/* * File stabs.c - read stabs information from the modules * * Copyright (C) 1996, Eric Youngdale. * 1999-2005, Eric Pouech * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA * * * Maintenance Information * ----------------------- * * For documentation on the stabs format see for example * The "stabs" debug format * by Julia Menapace, Jim Kingdon, David Mackenzie * of Cygnus Support * available (hopefully) from http://sources.redhat.com/gdb/onlinedocs */ #include <sys/types.h> #include <fcntl.h> #include <limits.h> #include <stdint.h> #include <stdlib.h> #include <string.h> #include <stdio.h> #include <assert.h> #include <stdarg.h> #include "windef.h" #include "winbase.h" #include "winnls.h" #include "dbghelp_private.h" #include "image_private.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(dbghelp_stabs); /* Masks for n_type field */ #define N_STAB 0xe0 #define N_PEXT 0x10 #define N_TYPE 0x1e #define N_EXT 0x01 /* Values for (n_type & N_TYPE) */ #define N_UNDF 0x00 #define N_ABS 0x02 #define N_INDR 0x0a #define N_SECT 0x0e #define N_GSYM 0x20 #define N_FUN 0x24 #define N_STSYM 0x26 #define N_LCSYM 0x28 #define N_MAIN 0x2a #define N_ROSYM 0x2c #define N_BNSYM 0x2e #define N_OPT 0x3c #define N_RSYM 0x40 #define N_SLINE 0x44 #define N_ENSYM 0x4e #define N_SO 0x64 #define N_OSO 0x66 #define N_LSYM 0x80 #define N_BINCL 0x82 #define N_SOL 0x84 #define N_PSYM 0xa0 #define N_EINCL 0xa2 #define N_LBRAC 0xc0 #define N_EXCL 0xc2 #define N_RBRAC 0xe0 static BOOL stab_strcpy(char* dest, int sz, const char* source) { char* ptr = dest; /* * A strcpy routine that stops when we hit the ':' character. * Faster than copying the whole thing, and then nuking the * ':'. * Takes also care of (valid) a::b constructs */ while (*source != '\0') { if (source[0] != ':' && sz-- > 0) *ptr++ = *source++; else if (source[1] == ':' && (sz -= 2) > 0) { *ptr++ = *source++; *ptr++ = *source++; } else break; } *ptr-- = '\0'; /* GCC emits, in some cases, a .<digit>+ suffix. * This is used for static variable inside functions, so * that we can have several such variables with same name in * the same compilation unit * We simply ignore that suffix when present (we also get rid * of it in ELF symtab parsing) */ if (ptr >= dest && isdigit(*ptr)) { while (ptr > dest && isdigit(*ptr)) ptr--; if (*ptr == '.') *ptr = '\0'; } return (sz > 0); } typedef struct { char* name; ULONG_PTR value; struct symt** vector; int nrofentries; } include_def; #define MAX_INCLUDES 5120 static include_def* include_defs = NULL; static int num_include_def = 0; static int num_alloc_include_def = 0; static int cu_include_stack[MAX_INCLUDES]; static int cu_include_stk_idx = 0; static struct symt** cu_vector = NULL; static int cu_nrofentries = 0; static struct symt_basic* stabs_basic[36]; static int stabs_new_include(const char* file, ULONG_PTR val) { if (num_include_def == num_alloc_include_def) { if (!include_defs) { num_alloc_include_def = 256; include_defs = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(include_defs[0]) * num_alloc_include_def); } else { num_alloc_include_def *= 2; include_defs = HeapReAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, include_defs, sizeof(include_defs[0]) * num_alloc_include_def); } } include_defs[num_include_def].name = strcpy(HeapAlloc(GetProcessHeap(), 0, strlen(file) + 1), file); include_defs[num_include_def].value = val; include_defs[num_include_def].vector = NULL; include_defs[num_include_def].nrofentries = 0; return num_include_def++; } static int stabs_find_include(const char* file, ULONG_PTR val) { int i; for (i = 0; i < num_include_def; i++) { if (val == include_defs[i].value && strcmp(file, include_defs[i].name) == 0) return i; } return -1; } static int stabs_add_include(int idx) { if (idx < 0) return -1; cu_include_stk_idx++; /* if this happens, just bump MAX_INCLUDES */ /* we could also handle this as another dynarray */ assert(cu_include_stk_idx < MAX_INCLUDES); cu_include_stack[cu_include_stk_idx] = idx; return cu_include_stk_idx; } static void stabs_reset_includes(void) { /* * The struct symt:s that we would need to use are reset when * we start a new file. (at least the ones in filenr == 0) */ cu_include_stk_idx = 0;/* keep 0 as index for the .c file itself */ memset(cu_vector, 0, sizeof(cu_vector[0]) * cu_nrofentries); } static void stabs_free_includes(void) { int i; stabs_reset_includes(); for (i = 0; i < num_include_def; i++) { HeapFree(GetProcessHeap(), 0, include_defs[i].name); HeapFree(GetProcessHeap(), 0, include_defs[i].vector); } HeapFree(GetProcessHeap(), 0, include_defs); include_defs = NULL; num_include_def = 0; num_alloc_include_def = 0; HeapFree(GetProcessHeap(), 0, cu_vector); cu_vector = NULL; cu_nrofentries = 0; } static struct symt** stabs_find_ref(LONG_PTR filenr, LONG_PTR subnr) { struct symt** ret; /* FIXME: I could perhaps create a dummy include_def for each compilation * unit which would allow not to handle those two cases separately */ if (filenr == 0) { if (cu_nrofentries <= subnr) { cu_nrofentries = max( cu_nrofentries * 2, subnr + 1 ); if (!cu_vector) cu_vector = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(cu_vector[0]) * cu_nrofentries); else cu_vector = HeapReAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, cu_vector, sizeof(cu_vector[0]) * cu_nrofentries); } ret = &cu_vector[subnr]; } else { include_def* idef; assert(filenr <= cu_include_stk_idx); idef = &include_defs[cu_include_stack[filenr]]; if (idef->nrofentries <= subnr) { idef->nrofentries = max( idef->nrofentries * 2, subnr + 1 ); if (!idef->vector) idef->vector = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(idef->vector[0]) * idef->nrofentries); else idef->vector = HeapReAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, idef->vector, sizeof(idef->vector[0]) * idef->nrofentries); } ret = &idef->vector[subnr]; } TRACE("(%ld,%ld) => %p (%p)\n", filenr, subnr, ret, *ret); return ret; } static struct symt** stabs_read_type_enum(const char** x) { LONG_PTR filenr, subnr; const char* iter; char* end; iter = *x; if (*iter == '(') { ++iter; /* '(' */ filenr = strtol(iter, &end, 10); /* <int> */ iter = ++end; /* ',' */ subnr = strtol(iter, &end, 10); /* <int> */ iter = ++end; /* ')' */ } else { filenr = 0; subnr = strtol(iter, &end, 10); /* <int> */ iter = end; } *x = iter; return stabs_find_ref(filenr, subnr); } #define PTS_DEBUG struct ParseTypedefData { const char* ptr; char buf[1024]; int idx; struct module* module; #ifdef PTS_DEBUG struct PTS_Error { const char* ptr; unsigned line; } errors[16]; int err_idx; #endif }; #ifdef PTS_DEBUG static void stabs_pts_push(struct ParseTypedefData* ptd, unsigned line) { assert(ptd->err_idx < ARRAY_SIZE(ptd->errors)); ptd->errors[ptd->err_idx].line = line; ptd->errors[ptd->err_idx].ptr = ptd->ptr; ptd->err_idx++; } #define PTS_ABORTIF(ptd, t) do { if (t) { stabs_pts_push((ptd), __LINE__); return -1;} } while (0) #else #define PTS_ABORTIF(ptd, t) do { if (t) return -1; } while (0) #endif static int stabs_get_basic(struct ParseTypedefData* ptd, unsigned basic, struct symt** symt) { PTS_ABORTIF(ptd, basic >= ARRAY_SIZE(stabs_basic)); if (!stabs_basic[basic]) { switch (basic) { case 1: stabs_basic[basic] = symt_new_basic(ptd->module, btInt, "int", 4); break; case 2: stabs_basic[basic] = symt_new_basic(ptd->module, btChar, "char", 1); break; case 3: stabs_basic[basic] = symt_new_basic(ptd->module, btInt, "short int", 2); break; case 4: stabs_basic[basic] = symt_new_basic(ptd->module, btInt, "long int", 4); break; case 5: stabs_basic[basic] = symt_new_basic(ptd->module, btUInt, "unsigned char", 1); break; case 6: stabs_basic[basic] = symt_new_basic(ptd->module, btInt, "signed char", 1); break; case 7: stabs_basic[basic] = symt_new_basic(ptd->module, btUInt, "unsigned short int", 2); break; case 8: stabs_basic[basic] = symt_new_basic(ptd->module, btUInt, "unsigned int", 4); break; case 9: stabs_basic[basic] = symt_new_basic(ptd->module, btUInt, "unsigned", 2); break; case 10: stabs_basic[basic] = symt_new_basic(ptd->module, btUInt, "unsigned long int", 2); break; case 11: stabs_basic[basic] = symt_new_basic(ptd->module, btVoid, "void", 0); break; case 12: stabs_basic[basic] = symt_new_basic(ptd->module, btFloat, "float", 4); break; case 13: stabs_basic[basic] = symt_new_basic(ptd->module, btFloat, "double", 8); break; case 14: stabs_basic[basic] = symt_new_basic(ptd->module, btFloat, "long double", 12); break; case 15: stabs_basic[basic] = symt_new_basic(ptd->module, btInt, "integer", 4); break; case 16: stabs_basic[basic] = symt_new_basic(ptd->module, btBool, "bool", 1); break; /* case 17: short real */ /* case 18: real */ case 25: stabs_basic[basic] = symt_new_basic(ptd->module, btComplex, "float complex", 8); break; case 26: stabs_basic[basic] = symt_new_basic(ptd->module, btComplex, "double complex", 16); break; case 30: stabs_basic[basic] = symt_new_basic(ptd->module, btWChar, "wchar_t", 2); break; case 31: stabs_basic[basic] = symt_new_basic(ptd->module, btInt, "long long int", 8); break; case 32: stabs_basic[basic] = symt_new_basic(ptd->module, btUInt, "long long unsigned", 8); break; /* starting at 35 are wine extensions (especially for R implementation) */ case 35: stabs_basic[basic] = symt_new_basic(ptd->module, btComplex, "long double complex", 24); break; default: PTS_ABORTIF(ptd, 1); } } *symt = &stabs_basic[basic]->symt; return 0; } static int stabs_pts_read_type_def(struct ParseTypedefData* ptd, const char* typename, struct symt** dt); static int stabs_pts_read_id(struct ParseTypedefData* ptd) { const char* first = ptd->ptr; unsigned int template = 0; char ch; while ((ch = *ptd->ptr++) != '\0') { switch (ch) { case ':': if (template == 0) { unsigned int len = ptd->ptr - first - 1; PTS_ABORTIF(ptd, len >= sizeof(ptd->buf) - ptd->idx); memcpy(ptd->buf + ptd->idx, first, len); ptd->buf[ptd->idx + len] = '\0'; ptd->idx += len + 1; return 0; } break; case '<': template++; break; case '>': PTS_ABORTIF(ptd, template == 0); template--; break; } } return -1; } static int stabs_pts_read_number(struct ParseTypedefData* ptd, LONG_PTR* v) { char* last; *v = strtol(ptd->ptr, &last, 10); PTS_ABORTIF(ptd, last == ptd->ptr); ptd->ptr = last; return 0; } static int stabs_pts_read_type_reference(struct ParseTypedefData* ptd, LONG_PTR* filenr, LONG_PTR* subnr) { if (*ptd->ptr == '(') { /* '(' <int> ',' <int> ')' */ ptd->ptr++; PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, filenr) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, subnr) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ')'); } else { *filenr = 0; PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, subnr) == -1); } return 0; } struct pts_range_value { ULONGLONG val; int sign; }; static int stabs_pts_read_range_value(struct ParseTypedefData* ptd, struct pts_range_value* prv) { char* last; switch (*ptd->ptr) { case '0': while (*ptd->ptr == '0') ptd->ptr++; if (*ptd->ptr >= '1' && *ptd->ptr <= '7') { switch (ptd->ptr[1]) { case '0': PTS_ABORTIF(ptd, ptd->ptr[0] != '1'); prv->sign = -1; prv->val = 0; while (isdigit(*ptd->ptr)) prv->val = (prv->val << 3) + *ptd->ptr++ - '0'; break; case '7': prv->sign = 1; prv->val = 0; while (isdigit(*ptd->ptr)) prv->val = (prv->val << 3) + *ptd->ptr++ - '0'; break; default: PTS_ABORTIF(ptd, 1); break; } } else prv->sign = 0; break; case '-': prv->sign = -1; prv->val = strtoull(++ptd->ptr, &last, 10); ptd->ptr = last; break; case '+': default: prv->sign = 1; prv->val = strtoull(ptd->ptr, &last, 10); ptd->ptr = last; break; } return 0; } static int stabs_pts_read_range(struct ParseTypedefData* ptd, const char* typename, struct symt** dt) { struct symt* ref; struct pts_range_value lo; struct pts_range_value hi; unsigned size; enum BasicType bt; int i; ULONGLONG v; /* type ';' <int> ';' <int> ';' */ PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &ref) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ PTS_ABORTIF(ptd, stabs_pts_read_range_value(ptd, &lo) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ PTS_ABORTIF(ptd, stabs_pts_read_range_value(ptd, &hi) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ /* basically, we don't use ref... in some cases, for example, float is declared * as a derived type of int... which won't help us... so we guess the types * from the various formats */ if (lo.sign == 0 && hi.sign < 0) { bt = btUInt; size = hi.val; } else if (lo.sign < 0 && hi.sign == 0) { bt = btUInt; size = lo.val; } else if (lo.sign > 0 && hi.sign == 0) { bt = btFloat; size = lo.val; } else if (lo.sign < 0 && hi.sign > 0) { v = 1 << 7; for (i = 7; i < 64; i += 8) { if (lo.val == v && hi.val == v - 1) { bt = btInt; size = (i + 1) / 8; break; } v <<= 8; } PTS_ABORTIF(ptd, i >= 64); } else if (lo.sign == 0 && hi.sign > 0) { if (hi.val == 127) /* specific case for char... */ { bt = btChar; size = 1; } else { v = 1; for (i = 8; i <= 64; i += 8) { v <<= 8; if (hi.val + 1 == v) { bt = btUInt; size = (i + 1) / 8; break; } } PTS_ABORTIF(ptd, i > 64); } } else PTS_ABORTIF(ptd, 1); *dt = &symt_new_basic(ptd->module, bt, typename, size)->symt; return 0; } static inline int stabs_pts_read_method_info(struct ParseTypedefData* ptd) { struct symt* dt; const char* tmp; char mthd; do { /* get type of return value */ PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &dt) == -1); if (*ptd->ptr == ';') ptd->ptr++; /* get types of parameters */ if (*ptd->ptr == ':') { PTS_ABORTIF(ptd, !(tmp = strchr(ptd->ptr + 1, ';'))); ptd->ptr = tmp + 1; } PTS_ABORTIF(ptd, !(*ptd->ptr >= '0' && *ptd->ptr <= '9')); ptd->ptr++; PTS_ABORTIF(ptd, !(ptd->ptr[0] >= 'A' && *ptd->ptr <= 'D')); mthd = *++ptd->ptr; PTS_ABORTIF(ptd, mthd != '.' && mthd != '?' && mthd != '*'); ptd->ptr++; if (mthd == '*') { LONG_PTR ofs; PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &ofs) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); } } while (*ptd->ptr != ';'); ptd->ptr++; return 0; } static inline int stabs_pts_read_aggregate(struct ParseTypedefData* ptd, struct symt_udt* sdt) { LONG_PTR sz, ofs; struct symt* adt; struct symt* dt = NULL; int idx; int doadd; PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &sz) == -1); doadd = symt_set_udt_size(ptd->module, sdt, sz); if (*ptd->ptr == '!') /* C++ inheritance */ { LONG_PTR num_classes; ptd->ptr++; PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &num_classes) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); while (--num_classes >= 0) { ptd->ptr += 2; /* skip visibility and inheritance */ PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &ofs) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &adt) == -1); if (doadd && adt) { char tmp[256]; DWORD64 size; strcpy(tmp, "__inherited_class_"); strcat(tmp, symt_get_name(adt)); /* FIXME: TI_GET_LENGTH will not always work, especially when adt * has just been seen as a forward definition and not the real stuff * yet. * As we don't use much the size of members in structs, this may not * be much of a problem */ symt_get_info(ptd->module, adt, TI_GET_LENGTH, &size); symt_add_udt_element(ptd->module, sdt, tmp, adt, ofs, (DWORD)size * 8); } PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); } } /* if the structure has already been filled, just redo the parsing * but don't store results into the struct * FIXME: there's a quite ugly memory leak in there... */ /* Now parse the individual elements of the structure/union. */ while (*ptd->ptr != ';') { /* agg_name : type ',' <int:offset> ',' <int:size> */ idx = ptd->idx; if (ptd->ptr[0] == '$' && ptd->ptr[1] == 'v') { LONG_PTR x; if (ptd->ptr[2] == 'f') { /* C++ virtual method table */ ptd->ptr += 3; stabs_read_type_enum(&ptd->ptr); PTS_ABORTIF(ptd, *ptd->ptr++ != ':'); PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &x) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); ptd->idx = idx; continue; } else if (ptd->ptr[2] == 'b') { ptd->ptr += 3; PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ':'); PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &x) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); ptd->idx = idx; continue; } } PTS_ABORTIF(ptd, stabs_pts_read_id(ptd) == -1); /* Ref. TSDF R2.130 Section 7.4. When the field name is a method name * it is followed by two colons rather than one. */ if (*ptd->ptr == ':') { ptd->ptr++; stabs_pts_read_method_info(ptd); ptd->idx = idx; continue; } else { /* skip C++ member protection /0 /1 or /2 */ if (*ptd->ptr == '/') ptd->ptr += 2; } PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &adt) == -1); switch (*ptd->ptr++) { case ',': PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &ofs) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &sz) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); if (doadd) symt_add_udt_element(ptd->module, sdt, ptd->buf + idx, adt, ofs, sz); break; case ':': { const char* tmp; /* method parameters... terminated by ';' */ PTS_ABORTIF(ptd, !(tmp = strchr(ptd->ptr, ';'))); ptd->ptr = tmp + 1; } break; default: PTS_ABORTIF(ptd, TRUE); } ptd->idx = idx; } PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); if (*ptd->ptr == '~') { ptd->ptr++; PTS_ABORTIF(ptd, *ptd->ptr++ != '%'); PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); } return 0; } static inline int stabs_pts_read_enum(struct ParseTypedefData* ptd, struct symt_enum* edt) { LONG_PTR value; int idx; while (*ptd->ptr != ';') { idx = ptd->idx; PTS_ABORTIF(ptd, stabs_pts_read_id(ptd) == -1); PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &value) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); symt_add_enum_element(ptd->module, edt, ptd->buf + idx, value); ptd->idx = idx; } ptd->ptr++; return 0; } static inline int stabs_pts_read_array(struct ParseTypedefData* ptd, struct symt** adt) { LONG_PTR lo, hi; struct symt* range_dt; struct symt* base_dt; /* ar<typeinfo_nodef>;<int>;<int>;<typeinfo> */ PTS_ABORTIF(ptd, *ptd->ptr++ != 'r'); PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &range_dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &lo) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &hi) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &base_dt) == -1); *adt = &symt_new_array(ptd->module, lo, hi, base_dt, range_dt)->symt; return 0; } static int stabs_pts_read_type_def(struct ParseTypedefData* ptd, const char* typename, struct symt** ret_dt) { int idx; LONG_PTR sz = -1; struct symt* new_dt = NULL; /* newly created data type */ struct symt* ref_dt; /* referenced data type (pointer...) */ LONG_PTR filenr1, subnr1, tmp; /* things are a bit complicated because of the way the typedefs are stored inside * the file, because addresses can change when realloc is done, so we must call * over and over stabs_find_ref() to keep the correct values around */ PTS_ABORTIF(ptd, stabs_pts_read_type_reference(ptd, &filenr1, &subnr1) == -1); while (*ptd->ptr == '=') { ptd->ptr++; PTS_ABORTIF(ptd, new_dt != NULL); /* first handle attribute if any */ switch (*ptd->ptr) { case '@': if (*++ptd->ptr == 's') { ptd->ptr++; if (stabs_pts_read_number(ptd, &sz) == -1) { ERR("Not an attribute... NIY\n"); ptd->ptr -= 2; return -1; } PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); } break; } /* then the real definitions */ switch (*ptd->ptr++) { case '*': case '&': PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &ref_dt) == -1); new_dt = &symt_new_pointer(ptd->module, ref_dt, sizeof(void*))->symt; break; case 'k': /* 'const' modifier */ case 'B': /* 'volatile' modifier */ /* just kinda ignore the modifier, I guess -gmt */ PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, typename, &new_dt) == -1); break; case '(': ptd->ptr--; PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, typename, &new_dt) == -1); break; case 'a': PTS_ABORTIF(ptd, stabs_pts_read_array(ptd, &new_dt) == -1); break; case 'r': PTS_ABORTIF(ptd, stabs_pts_read_range(ptd, typename, &new_dt) == -1); assert(!*stabs_find_ref(filenr1, subnr1)); *stabs_find_ref(filenr1, subnr1) = new_dt; break; case 'f': PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &ref_dt) == -1); new_dt = &symt_new_function_signature(ptd->module, ref_dt, -1)->symt; break; case 'e': stabs_get_basic(ptd, 1 /* int */, &ref_dt); new_dt = &symt_new_enum(ptd->module, typename, ref_dt)->symt; PTS_ABORTIF(ptd, stabs_pts_read_enum(ptd, (struct symt_enum*)new_dt) == -1); break; case 's': case 'u': { struct symt_udt* udt; enum UdtKind kind = (ptd->ptr[-1] == 's') ? UdtStruct : UdtUnion; /* udt can have been already defined in a forward definition */ udt = (struct symt_udt*)*stabs_find_ref(filenr1, subnr1); if (!udt) { udt = symt_new_udt(ptd->module, typename, 0, kind); /* we need to set it here, because a struct can hold a pointer * to itself */ new_dt = *stabs_find_ref(filenr1, subnr1) = &udt->symt; } else { unsigned l1, l2; if (udt->symt.tag != SymTagUDT) { ERR("Forward declaration (%p/%s) is not an aggregate (%u)\n", udt, symt_get_name(&udt->symt), udt->symt.tag); return -1; } /* FIXME: we currently don't correctly construct nested C++ * classes names. Therefore, we could be here with either: * - typename and udt->hash_elt.name being the same string * (non embedded case) * - typename being foo::bar while udt->hash_elt.name being * just bar * So, we twist the comparison to test both occurrences. When * we have proper C++ types in this file, this twist has to be * removed */ l1 = strlen(udt->hash_elt.name); l2 = strlen(typename); if (l1 > l2 || strcmp(udt->hash_elt.name, typename + l2 - l1)) ERR("Forward declaration name mismatch %s <> %s\n", udt->hash_elt.name, typename); new_dt = &udt->symt; } PTS_ABORTIF(ptd, stabs_pts_read_aggregate(ptd, udt) == -1); } break; case 'x': idx = ptd->idx; tmp = *ptd->ptr++; PTS_ABORTIF(ptd, stabs_pts_read_id(ptd) == -1); switch (tmp) { case 'e': stabs_get_basic(ptd, 1 /* int */, &ref_dt); new_dt = &symt_new_enum(ptd->module, ptd->buf + idx, ref_dt)->symt; break; case 's': new_dt = &symt_new_udt(ptd->module, ptd->buf + idx, 0, UdtStruct)->symt; break; case 'u': new_dt = &symt_new_udt(ptd->module, ptd->buf + idx, 0, UdtUnion)->symt; break; default: return -1; } ptd->idx = idx; break; case '-': { PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &tmp) == -1); PTS_ABORTIF(ptd, stabs_get_basic(ptd, tmp, &new_dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); } break; case '#': if (*ptd->ptr == '#') { ptd->ptr++; PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &ref_dt) == -1); new_dt = &symt_new_function_signature(ptd->module, ref_dt, -1)->symt; } else { struct symt* cls_dt; struct symt* pmt_dt; PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &cls_dt) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ','); PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &ref_dt) == -1); new_dt = &symt_new_function_signature(ptd->module, ref_dt, -1)->symt; while (*ptd->ptr == ',') { ptd->ptr++; PTS_ABORTIF(ptd, stabs_pts_read_type_def(ptd, NULL, &pmt_dt) == -1); } } break; case 'R': { LONG_PTR type, len, unk; int basic; PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &type) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &len) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ PTS_ABORTIF(ptd, stabs_pts_read_number(ptd, &unk) == -1); PTS_ABORTIF(ptd, *ptd->ptr++ != ';'); /* ';' */ switch (type) /* see stabs_get_basic for the details */ { case 1: basic = 12; break; case 2: basic = 13; break; case 3: basic = 25; break; case 4: basic = 26; break; case 5: basic = 35; break; case 6: basic = 14; break; default: PTS_ABORTIF(ptd, 1); } PTS_ABORTIF(ptd, stabs_get_basic(ptd, basic, &new_dt) == -1); } break; default: ERR("Unknown type '%c'\n", ptd->ptr[-1]); return -1; } } if (!new_dt) { /* is it a forward declaration that has been filled ? */ new_dt = *stabs_find_ref(filenr1, subnr1); /* if not, this should be void (which is defined as a ref to itself, but we * don't correctly catch it) */ if (!new_dt && typename) { new_dt = &symt_new_basic(ptd->module, btVoid, typename, 0)->symt; PTS_ABORTIF(ptd, strcmp(typename, "void")); } } *stabs_find_ref(filenr1, subnr1) = *ret_dt = new_dt; TRACE("Adding (%ld,%ld) %s\n", filenr1, subnr1, debugstr_a(typename)); return 0; } static int stabs_parse_typedef(struct module* module, const char* ptr, const char* typename) { struct ParseTypedefData ptd; struct symt* dt; int ret = -1; /* check for already existing definition */ TRACE("%s => %s\n", typename, debugstr_a(ptr)); ptd.module = module; ptd.idx = 0; #ifdef PTS_DEBUG ptd.err_idx = 0; #endif for (ptd.ptr = ptr - 1; ;) { ptd.ptr = strchr(ptd.ptr + 1, ':'); if (ptd.ptr == NULL || *++ptd.ptr != ':') break; } if (ptd.ptr) { if (*ptd.ptr != '(') ptd.ptr++; /* most of type definitions take one char, except Tt */ if (*ptd.ptr != '(') ptd.ptr++; ret = stabs_pts_read_type_def(&ptd, typename, &dt); } if (ret == -1 || *ptd.ptr) { #ifdef PTS_DEBUG int i; TRACE("Failure on %s\n", debugstr_a(ptr)); if (ret == -1) { for (i = 0; i < ptd.err_idx; i++) { TRACE("[%d]: line %d => %s\n", i, ptd.errors[i].line, debugstr_a(ptd.errors[i].ptr)); } } else TRACE("[0]: => %s\n", debugstr_a(ptd.ptr)); #else ERR("Failure on %s at %s\n", debugstr_a(ptr), debugstr_a(ptd.ptr)); #endif return FALSE; } return TRUE; } static struct symt* stabs_parse_type(const char* stab) { const char* c = stab - 1; /* * Look through the stab definition, and figure out what struct symt * this represents. If we have something we know about, assign the * type. * According to "The \"stabs\" debug format" (Rev 2.130) the name may be * a C++ name and contain double colons e.g. foo::bar::baz:t5=*6. */ do { if ((c = strchr(c + 1, ':')) == NULL) return NULL; } while (*++c == ':'); /* * The next characters say more about the type (i.e. data, function, etc) * of symbol. Skip them. (C++ for example may have Tt). * Actually this is a very weak description; I think Tt is the only * multiple combination we should see. */ while (*c && *c != '(' && !isdigit(*c)) c++; /* * The next is either an integer or a (integer,integer). * The stabs_read_type_enum() takes care that stab_types is large enough. */ return *stabs_read_type_enum(&c); } enum pending_obj_kind { PENDING_VAR, PENDING_LINE, }; struct pending_loc_var { char name[256]; struct symt* type; enum DataKind kind; struct location loc; }; struct pending_line { int source_idx; int line_num; ULONG_PTR offset; ULONG_PTR load_offset; }; struct pending_object { enum pending_obj_kind tag; union { struct pending_loc_var var; struct pending_line line; } u; }; struct pending_list { struct pending_object* objs; unsigned num; unsigned allocated; }; static inline void pending_make_room(struct pending_list* pending) { if (pending->num == pending->allocated) { if (!pending->objs) { pending->allocated = 8; pending->objs = HeapAlloc(GetProcessHeap(), 0, pending->allocated * sizeof(pending->objs[0])); } else { pending->allocated *= 2; pending->objs = HeapReAlloc(GetProcessHeap(), 0, pending->objs, pending->allocated * sizeof(pending->objs[0])); } } } static inline void pending_add_var(struct pending_list* pending, const char* name, enum DataKind dt, const struct location* loc) { pending_make_room(pending); pending->objs[pending->num].tag = PENDING_VAR; if (!stab_strcpy(pending->objs[pending->num].u.var.name, sizeof(pending->objs[pending->num].u.var.name), name)) { ERR("symbol too long %s\n", debugstr_a(name)); return; } pending->objs[pending->num].u.var.type = stabs_parse_type(name); pending->objs[pending->num].u.var.kind = dt; pending->objs[pending->num].u.var.loc = *loc; pending->num++; } static inline void pending_add_line(struct pending_list* pending, int source_idx, int line_num, ULONG_PTR offset, ULONG_PTR load_offset) { pending_make_room(pending); pending->objs[pending->num].tag = PENDING_LINE; pending->objs[pending->num].u.line.source_idx = source_idx; pending->objs[pending->num].u.line.line_num = line_num; pending->objs[pending->num].u.line.offset = offset; pending->objs[pending->num].u.line.load_offset = load_offset; pending->num++; } static void pending_flush(struct pending_list* pending, struct module* module, struct symt_function* func, struct symt_block* block) { unsigned int i; for (i = 0; i < pending->num; i++) { switch (pending->objs[i].tag) { case PENDING_VAR: symt_add_func_local(module, func, pending->objs[i].u.var.kind, &pending->objs[i].u.var.loc, block, pending->objs[i].u.var.type, pending->objs[i].u.var.name); break; case PENDING_LINE: if (module->type == DMT_MACHO) pending->objs[i].u.line.offset -= func->address - pending->objs[i].u.line.load_offset; symt_add_func_line(module, func, pending->objs[i].u.line.source_idx, pending->objs[i].u.line.line_num, pending->objs[i].u.line.offset); break; default: ERR("Unknown pending object tag %u\n", (unsigned)pending->objs[i].tag); break; } } pending->num = 0; } /****************************************************************** * stabs_finalize_function * * Ends function creation: mainly: * - cleans up line number information * - tries to set up a debug-start tag (FIXME: heuristic to be enhanced) * - for stabs which have absolute address in them, initializes the size of the * function (assuming that current function ends where next function starts) */ static void stabs_finalize_function(struct module* module, struct symt_function* func, ULONG_PTR size) { IMAGEHLP_LINE64 il; struct location loc; if (!func) return; symt_normalize_function(module, func); /* To define the debug-start of the function, we use the second line number. * Not 100% bullet proof, but better than nothing */ if (symt_fill_func_line_info(module, func, func->address, &il) && symt_get_func_line_next(module, &il)) { loc.kind = loc_absolute; loc.offset = il.Address - func->address; symt_add_function_point(module, func, SymTagFuncDebugStart, &loc, NULL); } if (size) func->size = size; } static inline void stabbuf_append(char **buf, unsigned *buf_size, const char *str) { unsigned str_len, buf_len; str_len = strlen(str); buf_len = strlen(*buf); if(str_len+buf_len >= *buf_size) { *buf_size += buf_len + str_len; *buf = HeapReAlloc(GetProcessHeap(), 0, *buf, *buf_size); } strcpy(*buf+buf_len, str); } BOOL stabs_parse(struct module* module, ULONG_PTR load_offset, const char* pv_stab_ptr, size_t nstab, size_t stabsize, const char* strs, int strtablen, stabs_def_cb callback, void* user) { struct symt_function* curr_func = NULL; struct symt_block* block = NULL; struct symt_compiland* compiland = NULL; char* srcpath = NULL; int i; const char* ptr; char* stabbuff; unsigned int stabbufflen; const struct stab_nlist* stab_ptr; const char* strs_end; int strtabinc; char symname[4096]; unsigned incl[32]; int incl_stk = -1; int source_idx = -1; struct pending_list pending_block; struct pending_list pending_func; BOOL ret = TRUE; struct location loc; unsigned char type; uint64_t n_value; strs_end = strs + strtablen; memset(stabs_basic, 0, sizeof(stabs_basic)); memset(&pending_block, 0, sizeof(pending_block)); memset(&pending_func, 0, sizeof(pending_func)); /* * Allocate a buffer into which we can build stab strings for cases * where the stab is continued over multiple lines. */ stabbufflen = 65536; stabbuff = HeapAlloc(GetProcessHeap(), 0, stabbufflen); strtabinc = 0; stabbuff[0] = '\0'; for (i = 0; i < nstab; i++) { stab_ptr = (struct stab_nlist *)(pv_stab_ptr + i * stabsize); n_value = stabsize == sizeof(struct macho64_nlist) ? ((struct macho64_nlist *)stab_ptr)->n_value : stab_ptr->n_value; ptr = strs + stab_ptr->n_strx; if ((ptr > strs_end) || (ptr + strlen(ptr) > strs_end)) { WARN("Bad stabs string %p\n", ptr); continue; } if (*ptr != '\0' && (ptr[strlen(ptr) - 1] == '\\')) { /* * Indicates continuation. Append this to the buffer, and go onto the * next record. Repeat the process until we find a stab without the * '/' character, as this indicates we have the whole thing. */ stabbuf_append(&stabbuff, &stabbufflen, ptr); continue; } else if (stabbuff[0] != '\0') { stabbuf_append(&stabbuff, &stabbufflen, ptr); ptr = stabbuff; } if (stab_ptr->n_type & N_STAB) type = stab_ptr->n_type; else { type = (stab_ptr->n_type & N_TYPE); if (module->type == DMT_MACHO) type &= ~N_PEXT; } /* only symbol entries contain a typedef */ switch (type) { case N_GSYM: case N_LCSYM: case N_STSYM: case N_RSYM: case N_LSYM: case N_ROSYM: case N_PSYM: if (strchr(ptr, '=') != NULL) { /* * The stabs aren't in writable memory, so copy it over so we are * sure we can scribble on it. */ if (ptr != stabbuff) { stabbuff[0] = 0; stabbuf_append(&stabbuff, &stabbufflen, ptr); ptr = stabbuff; } if (!stab_strcpy(symname, sizeof(symname), ptr) || !stabs_parse_typedef(module, ptr, symname)) { /* skip this definition */ stabbuff[0] = '\0'; continue; } } } switch (type) { case N_GSYM: /* * These are useless with ELF. They have no value, and you have to * read the normal symbol table to get the address. Thus we * ignore them, and when we process the normal symbol table * we should do the right thing. * * With a.out or mingw, they actually do make some amount of sense. */ if (!stab_strcpy(symname, sizeof(symname), ptr)) { ERR("symbol too long: %s\n", debugstr_a(ptr)); stabbuff[0] = '\0'; continue; } loc.kind = loc_absolute; loc.reg = 0; loc.offset = load_offset + n_value; symt_new_global_variable(module, compiland, symname, TRUE /* FIXME */, loc, 0, stabs_parse_type(ptr)); break; case N_LCSYM: case N_STSYM: /* These are static symbols and BSS symbols. */ if (!stab_strcpy(symname, sizeof(symname), ptr)) { ERR("symbol too long: %s\n", debugstr_a(ptr)); stabbuff[0] = '\0'; continue; } loc.kind = loc_absolute; loc.reg = 0; loc.offset = load_offset + n_value; symt_new_global_variable(module, compiland, symname, TRUE /* FIXME */, loc, 0, stabs_parse_type(ptr)); break; case N_LBRAC: if (curr_func) { block = symt_open_func_block(module, curr_func, block, n_value, 0); pending_flush(&pending_block, module, curr_func, block); } break; case N_RBRAC: if (curr_func) block = symt_close_func_block(module, curr_func, block, n_value); break; case N_PSYM: /* These are function parameters. */ if (curr_func != NULL) { struct symt* param_type = stabs_parse_type(ptr); if (!stab_strcpy(symname, sizeof(symname), ptr)) { ERR("symbol too long: %s\n", debugstr_a(ptr)); stabbuff[0] = '\0'; continue; } loc.kind = loc_regrel; loc.reg = dbghelp_current_cpu->frame_regno; loc.offset = n_value; symt_add_func_local(module, curr_func, (int)n_value >= 0 ? DataIsParam : DataIsLocal, &loc, NULL, param_type, symname); symt_add_function_signature_parameter(module, (struct symt_function_signature*)curr_func->type, param_type); } break; case N_RSYM: /* These are registers (as local variables) */ if (curr_func != NULL) { loc.kind = loc_register; loc.offset = 0; switch (n_value) { case 0: loc.reg = CV_REG_EAX; break; case 1: loc.reg = CV_REG_ECX; break; case 2: loc.reg = CV_REG_EDX; break; case 3: loc.reg = CV_REG_EBX; break; case 4: loc.reg = CV_REG_ESP; break; case 5: loc.reg = CV_REG_EBP; break; case 6: loc.reg = CV_REG_ESI; break; case 7: loc.reg = CV_REG_EDI; break; case 11: case 12: case 13: case 14: case 15: case 16: case 17: case 18: case 19: loc.reg = CV_REG_ST0 + n_value - 12; break; case 21: case 22: case 23: case 24: case 25: case 26: case 27: case 28: loc.reg = CV_REG_XMM0 + n_value - 21; break; case 29: case 30: case 31: case 32: case 33: case 34: case 35: case 36: loc.reg = CV_REG_MM0 + n_value - 29; break; default: FIXME("Unknown register value (%lu)\n", (ULONG_PTR)n_value); loc.reg = CV_REG_NONE; break; } if (!stab_strcpy(symname, sizeof(symname), ptr)) { ERR("symbol too long: %s\n", debugstr_a(ptr)); stabbuff[0] = '\0'; continue; } if (ptr[strlen(symname) + 1] == 'P') { struct symt* param_type = stabs_parse_type(ptr); stab_strcpy(symname, sizeof(symname), ptr); symt_add_func_local(module, curr_func, DataIsParam, &loc, NULL, param_type, symname); symt_add_function_signature_parameter(module, (struct symt_function_signature*)curr_func->type, param_type); } else pending_add_var(&pending_block, ptr, DataIsLocal, &loc); } break; case N_LSYM: /* These are local variables */ loc.kind = loc_regrel; loc.reg = dbghelp_current_cpu->frame_regno; loc.offset = n_value; if (curr_func != NULL) pending_add_var(&pending_block, ptr, DataIsLocal, &loc); break; case N_SLINE: /* * This is a line number. These are always relative to the start * of the function (N_FUN), and this makes the lookup easier. */ assert(source_idx >= 0); if (curr_func != NULL) { ULONG_PTR offset = n_value; if (module->type == DMT_MACHO) offset -= curr_func->address - load_offset; symt_add_func_line(module, curr_func, source_idx, stab_ptr->n_desc, offset); } else pending_add_line(&pending_func, source_idx, stab_ptr->n_desc, n_value, load_offset); break; case N_FUN: /* * For now, just declare the various functions. Later * on, we will add the line number information and the * local symbols. */ /* * Copy the string to a temp buffer so we * can kill everything after the ':'. We do * it this way because otherwise we end up dirtying * all of the pages related to the stabs, and that * sucks up swap space like crazy. */ if (!stab_strcpy(symname, sizeof(symname), ptr)) { ERR("symbol too long: %s\n", debugstr_a(ptr)); stabbuff[0] = '\0'; continue; } if (*symname) { struct symt_function_signature* func_type; if (curr_func) { /* First, clean up the previous function we were working on. * Assume size of the func is the delta between current offset * and offset of last function */ stabs_finalize_function(module, curr_func, n_value ? (load_offset + n_value - curr_func->address) : 0); } func_type = symt_new_function_signature(module, stabs_parse_type(ptr), -1); curr_func = symt_new_function(module, compiland, symname, load_offset + n_value, 0, &func_type->symt); pending_flush(&pending_func, module, curr_func, NULL); } else { /* some versions of GCC to use a N_FUN "" to mark the end of a function * and n_value contains the size of the func */ stabs_finalize_function(module, curr_func, n_value); curr_func = NULL; } break; case N_SO: /* * This indicates a new source file. Append the records * together, to build the correct path name. */ if (*ptr == '\0') /* end of N_SO file */ { /* Nuke old path. */ HeapFree(GetProcessHeap(), 0, srcpath); srcpath = NULL; stabs_finalize_function(module, curr_func, 0); curr_func = NULL; source_idx = -1; incl_stk = -1; assert(block == NULL); compiland = NULL; } else { int len = strlen(ptr); if (ptr[len-1] != '/') { stabs_reset_includes(); source_idx = source_new(module, srcpath, ptr); compiland = symt_new_compiland(module, 0 /* FIXME */, source_idx); } else { srcpath = HeapAlloc(GetProcessHeap(), 0, len + 1); strcpy(srcpath, ptr); } } break; case N_SOL: source_idx = source_new(module, srcpath, ptr); break; case N_UNDF: strs += strtabinc; strtabinc = n_value; /* I'm not sure this is needed, so trace it before we obsolete it */ if (curr_func) { FIXME("UNDF: curr_func %s\n", curr_func->hash_elt.name); stabs_finalize_function(module, curr_func, 0); /* FIXME */ curr_func = NULL; } break; case N_OPT: /* Ignore this. We don't care what it points to. */ break; case N_BINCL: stabs_add_include(stabs_new_include(ptr, n_value)); assert(incl_stk < (int) ARRAY_SIZE(incl) - 1); incl[++incl_stk] = source_idx; source_idx = source_new(module, NULL, ptr); break; case N_EINCL: assert(incl_stk >= 0); source_idx = incl[incl_stk--]; break; case N_EXCL: if (stabs_add_include(stabs_find_include(ptr, n_value)) < 0) { ERR("Excluded header not found (%s,%ld)\n", ptr, (ULONG_PTR)n_value); module_reset_debug_info(module); ret = FALSE; goto done; } break; case N_MAIN: /* Always ignore these. GCC doesn't even generate them. */ break; case N_BNSYM: case N_ENSYM: case N_OSO: case N_INDR: /* Always ignore these, they seem to be used only on Darwin. */ break; case N_ABS: case N_SECT: /* FIXME: Other definition types (N_TEXT, N_DATA, N_BSS, ...)? */ if (callback) { BOOL is_public = (stab_ptr->n_type & N_EXT); BOOL is_global = is_public; /* "private extern"; shared among compilation units in a shared * library, but not accessible from outside the library. */ if (stab_ptr->n_type & N_PEXT) { is_public = FALSE; is_global = TRUE; } if (*ptr == '_') ptr++; if (!stab_strcpy(symname, sizeof(symname), ptr)) { ERR("symbol too long: %s\n", debugstr_a(ptr)); stabbuff[0] = '\0'; continue; } callback(module, load_offset, symname, n_value, is_public, is_global, stab_ptr->n_other, compiland, user); } break; default: ERR("Unknown stab type 0x%02x\n", type); break; } stabbuff[0] = '\0'; TRACE("0x%02x %lx %s\n", stab_ptr->n_type, (ULONG_PTR)n_value, debugstr_a(strs + stab_ptr->n_strx)); } module->module.SymType = SymDia; module->module.CVSig = 'S' | ('T' << 8) | ('A' << 16) | ('B' << 24); /* FIXME: we could have a finer grain here */ module->module.LineNumbers = TRUE; module->module.GlobalSymbols = TRUE; module->module.TypeInfo = TRUE; module->module.SourceIndexed = TRUE; module->module.Publics = TRUE; done: HeapFree(GetProcessHeap(), 0, stabbuff); stabs_free_includes(); HeapFree(GetProcessHeap(), 0, pending_block.objs); HeapFree(GetProcessHeap(), 0, pending_func.objs); HeapFree(GetProcessHeap(), 0, srcpath); return ret; }