/* * File cpu_i386.c * * Copyright (C) 2009-2009, Eric Pouech. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include "ntstatus.h" #define WIN32_NO_STATUS #include "dbghelp_private.h" #include "wine/winbase16.h" #include "winternl.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(dbghelp); #define STEP_FLAG 0x00000100 /* single step flag */ #define V86_FLAG 0x00020000 #define IS_VM86_MODE(ctx) (ctx->EFlags & V86_FLAG) #ifdef __i386__ static ADDRESS_MODE get_selector_type(HANDLE hThread, const CONTEXT* ctx, WORD sel) { LDT_ENTRY le; if (IS_VM86_MODE(ctx)) return AddrModeReal; /* null or system selector */ if (!(sel & 4) || ((sel >> 3) < 17)) return AddrModeFlat; if (hThread && GetThreadSelectorEntry(hThread, sel, &le)) return le.HighWord.Bits.Default_Big ? AddrMode1632 : AddrMode1616; /* selector doesn't exist */ return -1; } static unsigned i386_build_addr(HANDLE hThread, const CONTEXT* ctx, ADDRESS64* addr, unsigned seg, unsigned long offset) { addr->Mode = AddrModeFlat; addr->Segment = seg; addr->Offset = offset; if (seg) { switch (addr->Mode = get_selector_type(hThread, ctx, seg)) { case AddrModeReal: case AddrMode1616: addr->Offset &= 0xffff; break; case AddrModeFlat: case AddrMode1632: break; default: return FALSE; } } return TRUE; } #endif static unsigned i386_get_addr(HANDLE hThread, const CONTEXT* ctx, enum cpu_addr ca, ADDRESS64* addr) { #ifdef __i386__ switch (ca) { case cpu_addr_pc: return i386_build_addr(hThread, ctx, addr, ctx->SegCs, ctx->Eip); case cpu_addr_stack: return i386_build_addr(hThread, ctx, addr, ctx->SegSs, ctx->Esp); case cpu_addr_frame: return i386_build_addr(hThread, ctx, addr, ctx->SegSs, ctx->Ebp); } #endif return FALSE; } #ifdef __i386__ /* fetch_next_frame32() * * modify (at least) context.{eip, esp, ebp} using unwind information * either out of debug info (dwarf, pdb), or simple stack unwind */ static BOOL fetch_next_frame32(struct cpu_stack_walk* csw, CONTEXT* context, DWORD_PTR curr_pc) { DWORD_PTR xframe; struct pdb_cmd_pair cpair[4]; DWORD val32; if (dwarf2_virtual_unwind(csw, curr_pc, context, &xframe)) { context->Esp = xframe; return TRUE; } cpair[0].name = "$ebp"; cpair[0].pvalue = &context->Ebp; cpair[1].name = "$esp"; cpair[1].pvalue = &context->Esp; cpair[2].name = "$eip"; cpair[2].pvalue = &context->Eip; cpair[3].name = NULL; cpair[3].pvalue = NULL; if (!pdb_virtual_unwind(csw, curr_pc, context, cpair)) { /* do a simple unwind using ebp * we assume a "regular" prologue in the function has been used */ context->Esp = context->Ebp + 2 * sizeof(DWORD); if (!sw_read_mem(csw, context->Ebp + sizeof(DWORD), &val32, sizeof(DWORD))) { WARN("Cannot read new frame offset %p\n", (void*)(DWORD_PTR)(context->Ebp + (int)sizeof(DWORD))); return FALSE; } context->Eip = val32; /* "pop up" previous EBP value */ if (!sw_read_mem(csw, context->Ebp, &val32, sizeof(DWORD))) return FALSE; context->Ebp = val32; } return TRUE; } #endif enum st_mode {stm_start, stm_32bit, stm_16bit, stm_done}; /* indexes in Reserved array */ #define __CurrentModeCount 0 #define __CurrentSwitch 1 #define __NextSwitch 2 #define curr_mode (frame->Reserved[__CurrentModeCount] & 0x0F) #define curr_count (frame->Reserved[__CurrentModeCount] >> 4) #define curr_switch (frame->Reserved[__CurrentSwitch]) #define next_switch (frame->Reserved[__NextSwitch]) #define set_curr_mode(m) {frame->Reserved[__CurrentModeCount] &= ~0x0F; frame->Reserved[__CurrentModeCount] |= (m & 0x0F);} #define inc_curr_count() (frame->Reserved[__CurrentModeCount] += 0x10) static BOOL i386_stack_walk(struct cpu_stack_walk* csw, LPSTACKFRAME64 frame, CONTEXT* context) { STACK32FRAME frame32; STACK16FRAME frame16; char ch; ADDRESS64 tmp; DWORD p; WORD val16; DWORD val32; BOOL do_switch; #ifdef __i386__ unsigned deltapc; CONTEXT _context; #endif /* sanity check */ if (curr_mode >= stm_done) return FALSE; TRACE("Enter: PC=%s Frame=%s Return=%s Stack=%s Mode=%s Count=%s cSwitch=%p nSwitch=%p\n", wine_dbgstr_addr(&frame->AddrPC), wine_dbgstr_addr(&frame->AddrFrame), wine_dbgstr_addr(&frame->AddrReturn), wine_dbgstr_addr(&frame->AddrStack), curr_mode == stm_start ? "start" : (curr_mode == stm_16bit ? "16bit" : "32bit"), wine_dbgstr_longlong(curr_count), (void*)(DWORD_PTR)curr_switch, (void*)(DWORD_PTR)next_switch); #ifdef __i386__ /* if we're at first call (which doesn't actually unwind, it just computes ReturnPC, * or if we're doing the first real unwind (count == 1), then we can directly use * eip. otherwise, eip is *after* the insn that actually made the call to * previous frame, so decrease eip by delta pc (1!) so that we're inside previous * insn. * Doing so, we ensure that the pc used for unwinding is always inside the function * we want to use for next frame */ deltapc = curr_count <= 1 ? 0 : 1; if (!context) { /* setup a pseudo context for the rest of the code (esp. unwinding) */ context = &_context; memset(context, 0, sizeof(*context)); context->ContextFlags = CONTEXT_CONTROL | CONTEXT_SEGMENTS; if (frame->AddrPC.Mode != AddrModeFlat) context->SegCs = frame->AddrPC.Segment; context->Eip = frame->AddrPC.Offset; if (frame->AddrFrame.Mode != AddrModeFlat) context->SegSs = frame->AddrFrame.Segment; context->Ebp = frame->AddrFrame.Offset; if (frame->AddrStack.Mode != AddrModeFlat) context->SegSs = frame->AddrStack.Segment; context->Esp = frame->AddrStack.Offset; } #endif if (curr_mode == stm_start) { THREAD_BASIC_INFORMATION info; if ((frame->AddrPC.Mode == AddrModeFlat) && (frame->AddrFrame.Mode != AddrModeFlat)) { WARN("Bad AddrPC.Mode / AddrFrame.Mode combination\n"); goto done_err; } /* Init done */ set_curr_mode((frame->AddrPC.Mode == AddrModeFlat) ? stm_32bit : stm_16bit); /* cur_switch holds address of WOW32Reserved field in TEB in debuggee * address space */ if (NtQueryInformationThread(csw->hThread, ThreadBasicInformation, &info, sizeof(info), NULL) == STATUS_SUCCESS) { curr_switch = (DWORD_PTR)info.TebBaseAddress + FIELD_OFFSET(TEB, WOW32Reserved); if (!sw_read_mem(csw, curr_switch, &p, sizeof(p))) { WARN("Can't read TEB:WOW32Reserved\n"); goto done_err; } next_switch = p; if (!next_switch) /* no 16-bit stack */ { curr_switch = 0; } else if (curr_mode == stm_16bit) { if (!sw_read_mem(csw, next_switch, &frame32, sizeof(frame32))) { WARN("Bad stack frame %p\n", (void*)(DWORD_PTR)next_switch); goto done_err; } curr_switch = (DWORD)frame32.frame16; tmp.Mode = AddrMode1616; tmp.Segment = SELECTOROF(curr_switch); tmp.Offset = OFFSETOF(curr_switch); if (!sw_read_mem(csw, sw_xlat_addr(csw, &tmp), &ch, sizeof(ch))) curr_switch = 0xFFFFFFFF; } else { tmp.Mode = AddrMode1616; tmp.Segment = SELECTOROF(next_switch); tmp.Offset = OFFSETOF(next_switch); p = sw_xlat_addr(csw, &tmp); if (!sw_read_mem(csw, p, &frame16, sizeof(frame16))) { WARN("Bad stack frame 0x%08x\n", p); goto done_err; } curr_switch = (DWORD_PTR)frame16.frame32; if (!sw_read_mem(csw, curr_switch, &ch, sizeof(ch))) curr_switch = 0xFFFFFFFF; } } else /* FIXME: this will allow to work when we're not attached to a live target, * but the 16 <=> 32 switch facility won't be available. */ curr_switch = 0; frame->AddrReturn.Mode = frame->AddrStack.Mode = (curr_mode == stm_16bit) ? AddrMode1616 : AddrModeFlat; /* don't set up AddrStack on first call. Either the caller has set it up, or * we will get it in the next frame */ memset(&frame->AddrBStore, 0, sizeof(frame->AddrBStore)); } else { if (frame->AddrFrame.Offset == 0) goto done_err; if (frame->AddrFrame.Mode == AddrModeFlat) { assert(curr_mode == stm_32bit); do_switch = curr_switch && frame->AddrFrame.Offset >= curr_switch; } else { assert(curr_mode == stm_16bit); do_switch = curr_switch && frame->AddrFrame.Segment == SELECTOROF(curr_switch) && frame->AddrFrame.Offset >= OFFSETOF(curr_switch); } if (do_switch) { if (curr_mode == stm_16bit) { if (!sw_read_mem(csw, next_switch, &frame32, sizeof(frame32))) { WARN("Bad stack frame %p\n", (void*)(DWORD_PTR)next_switch); goto done_err; } frame->AddrPC.Mode = AddrModeFlat; frame->AddrPC.Segment = 0; frame->AddrPC.Offset = frame32.retaddr; frame->AddrFrame.Mode = AddrModeFlat; frame->AddrFrame.Segment = 0; frame->AddrFrame.Offset = frame32.ebp; frame->AddrStack.Mode = AddrModeFlat; frame->AddrStack.Segment = 0; frame->AddrReturn.Mode = AddrModeFlat; frame->AddrReturn.Segment = 0; next_switch = curr_switch; tmp.Mode = AddrMode1616; tmp.Segment = SELECTOROF(next_switch); tmp.Offset = OFFSETOF(next_switch); p = sw_xlat_addr(csw, &tmp); if (!sw_read_mem(csw, p, &frame16, sizeof(frame16))) { WARN("Bad stack frame 0x%08x\n", p); goto done_err; } curr_switch = (DWORD_PTR)frame16.frame32; set_curr_mode(stm_32bit); if (!sw_read_mem(csw, curr_switch, &ch, sizeof(ch))) curr_switch = 0; } else { tmp.Mode = AddrMode1616; tmp.Segment = SELECTOROF(next_switch); tmp.Offset = OFFSETOF(next_switch); p = sw_xlat_addr(csw, &tmp); if (!sw_read_mem(csw, p, &frame16, sizeof(frame16))) { WARN("Bad stack frame 0x%08x\n", p); goto done_err; } TRACE("Got a 16 bit stack switch:" "\n\tframe32: %p" "\n\tedx:%08x ecx:%08x ebp:%08x" "\n\tds:%04x es:%04x fs:%04x gs:%04x" "\n\tcall_from_ip:%08x module_cs:%04x relay=%08x" "\n\tentry_ip:%04x entry_point:%08x" "\n\tbp:%04x ip:%04x cs:%04x\n", frame16.frame32, frame16.edx, frame16.ecx, frame16.ebp, frame16.ds, frame16.es, frame16.fs, frame16.gs, frame16.callfrom_ip, frame16.module_cs, frame16.relay, frame16.entry_ip, frame16.entry_point, frame16.bp, frame16.ip, frame16.cs); frame->AddrPC.Mode = AddrMode1616; frame->AddrPC.Segment = frame16.cs; frame->AddrPC.Offset = frame16.ip; frame->AddrFrame.Mode = AddrMode1616; frame->AddrFrame.Segment = SELECTOROF(next_switch); frame->AddrFrame.Offset = frame16.bp; frame->AddrStack.Mode = AddrMode1616; frame->AddrStack.Segment = SELECTOROF(next_switch); frame->AddrReturn.Mode = AddrMode1616; frame->AddrReturn.Segment = frame16.cs; next_switch = curr_switch; if (!sw_read_mem(csw, next_switch, &frame32, sizeof(frame32))) { WARN("Bad stack frame %p\n", (void*)(DWORD_PTR)next_switch); goto done_err; } curr_switch = (DWORD)frame32.frame16; tmp.Mode = AddrMode1616; tmp.Segment = SELECTOROF(curr_switch); tmp.Offset = OFFSETOF(curr_switch); if (!sw_read_mem(csw, sw_xlat_addr(csw, &tmp), &ch, sizeof(ch))) curr_switch = 0; set_curr_mode(stm_16bit); } } else { if (curr_mode == stm_16bit) { frame->AddrPC = frame->AddrReturn; frame->AddrStack.Offset = frame->AddrFrame.Offset + 2 * sizeof(WORD); /* "pop up" previous BP value */ if (!sw_read_mem(csw, sw_xlat_addr(csw, &frame->AddrFrame), &val16, sizeof(WORD))) goto done_err; frame->AddrFrame.Offset = val16; } else { #ifdef __i386__ if (!fetch_next_frame32(csw, context, sw_xlat_addr(csw, &frame->AddrPC) - deltapc)) goto done_err; frame->AddrStack.Mode = frame->AddrFrame.Mode = frame->AddrPC.Mode = AddrModeFlat; frame->AddrStack.Offset = context->Esp; frame->AddrFrame.Offset = context->Ebp; if (frame->AddrReturn.Offset != context->Eip) FIXME("new PC=%s different from Eip=%x\n", wine_dbgstr_longlong(frame->AddrReturn.Offset), context->Eip); frame->AddrPC.Offset = context->Eip; #endif } } } if (curr_mode == stm_16bit) { unsigned int i; p = sw_xlat_addr(csw, &frame->AddrFrame); if (!sw_read_mem(csw, p + sizeof(WORD), &val16, sizeof(WORD))) goto done_err; frame->AddrReturn.Offset = val16; /* get potential cs if a far call was used */ if (!sw_read_mem(csw, p + 2 * sizeof(WORD), &val16, sizeof(WORD))) goto done_err; if (frame->AddrFrame.Offset & 1) frame->AddrReturn.Segment = val16; /* far call assumed */ else { /* not explicitly marked as far call, * but check whether it could be anyway */ if ((val16 & 7) == 7 && val16 != frame->AddrReturn.Segment) { LDT_ENTRY le; if (GetThreadSelectorEntry(csw->hThread, val16, &le) && (le.HighWord.Bits.Type & 0x08)) /* code segment */ { /* it is very uncommon to push a code segment cs as * a parameter, so this should work in most cases */ frame->AddrReturn.Segment = val16; } } } frame->AddrFrame.Offset &= ~1; /* we "pop" parameters as 16 bit entities... of course, this won't * work if the parameter is in fact bigger than 16bit, but * there's no way to know that here */ for (i = 0; i < sizeof(frame->Params) / sizeof(frame->Params[0]); i++) { sw_read_mem(csw, p + (2 + i) * sizeof(WORD), &val16, sizeof(val16)); frame->Params[i] = val16; } #ifdef __i386__ if (context) { #define SET(field, seg, reg) \ switch (frame->field.Mode) \ { \ case AddrModeFlat: context->reg = frame->field.Offset; break; \ case AddrMode1616: context->seg = frame->field.Segment; context->reg = frame->field.Offset; break; \ default: assert(0); \ } SET(AddrStack, SegSs, Esp); SET(AddrFrame, SegSs, Ebp); SET(AddrReturn, SegCs, Eip); #undef SET } #endif } else { unsigned int i; #ifdef __i386__ CONTEXT newctx = *context; if (!fetch_next_frame32(csw, &newctx, frame->AddrPC.Offset - deltapc)) goto done_err; frame->AddrReturn.Mode = AddrModeFlat; frame->AddrReturn.Offset = newctx.Eip; #endif for (i = 0; i < sizeof(frame->Params) / sizeof(frame->Params[0]); i++) { sw_read_mem(csw, frame->AddrFrame.Offset + (2 + i) * sizeof(DWORD), &val32, sizeof(val32)); frame->Params[i] = val32; } } frame->Far = TRUE; frame->Virtual = TRUE; p = sw_xlat_addr(csw, &frame->AddrPC); if (p && sw_module_base(csw, p)) frame->FuncTableEntry = sw_table_access(csw, p); else frame->FuncTableEntry = NULL; inc_curr_count(); TRACE("Leave: PC=%s Frame=%s Return=%s Stack=%s Mode=%s Count=%s cSwitch=%p nSwitch=%p FuncTable=%p\n", wine_dbgstr_addr(&frame->AddrPC), wine_dbgstr_addr(&frame->AddrFrame), wine_dbgstr_addr(&frame->AddrReturn), wine_dbgstr_addr(&frame->AddrStack), curr_mode == stm_start ? "start" : (curr_mode == stm_16bit ? "16bit" : "32bit"), wine_dbgstr_longlong(curr_count), (void*)(DWORD_PTR)curr_switch, (void*)(DWORD_PTR)next_switch, frame->FuncTableEntry); return TRUE; done_err: set_curr_mode(stm_done); return FALSE; } static unsigned i386_map_dwarf_register(unsigned regno) { unsigned reg; switch (regno) { case 0: reg = CV_REG_EAX; break; case 1: reg = CV_REG_ECX; break; case 2: reg = CV_REG_EDX; break; case 3: reg = CV_REG_EBX; break; case 4: reg = CV_REG_ESP; break; case 5: reg = CV_REG_EBP; break; case 6: reg = CV_REG_ESI; break; case 7: reg = CV_REG_EDI; break; case 8: reg = CV_REG_EIP; break; case 9: reg = CV_REG_EFLAGS; break; case 10: reg = CV_REG_CS; break; case 11: reg = CV_REG_SS; break; case 12: reg = CV_REG_DS; break; case 13: reg = CV_REG_ES; break; case 14: reg = CV_REG_FS; break; case 15: reg = CV_REG_GS; break; case 16: case 17: case 18: case 19: case 20: case 21: case 22: case 23: reg = CV_REG_ST0 + regno - 16; break; case 24: reg = CV_REG_CTRL; break; case 25: reg = CV_REG_STAT; break; case 26: reg = CV_REG_TAG; break; case 27: reg = CV_REG_FPCS; break; case 28: reg = CV_REG_FPIP; break; case 29: reg = CV_REG_FPDS; break; case 30: reg = CV_REG_FPDO; break; /* reg: fop 31 */ case 32: case 33: case 34: case 35: case 36: case 37: case 38: case 39: reg = CV_REG_XMM0 + regno - 32; break; case 40: reg = CV_REG_MXCSR; break; default: FIXME("Don't know how to map register %d\n", regno); return 0; } return reg; } static void* i386_fetch_context_reg(CONTEXT* ctx, unsigned regno, unsigned* size) { #ifdef __i386__ switch (regno) { case CV_REG_EAX: *size = sizeof(ctx->Eax); return &ctx->Eax; case CV_REG_EDX: *size = sizeof(ctx->Edx); return &ctx->Edx; case CV_REG_ECX: *size = sizeof(ctx->Ecx); return &ctx->Ecx; case CV_REG_EBX: *size = sizeof(ctx->Ebx); return &ctx->Ebx; case CV_REG_ESI: *size = sizeof(ctx->Esi); return &ctx->Esi; case CV_REG_EDI: *size = sizeof(ctx->Edi); return &ctx->Edi; case CV_REG_EBP: *size = sizeof(ctx->Ebp); return &ctx->Ebp; case CV_REG_ESP: *size = sizeof(ctx->Esp); return &ctx->Esp; case CV_REG_EIP: *size = sizeof(ctx->Eip); return &ctx->Eip; case CV_REG_ST0 + 0: *size = sizeof(long double); return &ctx->FloatSave.RegisterArea[0*sizeof(long double)]; case CV_REG_ST0 + 1: *size = sizeof(long double); return &ctx->FloatSave.RegisterArea[1*sizeof(long double)]; case CV_REG_ST0 + 2: *size = sizeof(long double); return &ctx->FloatSave.RegisterArea[2*sizeof(long double)]; case CV_REG_ST0 + 3: *size = sizeof(long double); return &ctx->FloatSave.RegisterArea[3*sizeof(long double)]; case CV_REG_ST0 + 4: *size = sizeof(long double); return &ctx->FloatSave.RegisterArea[4*sizeof(long double)]; case CV_REG_ST0 + 5: *size = sizeof(long double); return &ctx->FloatSave.RegisterArea[5*sizeof(long double)]; case CV_REG_ST0 + 6: *size = sizeof(long double); return &ctx->FloatSave.RegisterArea[6*sizeof(long double)]; case CV_REG_ST0 + 7: *size = sizeof(long double); return &ctx->FloatSave.RegisterArea[7*sizeof(long double)]; case CV_REG_CTRL: *size = sizeof(DWORD); return &ctx->FloatSave.ControlWord; case CV_REG_STAT: *size = sizeof(DWORD); return &ctx->FloatSave.StatusWord; case CV_REG_TAG: *size = sizeof(DWORD); return &ctx->FloatSave.TagWord; case CV_REG_FPCS: *size = sizeof(DWORD); return &ctx->FloatSave.ErrorSelector; case CV_REG_FPIP: *size = sizeof(DWORD); return &ctx->FloatSave.ErrorOffset; case CV_REG_FPDS: *size = sizeof(DWORD); return &ctx->FloatSave.DataSelector; case CV_REG_FPDO: *size = sizeof(DWORD); return &ctx->FloatSave.DataOffset; case CV_REG_EFLAGS: *size = sizeof(ctx->EFlags); return &ctx->EFlags; case CV_REG_ES: *size = sizeof(ctx->SegEs); return &ctx->SegEs; case CV_REG_CS: *size = sizeof(ctx->SegCs); return &ctx->SegCs; case CV_REG_SS: *size = sizeof(ctx->SegSs); return &ctx->SegSs; case CV_REG_DS: *size = sizeof(ctx->SegDs); return &ctx->SegDs; case CV_REG_FS: *size = sizeof(ctx->SegFs); return &ctx->SegFs; case CV_REG_GS: *size = sizeof(ctx->SegGs); return &ctx->SegGs; } #endif FIXME("Unknown register %x\n", regno); return NULL; } static const char* i386_fetch_regname(unsigned regno) { switch (regno) { case CV_REG_EAX: return "eax"; case CV_REG_EDX: return "edx"; case CV_REG_ECX: return "ecx"; case CV_REG_EBX: return "ebx"; case CV_REG_ESI: return "esi"; case CV_REG_EDI: return "edi"; case CV_REG_EBP: return "ebp"; case CV_REG_ESP: return "esp"; case CV_REG_EIP: return "eip"; case CV_REG_ST0 + 0: return "st0"; case CV_REG_ST0 + 1: return "st1"; case CV_REG_ST0 + 2: return "st2"; case CV_REG_ST0 + 3: return "st3"; case CV_REG_ST0 + 4: return "st4"; case CV_REG_ST0 + 5: return "st5"; case CV_REG_ST0 + 6: return "st6"; case CV_REG_ST0 + 7: return "st7"; case CV_REG_EFLAGS: return "eflags"; case CV_REG_ES: return "es"; case CV_REG_CS: return "cs"; case CV_REG_SS: return "ss"; case CV_REG_DS: return "ds"; case CV_REG_FS: return "fs"; case CV_REG_GS: return "gs"; case CV_REG_CTRL: return "fpControl"; case CV_REG_STAT: return "fpStatus"; case CV_REG_TAG: return "fpTag"; case CV_REG_FPCS: return "fpCS"; case CV_REG_FPIP: return "fpIP"; case CV_REG_FPDS: return "fpDS"; case CV_REG_FPDO: return "fpData"; case CV_REG_XMM0 + 0: return "xmm0"; case CV_REG_XMM0 + 1: return "xmm1"; case CV_REG_XMM0 + 2: return "xmm2"; case CV_REG_XMM0 + 3: return "xmm3"; case CV_REG_XMM0 + 4: return "xmm4"; case CV_REG_XMM0 + 5: return "xmm5"; case CV_REG_XMM0 + 6: return "xmm6"; case CV_REG_XMM0 + 7: return "xmm7"; case CV_REG_MXCSR: return "MxCSR"; } FIXME("Unknown register %x\n", regno); return NULL; } static BOOL i386_fetch_minidump_thread(struct dump_context* dc, unsigned index, unsigned flags, const CONTEXT* ctx) { if (ctx->ContextFlags && (flags & ThreadWriteInstructionWindow)) { /* FIXME: crop values across module boundaries, */ #ifdef __i386__ ULONG base = ctx->Eip <= 0x80 ? 0 : ctx->Eip - 0x80; minidump_add_memory_block(dc, base, ctx->Eip + 0x80 - base, 0); #endif } return TRUE; } static BOOL i386_fetch_minidump_module(struct dump_context* dc, unsigned index, unsigned flags) { /* FIXME: actually, we should probably take care of FPO data, unless it's stored in * function table minidump stream */ return FALSE; } DECLSPEC_HIDDEN struct cpu cpu_i386 = { IMAGE_FILE_MACHINE_I386, 4, CV_REG_EBP, i386_get_addr, i386_stack_walk, NULL, i386_map_dwarf_register, i386_fetch_context_reg, i386_fetch_regname, i386_fetch_minidump_thread, i386_fetch_minidump_module, };