; value->len = len; value->data = ptr; touch_key( key, REG_NOTIFY_CHANGE_LAST_SET ); if (debug_level > 1) dump_operation( key, value, "Set" ); } /* get a key value */ static void get_value( struct key *key, const WCHAR *name, int *type, int *len ) { struct key_value *value; int index; if ((value = find_value( key, name, &index ))) { *type = value->type; *len = value->len; if (value->data) set_reply_data( value->data, min( value->len, get_reply_max_size() )); if (debug_level > 1) dump_operation( key, value, "Get" ); } else { *type = -1; set_error( STATUS_OBJECT_NAME_NOT_FOUND ); } } /* enumerate a key value */ static void enum_value( struct key *key, int i, int info_class, struct enum_key_value_reply *reply ) { struct key_value *value; if (i < 0 || i > key->last_value) set_error( STATUS_NO_MORE_ENTRIES ); else { void *data; size_t namelen, maxlen; value = &key->values[i]; reply->type = value->type; namelen = strlenW( value->name ) * sizeof(WCHAR); switch(info_class) { case KeyValueBasicInformation: reply->total = namelen; break; case KeyValueFullInformation: reply->total = namelen + value->len; break; case KeyValuePartialInformation: reply->total = value->len; namelen = 0; break; default: set_error( STATUS_INVALID_PARAMETER ); return; } maxlen = min( reply->total, get_reply_max_size() ); if (maxlen && ((data = set_reply_data_size( maxlen )))) { if (maxlen > namelen) { reply->namelen = namelen; memcpy( data, value->name, namelen ); memcpy( (char *)data + namelen, value->data, maxlen - namelen ); } else { reply->namelen = maxlen; memcpy( data, value->name, maxlen ); } } if (debug_level > 1) dump_operation( key, value, "Enum" ); } } /* delete a value */ static void delete_value( struct key *key, const WCHAR *name ) { struct key_value *value; int i, index, nb_values; if (!(value = find_value( key, name, &index ))) { set_error( STATUS_OBJECT_NAME_NOT_FOUND ); return; } if (debug_level > 1) dump_operation( key, value, "Delete" ); free( value->name ); if (value->data) free( value->data ); for (i = index; i < key->last_value; i++) key->values[i] = key->values[i + 1]; key->last_value--; touch_key( key, REG_NOTIFY_CHANGE_LAST_SET ); /* try to shrink the array */ nb_values = key->nb_values; if (nb_values > MIN_VALUES && key->last_value < nb_values / 2) { struct key_value *new_val; nb_values -= nb_values / 3; /* shrink by 33% */ if (nb_values < MIN_VALUES) nb_values = MIN_VALUES; if (!(new_val = realloc( key->values, nb_values * sizeof(*new_val) ))) return; key->values = new_val; key->nb_values = nb_values; } } static struct key *create_root_key( obj_handle_t hkey ) { WCHAR keyname[80]; int i, dummy; struct key *key; const char *p; p = special_root_names[(unsigned int)hkey - HKEY_SPECIAL_ROOT_FIRST]; i = 0; while (*p) keyname[i++] = *p++; if (hkey == (obj_handle_t)HKEY_CURRENT_USER) /* this one is special */ { /* get the current user name */ p = wine_get_user_name(); while (*p && i < sizeof(keyname)/sizeof(WCHAR)-1) keyname[i++] = *p++; } keyname[i++] = 0; if ((key = create_key( root_key, keyname, NULL, 0, time(NULL), &dummy ))) { special_root_keys[(unsigned int)hkey - HKEY_SPECIAL_ROOT_FIRST] = key; key->flags |= KEY_ROOT; } return key; } /* get the registry key corresponding to an hkey handle */ static struct key *get_hkey_obj( obj_handle_t hkey, unsigned int access ) { struct key *key; if (!hkey) return (struct key *)grab_object( root_key ); if (IS_SPECIAL_ROOT_HKEY(hkey)) { if (!(key = special_root_keys[(unsigned int)hkey - HKEY_SPECIAL_ROOT_FIRST])) key = create_root_key( hkey ); else grab_object( key ); } else key = (struct key *)get_handle_obj( current->process, hkey, access, &key_ops ); return key; } /* read a line from the input file */ static int read_next_line( struct file_load_info *info ) { char *newbuf; int newlen, pos = 0; info->line++; for (;;) { if (!fgets( info->buffer + pos, info->len - pos, info->file )) return (pos != 0); /* EOF */ pos = strlen(info->buffer); if (info->buffer[pos-1] == '\n') { /* got a full line */ info->buffer[--pos] = 0; if (pos > 0 && info->buffer[pos-1] == '\r') info->buffer[pos-1] = 0; return 1; } if (pos < info->len - 1) return 1; /* EOF but something was read */ /* need to enlarge the buffer */ newlen = info->len + info->len / 2; if (!(newbuf = realloc( info->buffer, newlen ))) { set_error( STATUS_NO_MEMORY ); return -1; } info->buffer = newbuf; info->len = newlen; } } /* make sure the temp buffer holds enough space */ static int get_file_tmp_space( struct file_load_info *info, int size ) { char *tmp; if (info->tmplen >= size) return 1; if (!(tmp = realloc( info->tmp, size ))) { set_error( STATUS_NO_MEMORY ); return 0; } info->tmp = tmp; info->tmplen = size; return 1; } /* report an error while loading an input file */ static void file_read_error( const char *err, struct file_load_info *info ) { fprintf( stderr, "Line %d: %s '%s'\n", info->line, err, info->buffer ); } /* parse an escaped string back into Unicode */ /* return the number of chars read from the input, or -1 on output overflow */ static int parse_strW( WCHAR *dest, int *len, const char *src, char endchar ) { int count = sizeof(WCHAR); /* for terminating null */ const char *p = src; while (*p && *p != endchar) { if (*p != '\\') *dest = (WCHAR)*p++; else { p++; switch(*p) { case 'a': *dest = '\a'; p++; break; case 'b': *dest = '\b'; p++; break; case 'e': *dest = '\e'; p++; break; case 'f': *dest = '\f'; p++; break; case 'n': *dest = '\n'; p++; break; case 'r': *dest = '\r'; p++; break; case 't': *dest = '\t'; p++; break; case 'v': *dest = '\v'; p++; break; case 'x': /* hex escape */ p++; if (!isxdigit(*p)) *dest = 'x'; else { *dest = to_hex(*p++); if (isxdigit(*p)) *dest = (*dest * 16) + to_hex(*p++); if (isxdigit(*p)) *dest = (*dest * 16) + to_hex(*p++); if (isxdigit(*p)) *dest = (*dest * 16) + to_hex(*p++); } break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': /* octal escape */ *dest = *p++ - '0'; if (*p >= '0' && *p <= '7') *dest = (*dest * 8) + (*p++ - '0'); if (*p >= '0' && *p <= '7') *dest = (*dest * 8) + (*p++ - '0'); break; default: *dest = (WCHAR)*p++; break; } } if ((count += sizeof(WCHAR)) > *len) return -1; /* dest buffer overflow */ dest++; } *dest = 0; if (!*p) return -1; /* delimiter not found */ *len = count; return p + 1 - src; } /* convert a data type tag to a value type */ static int get_data_type( const char *buffer, int *type, int *parse_type ) { struct data_type { const char *tag; int len; int type; int parse_type; }; static const struct data_type data_types[] = { /* actual type */ /* type to assume for parsing */ { "\"", 1, REG_SZ, REG_SZ }, { "str:\"", 5, REG_SZ, REG_SZ }, { "str(2):\"", 8, REG_EXPAND_SZ, REG_SZ }, { "str(7):\"", 8, REG_MULTI_SZ, REG_SZ }, { "hex:", 4, REG_BINARY, REG_BINARY }, { "dword:", 6, REG_DWORD, REG_DWORD }, { "hex(", 4, -1, REG_BINARY }, { NULL, 0, 0, 0 } }; const struct data_type *ptr; char *end; for (ptr = data_types; ptr->tag; ptr++) { if (memcmp( ptr->tag, buffer, ptr->len )) continue; *parse_type = ptr->parse_type; if ((*type = ptr->type) != -1) return ptr->len; /* "hex(xx):" is special */ *type = (int)strtoul( buffer + 4, &end, 16 ); if ((end <= buffer) || memcmp( end, "):", 2 )) return 0; return end + 2 - buffer; } return 0; } /* load and create a key from the input file */ static struct key *load_key( struct key *base, const char *buffer, int flags, int prefix_len, struct file_load_info *info, int default_modif ) { WCHAR *p, *name; int res, len, modif; len = strlen(buffer) * sizeof(WCHAR); if (!get_file_tmp_space( info, len )) return NULL; if ((res = parse_strW( (WCHAR *)info->tmp, &len, buffer, ']' )) == -1) { file_read_error( "Malformed key", info ); return NULL; } if (sscanf( buffer + res, " %d", &modif ) != 1) modif = default_modif; p = (WCHAR *)info->tmp; while (prefix_len && *p) { if (*p++ == '\\') prefix_len--; } if (!*p) { if (prefix_len > 1) { file_read_error( "Malformed key", info ); return NULL; } /* empty key name, return base key */ return (struct key *)grab_object( base ); } if (!(name = copy_path( p, len - ((char *)p - info->tmp), 0 ))) { file_read_error( "Key is too long", info ); return NULL; } return create_key( base, name, NULL, flags, modif, &res ); } /* parse a comma-separated list of hex digits */ static int parse_hex( unsigned char *dest, int *len, const char *buffer ) { const char *p = buffer; int count = 0; while (isxdigit(*p)) { int val; char buf[3]; memcpy( buf, p, 2 ); buf[2] = 0; sscanf( buf, "%x", &val ); if (count++ >= *len) return -1; /* dest buffer overflow */ *dest++ = (unsigned char )val; p += 2; if (*p == ',') p++; } *len = count; return p - buffer; } /* parse a value name and create the corresponding value */ static struct key_value *parse_value_name( struct key *key, const char *buffer, int *len, struct file_load_info *info ) { struct key_value *value; int index, maxlen; maxlen = strlen(buffer) * sizeof(WCHAR); if (!get_file_tmp_space( info, maxlen )) return NULL; if (buffer[0] == '@') { info->tmp[0] = info->tmp[1] = 0; *len = 1; } else { if ((*len = parse_strW( (WCHAR *)info->tmp, &maxlen, buffer + 1, '\"' )) == -1) goto error; (*len)++; /* for initial quote */ } while (isspace(buffer[*len])) (*len)++; if (buffer[*len] != '=') goto error; (*len)++; while (isspace(buffer[*len])) (*len)++; if (!(value = find_value( key, (WCHAR *)info->tmp, &index ))) value = insert_value( key, (WCHAR *)info->tmp, index ); return value; error: file_read_error( "Malformed value name", info ); return NULL; } /* load a value from the input file */ static int load_value( struct key *key, const char *buffer, struct file_load_info *info ) { DWORD dw; void *ptr, *newptr; int maxlen, len, res; int type, parse_type; struct key_value *value; if (!(value = parse_value_name( key, buffer, &len, info ))) return 0; if (!(res = get_data_type( buffer + len, &type, &parse_type ))) goto error; buffer += len + res; switch(parse_type) { case REG_SZ: len = strlen(buffer) * sizeof(WCHAR); if (!get_file_tmp_space( info, len )) return 0; if ((res = parse_strW( (WCHAR *)info->tmp, &len, buffer, '\"' )) == -1) goto error; ptr = info->tmp; break; case REG_DWORD: dw = strtoul( buffer, NULL, 16 ); ptr = &dw; len = sizeof(dw); break; case REG_BINARY: /* hex digits */ len = 0; for (;;) { maxlen = 1 + strlen(buffer)/3; /* 3 chars for one hex byte */ if (!get_file_tmp_space( info, len + maxlen )) return 0; if ((res = parse_hex( info->tmp + len, &maxlen, buffer )) == -1) goto error; len += maxlen; buffer += res; while (isspace(*buffer)) buffer++; if (!*buffer) break; if (*buffer != '\\') goto error; if (read_next_line( info) != 1) goto error; buffer = info->buffer; while (isspace(*buffer)) buffer++; } ptr = info->tmp; break; default: assert(0); ptr = NULL; /* keep compiler quiet */ break; } if (!len) newptr = NULL; else if (!(newptr = memdup( ptr, len ))) return 0; if (value->data) free( value->data ); value->data = newptr; value->len = len; value->type = type; /* update the key level but not the modification time */ key->level = max( key->level, current_level ); make_dirty( key ); return 1; error: file_read_error( "Malformed value", info ); return 0; } /* return the length (in path elements) of name that is part of the key name */ /* for instance if key is USER\foo\bar and name is foo\bar\baz, return 2 */ static int get_prefix_len( struct key *key, const char *name, struct file_load_info *info ) { WCHAR *p; int res; int len = strlen(name) * sizeof(WCHAR); if (!get_file_tmp_space( info, len )) return 0; if ((res = parse_strW( (WCHAR *)info->tmp, &len, name, ']' )) == -1) { file_read_error( "Malformed key", info ); return 0; } for (p = (WCHAR *)info->tmp; *p; p++) if (*p == '\\') break; *p = 0; for (res = 1; key != root_key; res++) { if (!strcmpiW( (WCHAR *)info->tmp, key->name )) break; key = key->parent; } if (key == root_key) res = 0; /* no matching name */ return res; } /* load all the keys from the input file */ static void load_keys( struct key *key, FILE *f ) { struct key *subkey = NULL; struct file_load_info info; char *p; int default_modif = time(NULL); int flags = (key->flags & KEY_VOLATILE) ? KEY_VOLATILE : KEY_DIRTY; int prefix_len = -1; /* number of key name prefixes to skip */ info.file = f; info.len = 4; info.tmplen = 4; info.line = 0; if (!(info.buffer = mem_alloc( info.len ))) return; if (!(info.tmp = mem_alloc( info.tmplen ))) { free( info.buffer ); return; } if ((read_next_line( &info ) != 1) || strcmp( info.buffer, "WINE REGISTRY Version 2" )) { set_error( STATUS_NOT_REGISTRY_FILE ); goto done; } while (read_next_line( &info ) == 1) { p = info.buffer; while (*p && isspace(*p)) p++; switch(*p) { case '[': /* new key */ if (subkey) release_object( subkey ); if (prefix_len == -1) prefix_len = get_prefix_len( key, p + 1, &info ); if (!(subkey = load_key( key, p + 1, flags, prefix_len, &info, default_modif ))) file_read_error( "Error creating key", &info ); break; case '@': /* default value */ case '\"': /* value */ if (subkey) load_value( subkey, p, &info ); else file_read_error( "Value without key", &info ); break; case '#': /* comment */ case ';': /* comment */ case 0: /* empty line */ break; default: file_read_error( "Unrecognized input", &info ); break; } } done: if (subkey) release_object( subkey ); free( info.buffer ); free( info.tmp ); } /* load a part of the registry from a file */ static void load_registry( struct key *key, obj_handle_t handle ) { struct file *file; int fd; if (!(file = get_file_obj( current->process, handle, GENERIC_READ ))) return; fd = dup( get_file_unix_fd( file ) ); release_object( file ); if (fd != -1) { FILE *f = fdopen( fd, "r" ); if (f) { load_keys( key, f ); fclose( f ); } else file_set_error(); } } /* registry initialisation */ void init_registry(void) { static const WCHAR root_name[] = { 0 }; static const WCHAR config_name[] = { 'M','a','c','h','i','n','e','\\','S','o','f','t','w','a','r','e','\\', 'W','i','n','e','\\','W','i','n','e','\\','C','o','n','f','i','g',0 }; char *filename; const char *config; FILE *f; /* create the root key */ root_key = alloc_key( root_name, time(NULL) ); assert( root_key ); root_key->flags |= KEY_ROOT; /* load the config file */ config = wine_get_config_dir(); if (!(filename = malloc( strlen(config) + 8 ))) fatal_error( "out of memory\n" ); strcpy( filename, config ); strcat( filename, "/config" ); if ((f = fopen( filename, "r" ))) { struct key *key; int dummy; /* create the config key */ if (!(key = create_key( root_key, copy_path( config_name, sizeof(config_name), 0 ), NULL, 0, time(NULL), &dummy ))) fatal_error( "could not create config key\n" ); key->flags |= KEY_VOLATILE; load_keys( key, f ); fclose( f ); if (get_error() == STATUS_NOT_REGISTRY_FILE) fatal_error( "%s is not a valid registry file\n", filename ); if (get_error()) fatal_error( "loading %s failed with error %x\n", filename, get_error() ); release_object( key ); } free( filename ); } /* update the level of the parents of a key (only needed for the old format) */ static int update_level( struct key *key ) { int i; int max = key->level; for (i = 0; i <= key->last_subkey; i++) { int sub = update_level( key->subkeys[i] ); if (sub > max) max = sub; } key->level = max; return max; } /* save a registry branch to a file */ static void save_all_subkeys( struct key *key, FILE *f ) { fprintf( f, "WINE REGISTRY Version 2\n" ); fprintf( f, ";; All keys relative to " ); dump_path( key, NULL, f ); fprintf( f, "\n" ); save_subkeys( key, key, f ); } /* save a registry branch to a file handle */ static void save_registry( struct key *key, obj_handle_t handle ) { struct file *file; int fd; if (key->flags & KEY_DELETED) { set_error( STATUS_KEY_DELETED ); return; } if (!(file = get_file_obj( current->process, handle, GENERIC_WRITE ))) return; fd = dup( get_file_unix_fd( file ) ); release_object( file ); if (fd != -1) { FILE *f = fdopen( fd, "w" ); if (f) { save_all_subkeys( key, f ); if (fclose( f )) file_set_error(); } else { file_set_error(); close( fd ); } } } /* register a key branch for being saved on exit */ static void register_branch_for_saving( struct key *key, const char *path, size_t len ) { if (save_branch_count >= MAX_SAVE_BRANCH_INFO) { set_error( STATUS_NO_MORE_ENTRIES ); return; } if (!len || !(save_branch_info[save_branch_count].path = memdup( path, len ))) return; save_branch_info[save_branch_count].path[len - 1] = 0; save_branch_info[save_branch_count].key = (struct key *)grab_object( key ); save_branch_count++; } /* save a registry branch to a file */ static int save_branch( struct key *key, const char *path ) { struct stat st; char *p, *real, *tmp = NULL; int fd, count = 0, ret = 0, by_symlink; FILE *f; if (!(key->flags & KEY_DIRTY)) { if (debug_level > 1) dump_operation( key, NULL, "Not saving clean" ); return 1; } /* get the real path */ by_symlink = (!lstat(path, &st) && S_ISLNK (st.st_mode)); if (!(real = malloc( PATH_MAX ))) return 0; if (!realpath( path, real )) { free( real ); real = NULL; } else path = real; /* test the file type */ if ((fd = open( path, O_WRONLY )) != -1) { /* if file is not a regular file or has multiple links or is accessed * via symbolic links, write directly into it; otherwise use a temp file */ if (by_symlink || (!fstat( fd, &st ) && (!S_ISREG(st.st_mode) || st.st_nlink > 1))) { ftruncate( fd, 0 ); goto save; } close( fd ); } /* create a temp file in the same directory */ if (!(tmp = malloc( strlen(path) + 20 ))) goto done; strcpy( tmp, path ); if ((p = strrchr( tmp, '/' ))) p++; else p = tmp; for (;;) { sprintf( p, "reg%lx%04x.tmp", (long) getpid(), count++ ); if ((fd = open( tmp, O_CREAT | O_EXCL | O_WRONLY, 0666 )) != -1) break; if (errno != EEXIST) goto done; close( fd ); } /* now save to it */ save: if (!(f = fdopen( fd, "w" ))) { if (tmp) unlink( tmp ); close( fd ); goto done; } if (debug_level > 1) { fprintf( stderr, "%s: ", path ); dump_operation( key, NULL, "saving" ); } save_all_subkeys( key, f ); ret = !fclose(f); if (tmp) { /* if successfully written, rename to final name */ if (ret) ret = !rename( tmp, path ); if (!ret) unlink( tmp ); free( tmp ); } done: if (real) free( real ); if (ret) make_clean( key ); return ret; } /* periodic saving of the registry */ static void periodic_save( void *arg ) { int i; for (i = 0; i < save_branch_count; i++) save_branch( save_branch_info[i].key, save_branch_info[i].path ); add_timeout( &next_save_time, save_period ); save_timeout_user = add_timeout_user( &next_save_time, periodic_save, 0 ); } /* save the modified registry branches to disk */ void flush_registry(void) { int i; for (i = 0; i < save_branch_count; i++) { if (!save_branch( save_branch_info[i].key, save_branch_info[i].path )) { fprintf( stderr, "wineserver: could not save registry branch to %s", save_branch_info[i].path ); perror( " " ); } } } /* close the top-level keys; used on server exit */ void close_registry(void) { int i; for (i = 0; i < save_branch_count; i++) release_object( save_branch_info[i].key ); release_object( root_key ); } /* create a registry key */ DECL_HANDLER(create_key) { struct key *key = NULL, *parent; unsigned int access = req->access; WCHAR *name, *class; if (access & MAXIMUM_ALLOWED) access = KEY_ALL_ACCESS; /* FIXME: needs general solution */ reply->hkey = 0; if (!(name = copy_req_path( req->namelen, !req->parent ))) return; if ((parent = get_hkey_obj( req->parent, 0 /*FIXME*/ ))) { int flags = (req->options & REG_OPTION_VOLATILE) ? KEY_VOLATILE : KEY_DIRTY; if (req->namelen == get_req_data_size()) /* no class specified */ { key = create_key( parent, name, NULL, flags, req->modif, &reply->created ); } else { const WCHAR *class_ptr = (WCHAR *)((char *)get_req_data() + req->namelen); if ((class = req_strdupW( req, class_ptr, get_req_data_size() - req->namelen ))) { key = create_key( parent, name, class, flags, req->modif, &reply->created ); free( class ); } } if (key) { reply->hkey = alloc_handle( current->process, key, access, 0 ); release_object( key ); } release_object( parent ); } } /* open a registry key */ DECL_HANDLER(open_key) { struct key *key, *parent; unsigned int access = req->access; if (access & MAXIMUM_ALLOWED) access = KEY_ALL_ACCESS; /* FIXME: needs general solution */ reply->hkey = 0; if ((parent = get_hkey_obj( req->parent, 0 /*FIXME*/ ))) { WCHAR *name = copy_path( get_req_data(), get_req_data_size(), !req->parent ); if (name && (key = open_key( parent, name ))) { reply->hkey = alloc_handle( current->process, key, access, 0 ); release_object( key ); } release_object( parent ); } } /* delete a registry key */ DECL_HANDLER(delete_key) { struct key *key; if ((key = get_hkey_obj( req->hkey, 0 /*FIXME*/ ))) { delete_key( key, 0); release_object( key ); } } /* enumerate registry subkeys */ DECL_HANDLER(enum_key) { struct key *key; if ((key = get_hkey_obj( req->hkey, req->index == -1 ? KEY_QUERY_VALUE : KEY_ENUMERATE_SUB_KEYS ))) { enum_key( key, req->index, req->info_class, reply ); release_object( key ); } } /* set a value of a registry key */ DECL_HANDLER(set_key_value) { struct key *key; WCHAR *name; if (!(name = copy_req_path( req->namelen, 0 ))) return; if ((key = get_hkey_obj( req->hkey, KEY_SET_VALUE ))) { size_t datalen = get_req_data_size() - req->namelen; const char *data = (char *)get_req_data() + req->namelen; set_value( key, name, req->type, data, datalen ); release_object( key ); } } /* retrieve the value of a registry key */ DECL_HANDLER(get_key_value) { struct key *key; WCHAR *name; reply->total = 0; if (!(name = copy_path( get_req_data(), get_req_data_size(), 0 ))) return; if ((key = get_hkey_obj( req->hkey, KEY_QUERY_VALUE ))) { get_value( key, name, &reply->type, &reply->total ); release_object( key ); } } /* enumerate the value of a registry key */ DECL_HANDLER(enum_key_value) { struct key *key; if ((key = get_hkey_obj( req->hkey, KEY_QUERY_VALUE ))) { enum_value( key, req->index, req->info_class, reply ); release_object( key ); } } /* delete a value of a registry key */ DECL_HANDLER(delete_key_value) { WCHAR *name; struct key *key; if ((key = get_hkey_obj( req->hkey, KEY_SET_VALUE ))) { if ((name = req_strdupW( req, get_req_data(), get_req_data_size() ))) { delete_value( key, name ); free( name ); } release_object( key ); } } /* load a registry branch from a file */ DECL_HANDLER(load_registry) { struct key *key; if ((key = get_hkey_obj( req->hkey, KEY_SET_VALUE | KEY_CREATE_SUB_KEY ))) { /* FIXME: use subkey name */ load_registry( key, req->file ); release_object( key ); } } DECL_HANDLER(unload_registry) { struct key *key; if ((key = get_hkey_obj( req->hkey, 0 ))) { delete_key( key, 1 ); /* FIXME */ release_object( key ); } } /* save a registry branch to a file */ DECL_HANDLER(save_registry) { struct key *key; if ((key = get_hkey_obj( req->hkey, KEY_QUERY_VALUE | KEY_ENUMERATE_SUB_KEYS ))) { save_registry( key, req->file ); release_object( key ); } } /* set the current and saving level for the registry */ DECL_HANDLER(set_registry_levels) { current_level = req->current; saving_level = req->saving; /* set periodic save timer */ if (save_timeout_user) { remove_timeout_user( save_timeout_user ); save_timeout_user = NULL; } if ((save_period = req->period)) { if (save_period < 10000) save_period = 10000; /* limit rate */ gettimeofday( &next_save_time, 0 ); add_timeout( &next_save_time, save_period ); save_timeout_user = add_timeout_user( &next_save_time, periodic_save, 0 ); } } /* save a registry branch at server exit */ DECL_HANDLER(save_registry_atexit) { struct key *key; if ((key = get_hkey_obj( req->hkey, KEY_QUERY_VALUE | KEY_ENUMERATE_SUB_KEYS ))) { register_branch_for_saving( key, get_req_data(), get_req_data_size() ); release_object( key ); } } /* add a registry key change notification */ DECL_HANDLER(set_registry_notification) { struct key *key; struct event *event; struct notify *notify; key = get_hkey_obj( req->hkey, KEY_NOTIFY ); if( key ) { event = get_event_obj( current->process, req->event, SYNCHRONIZE ); if( event ) { notify = find_notify( key, req->hkey ); if( notify ) { release_object( notify->event ); grab_object( event ); notify->event = event; } else { notify = (struct notify *) malloc (sizeof(*notify)); if( notify ) { grab_object( event ); notify->event = event; notify->subtree = req->subtree; notify->filter = req->filter; notify->hkey = req->hkey; /* add to linked list */ notify->prev = NULL; notify->next = key->first_notify; if ( notify->next ) notify->next->prev = notify; else key->last_notify = notify; key->first_notify = notify; } else set_error( STATUS_NO_MEMORY ); } release_object( event ); } release_object( key ); } }