/* * Registry processing routines. Routines, common for registry * processing frontends. * * Copyright 1999 Sylvain St-Germain * Copyright 2002 Andriy Palamarchuk * Copyright 2008 Alexander N. Sørnes * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include #include #include #include #include #include "regproc.h" #define REG_VAL_BUF_SIZE 4096 /* maximal number of characters in hexadecimal data line, * including the indentation, but not including the '\' character */ #define REG_FILE_HEX_LINE_LEN (2 + 25 * 3) static const CHAR *reg_class_names[] = { "HKEY_LOCAL_MACHINE", "HKEY_USERS", "HKEY_CLASSES_ROOT", "HKEY_CURRENT_CONFIG", "HKEY_CURRENT_USER", "HKEY_DYN_DATA" }; #define REG_CLASS_NUMBER (sizeof(reg_class_names) / sizeof(reg_class_names[0])) extern const WCHAR* reg_class_namesW[]; static HKEY reg_class_keys[REG_CLASS_NUMBER] = { HKEY_LOCAL_MACHINE, HKEY_USERS, HKEY_CLASSES_ROOT, HKEY_CURRENT_CONFIG, HKEY_CURRENT_USER, HKEY_DYN_DATA }; /* return values */ #define NOT_ENOUGH_MEMORY 1 #define IO_ERROR 2 /* processing macros */ /* common check of memory allocation results */ #define CHECK_ENOUGH_MEMORY(p) \ if (!(p)) \ { \ fprintf(stderr,"%s: file %s, line %d: Not enough memory\n", \ getAppName(), __FILE__, __LINE__); \ exit(NOT_ENOUGH_MEMORY); \ } /****************************************************************************** * Allocates memory and converts input from multibyte to wide chars * Returned string must be freed by the caller */ WCHAR* GetWideString(const char* strA) { if(strA) { WCHAR* strW; int len = MultiByteToWideChar(CP_ACP, 0, strA, -1, NULL, 0); strW = HeapAlloc(GetProcessHeap(), 0, len * sizeof(WCHAR)); CHECK_ENOUGH_MEMORY(strW); MultiByteToWideChar(CP_ACP, 0, strA, -1, strW, len); return strW; } return NULL; } /****************************************************************************** * Allocates memory and converts input from multibyte to wide chars * Returned string must be freed by the caller */ WCHAR* GetWideStringN(const char* strA, int chars, DWORD *len) { if(strA) { WCHAR* strW; *len = MultiByteToWideChar(CP_ACP, 0, strA, chars, NULL, 0); strW = HeapAlloc(GetProcessHeap(), 0, *len * sizeof(WCHAR)); CHECK_ENOUGH_MEMORY(strW); MultiByteToWideChar(CP_ACP, 0, strA, chars, strW, *len); return strW; } *len = 0; return NULL; } /****************************************************************************** * Allocates memory and converts input from wide chars to multibyte * Returned string must be freed by the caller */ char* GetMultiByteString(const WCHAR* strW) { if(strW) { char* strA; int len = WideCharToMultiByte(CP_ACP, 0, strW, -1, NULL, 0, NULL, NULL); strA = HeapAlloc(GetProcessHeap(), 0, len); CHECK_ENOUGH_MEMORY(strA); WideCharToMultiByte(CP_ACP, 0, strW, -1, strA, len, NULL, NULL); return strA; } return NULL; } /****************************************************************************** * Allocates memory and converts input from wide chars to multibyte * Returned string must be freed by the caller */ char* GetMultiByteStringN(const WCHAR* strW, int chars, DWORD* len) { if(strW) { char* strA; *len = WideCharToMultiByte(CP_ACP, 0, strW, chars, NULL, 0, NULL, NULL); strA = HeapAlloc(GetProcessHeap(), 0, *len); CHECK_ENOUGH_MEMORY(strA); WideCharToMultiByte(CP_ACP, 0, strW, chars, strA, *len, NULL, NULL); return strA; } *len = 0; return NULL; } /****************************************************************************** * Converts a hex representation of a DWORD into a DWORD. */ static BOOL convertHexToDWord(WCHAR* str, DWORD *dw) { char buf[9]; char dummy; WideCharToMultiByte(CP_ACP, 0, str, -1, buf, 9, NULL, NULL); if (lstrlenW(str) > 8 || sscanf(buf, "%x%c", dw, &dummy) != 1) { fprintf(stderr,"%s: ERROR, invalid hex value\n", getAppName()); return FALSE; } return TRUE; } /****************************************************************************** * Converts a hex comma separated values list into a binary string. */ static BYTE* convertHexCSVToHex(WCHAR *str, DWORD *size) { WCHAR *s; BYTE *d, *data; /* The worst case is 1 digit + 1 comma per byte */ *size=(lstrlenW(str)+1)/2; data=HeapAlloc(GetProcessHeap(), 0, *size); CHECK_ENOUGH_MEMORY(data); s = str; d = data; *size=0; while (*s != '\0') { UINT wc; WCHAR *end; wc = strtoulW(s,&end,16); if (end == s || wc > 0xff || (*end && *end != ',')) { char* strA = GetMultiByteString(s); fprintf(stderr,"%s: ERROR converting CSV hex stream. Invalid value at '%s'\n", getAppName(), strA); HeapFree(GetProcessHeap(), 0, data); HeapFree(GetProcessHeap(), 0, strA); return NULL; } *d++ =(BYTE)wc; (*size)++; if (*end) end++; s = end; } return data; } /****************************************************************************** * This function returns the HKEY associated with the data type encoded in the * value. It modifies the input parameter (key value) in order to skip this * "now useless" data type information. * * Note: Updated based on the algorithm used in 'server/registry.c' */ static DWORD getDataType(LPWSTR *lpValue, DWORD* parse_type) { struct data_type { const WCHAR *tag; int len; int type; int parse_type; }; static const WCHAR quote[] = {'"'}; static const WCHAR str[] = {'s','t','r',':','"'}; static const WCHAR str2[] = {'s','t','r','(','2',')',':','"'}; static const WCHAR hex[] = {'h','e','x',':'}; static const WCHAR dword[] = {'d','w','o','r','d',':'}; static const WCHAR hexp[] = {'h','e','x','('}; static const struct data_type data_types[] = { /* actual type */ /* type to assume for parsing */ { quote, 1, REG_SZ, REG_SZ }, { str, 5, REG_SZ, REG_SZ }, { str2, 8, REG_EXPAND_SZ, REG_SZ }, { hex, 4, REG_BINARY, REG_BINARY }, { dword, 6, REG_DWORD, REG_DWORD }, { hexp, 4, -1, REG_BINARY }, { NULL, 0, 0, 0 } }; const struct data_type *ptr; int type; for (ptr = data_types; ptr->tag; ptr++) { if (strncmpW( ptr->tag, *lpValue, ptr->len )) continue; /* Found! */ *parse_type = ptr->parse_type; type=ptr->type; *lpValue+=ptr->len; if (type == -1) { WCHAR* end; /* "hex(xx):" is special */ type = (int)strtoulW( *lpValue , &end, 16 ); if (**lpValue=='\0' || *end!=')' || *(end+1)!=':') { type=REG_NONE; } else { *lpValue = end + 2; } } return type; } *parse_type=REG_NONE; return REG_NONE; } /****************************************************************************** * Replaces escape sequences with the characters. */ static void REGPROC_unescape_string(WCHAR* str) { int str_idx = 0; /* current character under analysis */ int val_idx = 0; /* the last character of the unescaped string */ int len = lstrlenW(str); for (str_idx = 0; str_idx < len; str_idx++, val_idx++) { if (str[str_idx] == '\\') { str_idx++; switch (str[str_idx]) { case 'n': str[val_idx] = '\n'; break; case '\\': case '"': str[val_idx] = str[str_idx]; break; default: fprintf(stderr,"Warning! Unrecognized escape sequence: \\%c'\n", str[str_idx]); str[val_idx] = str[str_idx]; break; } } else { str[val_idx] = str[str_idx]; } } str[val_idx] = '\0'; } static BOOL parseKeyName(LPWSTR lpKeyName, HKEY *hKey, LPWSTR *lpKeyPath) { WCHAR* lpSlash = NULL; unsigned int i, len; if (lpKeyName == NULL) return FALSE; for(i = 0; *(lpKeyName+i) != 0; i++) { if(*(lpKeyName+i) == '\\') { lpSlash = lpKeyName+i; break; } } if (lpSlash) { len = lpSlash-lpKeyName; } else { len = lstrlenW(lpKeyName); lpSlash = lpKeyName+len; } *hKey = NULL; for (i = 0; i < REG_CLASS_NUMBER; i++) { if (CompareStringW(LOCALE_USER_DEFAULT, 0, lpKeyName, len, reg_class_namesW[i], len) == CSTR_EQUAL && len == lstrlenW(reg_class_namesW[i])) { *hKey = reg_class_keys[i]; break; } } if (*hKey == NULL) return FALSE; if (*lpSlash != '\0') lpSlash++; *lpKeyPath = lpSlash; return TRUE; } /* Globals used by the setValue() & co */ static LPSTR currentKeyName; static HKEY currentKeyHandle = NULL; /****************************************************************************** * Sets the value with name val_name to the data in val_data for the currently * opened key. * * Parameters: * val_name - name of the registry value * val_data - registry value data */ static LONG setValue(WCHAR* val_name, WCHAR* val_data, BOOL is_unicode) { LONG res; DWORD dwDataType, dwParseType; LPBYTE lpbData; DWORD dwData, dwLen; WCHAR del[] = {'-',0}; if ( (val_name == NULL) || (val_data == NULL) ) return ERROR_INVALID_PARAMETER; if (lstrcmpW(val_data, del) == 0) { res=RegDeleteValueW(currentKeyHandle,val_name); return (res == ERROR_FILE_NOT_FOUND ? ERROR_SUCCESS : res); } /* Get the data type stored into the value field */ dwDataType = getDataType(&val_data, &dwParseType); if (dwParseType == REG_SZ) /* no conversion for string */ { REGPROC_unescape_string(val_data); /* Compute dwLen after REGPROC_unescape_string because it may * have changed the string length and we don't want to store * the extra garbage in the registry. */ dwLen = lstrlenW(val_data); if (dwLen>0 && val_data[dwLen-1]=='"') { dwLen--; val_data[dwLen]='\0'; } lpbData = (BYTE*) val_data; dwLen++; /* include terminating null */ dwLen = dwLen * sizeof(WCHAR); /* size is in bytes */ } else if (dwParseType == REG_DWORD) /* Convert the dword types */ { if (!convertHexToDWord(val_data, &dwData)) return ERROR_INVALID_DATA; lpbData = (BYTE*)&dwData; dwLen = sizeof(dwData); } else if (dwParseType == REG_BINARY) /* Convert the binary data */ { lpbData = convertHexCSVToHex(val_data, &dwLen); if (!lpbData) return ERROR_INVALID_DATA; if(dwDataType == REG_MULTI_SZ && !is_unicode) { LPBYTE tmp = lpbData; lpbData = (LPBYTE)GetWideStringN((char*)lpbData, dwLen, &dwLen); dwLen *= sizeof(WCHAR); HeapFree(GetProcessHeap(), 0, tmp); } } else /* unknown format */ { fprintf(stderr,"%s: ERROR, unknown data format\n", getAppName()); return ERROR_INVALID_DATA; } res = RegSetValueExW( currentKeyHandle, val_name, 0, /* Reserved */ dwDataType, lpbData, dwLen); if (dwParseType == REG_BINARY) HeapFree(GetProcessHeap(), 0, lpbData); return res; } /****************************************************************************** * A helper function for processRegEntry() that opens the current key. * That key must be closed by calling closeKey(). */ static LONG openKeyW(WCHAR* stdInput) { HKEY keyClass; WCHAR* keyPath; DWORD dwDisp; LONG res; /* Sanity checks */ if (stdInput == NULL) return ERROR_INVALID_PARAMETER; /* Get the registry class */ if (!parseKeyName(stdInput, &keyClass, &keyPath)) return ERROR_INVALID_PARAMETER; res = RegCreateKeyExW( keyClass, /* Class */ keyPath, /* Sub Key */ 0, /* MUST BE 0 */ NULL, /* object type */ REG_OPTION_NON_VOLATILE, /* option, REG_OPTION_NON_VOLATILE ... */ KEY_ALL_ACCESS, /* access mask, KEY_ALL_ACCESS */ NULL, /* security attribute */ ¤tKeyHandle, /* result */ &dwDisp); /* disposition, REG_CREATED_NEW_KEY or REG_OPENED_EXISTING_KEY */ if (res == ERROR_SUCCESS) currentKeyName = GetMultiByteString(stdInput); else currentKeyHandle = NULL; return res; } /****************************************************************************** * Close the currently opened key. */ static void closeKey(void) { if (currentKeyHandle) { HeapFree(GetProcessHeap(), 0, currentKeyName); RegCloseKey(currentKeyHandle); currentKeyHandle = NULL; } } /****************************************************************************** * This function is a wrapper for the setValue function. It prepares the * land and cleans the area once completed. * Note: this function modifies the line parameter. * * line - registry file unwrapped line. Should have the registry value name and * complete registry value data. */ static void processSetValue(WCHAR* line, BOOL is_unicode) { WCHAR* val_name; /* registry value name */ WCHAR* val_data; /* registry value data */ int line_idx = 0; /* current character under analysis */ LONG res; /* get value name */ while ( isspaceW(line[line_idx]) ) line_idx++; if (line[line_idx] == '@' && line[line_idx + 1] == '=') { line[line_idx] = '\0'; val_name = line; line_idx++; } else if (line[line_idx] == '\"') { line_idx++; val_name = line + line_idx; while (TRUE) { if (line[line_idx] == '\\') /* skip escaped character */ { line_idx += 2; } else { if (line[line_idx] == '\"') { line[line_idx] = '\0'; line_idx++; break; } else { line_idx++; } } } while ( isspaceW(line[line_idx]) ) line_idx++; if (line[line_idx] != '=') { char* lineA; line[line_idx] = '\"'; lineA = GetMultiByteString(line); fprintf(stderr,"Warning! unrecognized line:\n%s\n", lineA); HeapFree(GetProcessHeap(), 0, lineA); return; } } else { char* lineA = GetMultiByteString(line); fprintf(stderr,"Warning! unrecognized line:\n%s\n", lineA); HeapFree(GetProcessHeap(), 0, lineA); return; } line_idx++; /* skip the '=' character */ while ( isspaceW(line[line_idx]) ) line_idx++; val_data = line + line_idx; /* trim trailing blanks */ line_idx = strlenW(val_data); while (line_idx > 0 && isspaceW(val_data[line_idx-1])) line_idx--; val_data[line_idx] = '\0'; REGPROC_unescape_string(val_name); res = setValue(val_name, val_data, is_unicode); if ( res != ERROR_SUCCESS ) { char* val_nameA = GetMultiByteString(val_name); char* val_dataA = GetMultiByteString(val_data); fprintf(stderr,"%s: ERROR Key %s not created. Value: %s, Data: %s\n", getAppName(), currentKeyName, val_nameA, val_dataA); HeapFree(GetProcessHeap(), 0, val_nameA); HeapFree(GetProcessHeap(), 0, val_dataA); } } /****************************************************************************** * This function receives the currently read entry and performs the * corresponding action. * isUnicode affects parsing of REG_MULTI_SZ values */ static void processRegEntry(WCHAR* stdInput, BOOL isUnicode) { /* * We encountered the end of the file, make sure we * close the opened key and exit */ if (stdInput == NULL) { closeKey(); return; } if ( stdInput[0] == '[') /* We are reading a new key */ { WCHAR* keyEnd; closeKey(); /* Close the previous key */ /* Get rid of the square brackets */ stdInput++; keyEnd = strrchrW(stdInput, ']'); if (keyEnd) *keyEnd='\0'; /* delete the key if we encounter '-' at the start of reg key */ if ( stdInput[0] == '-') { delete_registry_key(stdInput + 1); } else if ( openKeyW(stdInput) != ERROR_SUCCESS ) { char* stdInputA = GetMultiByteString(stdInput); fprintf(stderr,"%s: setValue failed to open key %s\n", getAppName(), stdInputA); HeapFree(GetProcessHeap(), 0, stdInputA); } } else if( currentKeyHandle && (( stdInput[0] == '@') || /* reading a default @=data pair */ ( stdInput[0] == '\"'))) /* reading a new value=data pair */ { processSetValue(stdInput, isUnicode); } else { /* Since we are assuming that the file format is valid we must be * reading a blank line which indicates the end of this key processing */ closeKey(); } } /****************************************************************************** * Processes a registry file. * Correctly processes comments (in # form), line continuation. * * Parameters: * in - input stream to read from */ void processRegLinesA(FILE *in) { LPSTR line = NULL; /* line read from input stream */ ULONG lineSize = REG_VAL_BUF_SIZE; line = HeapAlloc(GetProcessHeap(), 0, lineSize); CHECK_ENOUGH_MEMORY(line); while (!feof(in)) { LPSTR s; /* The pointer into line for where the current fgets should read */ LPSTR check; WCHAR* lineW; s = line; for (;;) { size_t size_remaining; int size_to_get; char *s_eol; /* various local uses */ /* Do we need to expand the buffer ? */ assert (s >= line && s <= line + lineSize); size_remaining = lineSize - (s-line); if (size_remaining < 2) /* room for 1 character and the \0 */ { char *new_buffer; size_t new_size = lineSize + REG_VAL_BUF_SIZE; if (new_size > lineSize) /* no arithmetic overflow */ new_buffer = HeapReAlloc (GetProcessHeap(), 0, line, new_size); else new_buffer = NULL; CHECK_ENOUGH_MEMORY(new_buffer); line = new_buffer; s = line + lineSize - size_remaining; lineSize = new_size; size_remaining = lineSize - (s-line); } /* Get as much as possible into the buffer, terminated either by * eof, error, eol or getting the maximum amount. Abort on error. */ size_to_get = (size_remaining > INT_MAX ? INT_MAX : size_remaining); check = fgets (s, size_to_get, in); if (check == NULL) { if (ferror(in)) { perror ("While reading input"); exit (IO_ERROR); } else { assert (feof(in)); *s = '\0'; /* It is not clear to me from the definition that the * contents of the buffer are well defined on detecting * an eof without managing to read anything. */ } } /* If we didn't read the eol nor the eof go around for the rest */ s_eol = strchr (s, '\n'); if (!feof (in) && !s_eol) { s = strchr (s, '\0'); /* It should be s + size_to_get - 1 but this is safer */ continue; } /* If it is a comment line then discard it and go around again */ if (line [0] == '#') { s = line; continue; } /* Remove any line feed. Leave s_eol on the \0 */ if (s_eol) { *s_eol = '\0'; if (s_eol > line && *(s_eol-1) == '\r') *--s_eol = '\0'; } else s_eol = strchr (s, '\0'); /* If there is a concatenating \\ then go around again */ if (s_eol > line && *(s_eol-1) == '\\') { int c; s = s_eol-1; do { c = fgetc(in); } while(c == ' ' || c == '\t'); if(c == EOF) { fprintf(stderr,"%s: ERROR - invalid continuation.\n", getAppName()); } else { *s = c; s++; } continue; } lineW = GetWideString(line); break; /* That is the full virtual line */ } processRegEntry(lineW, FALSE); HeapFree(GetProcessHeap(), 0, lineW); } processRegEntry(NULL, FALSE); HeapFree(GetProcessHeap(), 0, line); } void processRegLinesW(FILE *in) { WCHAR* buf = NULL; /* line read from input stream */ ULONG lineSize = REG_VAL_BUF_SIZE; size_t CharsInBuf = -1; WCHAR* s; /* The pointer into line for where the current fgets should read */ buf = HeapAlloc(GetProcessHeap(), 0, lineSize * sizeof(WCHAR)); CHECK_ENOUGH_MEMORY(buf); s = buf; while(!feof(in)) { size_t size_remaining; int size_to_get; WCHAR *s_eol = NULL; /* various local uses */ /* Do we need to expand the buffer ? */ assert (s >= buf && s <= buf + lineSize); size_remaining = lineSize - (s-buf); if (size_remaining < 2) /* room for 1 character and the \0 */ { WCHAR *new_buffer; size_t new_size = lineSize + (REG_VAL_BUF_SIZE / sizeof(WCHAR)); if (new_size > lineSize) /* no arithmetic overflow */ new_buffer = HeapReAlloc (GetProcessHeap(), 0, buf, new_size * sizeof(WCHAR)); else new_buffer = NULL; CHECK_ENOUGH_MEMORY(new_buffer); buf = new_buffer; s = buf + lineSize - size_remaining; lineSize = new_size; size_remaining = lineSize - (s-buf); } /* Get as much as possible into the buffer, terminated either by * eof, error or getting the maximum amount. Abort on error. */ size_to_get = (size_remaining > INT_MAX ? INT_MAX : size_remaining); CharsInBuf = fread(s, sizeof(WCHAR), size_to_get - 1, in); s[CharsInBuf] = 0; if (CharsInBuf == 0) { if (ferror(in)) { perror ("While reading input"); exit (IO_ERROR); } else { assert (feof(in)); *s = '\0'; /* It is not clear to me from the definition that the * contents of the buffer are well defined on detecting * an eof without managing to read anything. */ } } /* If we didn't read the eol nor the eof go around for the rest */ while(1) { s_eol = strchrW(s, '\n'); if(!s_eol) break; /* If it is a comment line then discard it and go around again */ if (*s == '#') { s = s_eol + 1; continue; } /* If there is a concatenating \\ then go around again */ if ((*(s_eol-1) == '\\') || (*(s_eol-1) == '\r' && *(s_eol-2) == '\\')) { WCHAR* NextLine = s_eol; while(*(NextLine+1) == ' ' || *(NextLine+1) == '\t') NextLine++; NextLine++; if(*(s_eol-1) == '\r') s_eol--; MoveMemory(s_eol - 1, NextLine, (CharsInBuf - (NextLine - buf) + 1)*sizeof(WCHAR)); CharsInBuf -= NextLine - s_eol + 1; s_eol = 0; continue; } /* Remove any line feed. Leave s_eol on the \0 */ if (s_eol) { *s_eol = '\0'; if (s_eol > buf && *(s_eol-1) == '\r') *(s_eol-1) = '\0'; } if(!s_eol) break; processRegEntry(s, TRUE); s = s_eol + 1; s_eol = 0; continue; /* That is the full virtual line */ } } processRegEntry(NULL, TRUE); HeapFree(GetProcessHeap(), 0, buf); } /**************************************************************************** * REGPROC_print_error * * Print the message for GetLastError */ static void REGPROC_print_error(void) { LPVOID lpMsgBuf; DWORD error_code; int status; error_code = GetLastError (); status = FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM, NULL, error_code, 0, (LPTSTR) &lpMsgBuf, 0, NULL); if (!status) { fprintf(stderr,"%s: Cannot display message for error %d, status %d\n", getAppName(), error_code, GetLastError()); exit(1); } puts(lpMsgBuf); LocalFree((HLOCAL)lpMsgBuf); exit(1); } /****************************************************************************** * Checks whether the buffer has enough room for the string or required size. * Resizes the buffer if necessary. * * Parameters: * buffer - pointer to a buffer for string * len - current length of the buffer in characters. * required_len - length of the string to place to the buffer in characters. * The length does not include the terminating null character. */ static void REGPROC_resize_char_buffer(WCHAR **buffer, DWORD *len, DWORD required_len) { required_len++; if (required_len > *len) { *len = required_len; if (!*buffer) *buffer = HeapAlloc(GetProcessHeap(), 0, *len * sizeof(**buffer)); else *buffer = HeapReAlloc(GetProcessHeap(), 0, *buffer, *len * sizeof(**buffer)); CHECK_ENOUGH_MEMORY(*buffer); } } /****************************************************************************** * Prints string str to file */ static void REGPROC_export_string(WCHAR **line_buf, DWORD *line_buf_size, DWORD *line_len, WCHAR *str, DWORD str_len) { DWORD i, pos; DWORD extra = 0; REGPROC_resize_char_buffer(line_buf, line_buf_size, *line_len + str_len + 10); /* escaping characters */ pos = *line_len; for (i = 0; i < str_len; i++) { WCHAR c = str[i]; switch (c) { case '\n': extra++; REGPROC_resize_char_buffer(line_buf, line_buf_size, *line_len + str_len + extra); (*line_buf)[pos++] = '\\'; (*line_buf)[pos++] = 'n'; break; case '\\': case '"': extra++; REGPROC_resize_char_buffer(line_buf, line_buf_size, *line_len + str_len + extra); (*line_buf)[pos++] = '\\'; /* Fall through */ default: (*line_buf)[pos++] = c; break; } } (*line_buf)[pos] = '\0'; *line_len = pos; } static void REGPROC_export_binary(WCHAR **line_buf, DWORD *line_buf_size, DWORD *line_len, DWORD type, BYTE *value, DWORD value_size, BOOL unicode) { DWORD hex_pos, data_pos; const WCHAR *hex_prefix; const WCHAR hex[] = {'h','e','x',':',0}; WCHAR hex_buf[17]; const WCHAR concat[] = {'\\','\n',' ',' ',0}; DWORD concat_prefix, concat_len; const WCHAR newline[] = {'\n',0}; CHAR* value_multibyte = NULL; if (type == REG_BINARY) { hex_prefix = hex; } else { const WCHAR hex_format[] = {'h','e','x','(','%','u',')',':',0}; hex_prefix = hex_buf; sprintfW(hex_buf, hex_format, type); if ((type == REG_SZ || type == REG_EXPAND_SZ || type == REG_MULTI_SZ) && !unicode) { value_multibyte = GetMultiByteStringN((WCHAR*)value, value_size / sizeof(WCHAR), &value_size); value = (BYTE*)value_multibyte; } } concat_len = lstrlenW(concat); concat_prefix = 2; hex_pos = *line_len; *line_len += lstrlenW(hex_prefix); data_pos = *line_len; *line_len += value_size * 3; /* - The 2 spaces that concat places at the start of the * line effectively reduce the space available for data. * - If the value name and hex prefix are very long * ( > REG_FILE_HEX_LINE_LEN) then we may overestimate * the needed number of lines by one. But that's ok. * - The trailing linefeed takes the place of a comma so * it's accounted for already. */ *line_len += *line_len / (REG_FILE_HEX_LINE_LEN - concat_prefix) * concat_len; REGPROC_resize_char_buffer(line_buf, line_buf_size, *line_len); lstrcpyW(*line_buf + hex_pos, hex_prefix); if (value_size) { const WCHAR format[] = {'%','0','2','x',0}; DWORD i, column; column = data_pos; /* no line wrap yet */ i = 0; while (1) { sprintfW(*line_buf + data_pos, format, (unsigned int)value[i]); data_pos += 2; if (++i == value_size) break; (*line_buf)[data_pos++] = ','; column += 3; /* wrap the line */ if (column >= REG_FILE_HEX_LINE_LEN) { lstrcpyW(*line_buf + data_pos, concat); data_pos += concat_len; column = concat_prefix; } } } lstrcpyW(*line_buf + data_pos, newline); HeapFree(GetProcessHeap(), 0, value_multibyte); } /****************************************************************************** * Writes the given line to a file, in multi-byte or wide characters */ static void REGPROC_write_line(FILE *file, const WCHAR* str, BOOL unicode) { if(unicode) { fwrite(str, sizeof(WCHAR), lstrlenW(str), file); } else { char* strA = GetMultiByteString(str); fputs(strA, file); HeapFree(GetProcessHeap(), 0, strA); } } /****************************************************************************** * Writes contents of the registry key to the specified file stream. * * Parameters: * file - writable file stream to export registry branch to. * key - registry branch to export. * reg_key_name_buf - name of the key with registry class. * Is resized if necessary. * reg_key_name_size - length of the buffer for the registry class in characters. * val_name_buf - buffer for storing value name. * Is resized if necessary. * val_name_size - length of the buffer for storing value names in characters. * val_buf - buffer for storing values while extracting. * Is resized if necessary. * val_size - size of the buffer for storing values in bytes. */ static void export_hkey(FILE *file, HKEY key, WCHAR **reg_key_name_buf, DWORD *reg_key_name_size, WCHAR **val_name_buf, DWORD *val_name_size, BYTE **val_buf, DWORD *val_size, WCHAR **line_buf, DWORD *line_buf_size, BOOL unicode) { DWORD max_sub_key_len; DWORD max_val_name_len; DWORD max_val_size; DWORD curr_len; DWORD i; BOOL more_data; LONG ret; WCHAR key_format[] = {'\n','[','%','s',']','\n',0}; /* get size information and resize the buffers if necessary */ if (RegQueryInfoKeyW(key, NULL, NULL, NULL, NULL, &max_sub_key_len, NULL, NULL, &max_val_name_len, &max_val_size, NULL, NULL ) != ERROR_SUCCESS) { REGPROC_print_error(); } curr_len = strlenW(*reg_key_name_buf); REGPROC_resize_char_buffer(reg_key_name_buf, reg_key_name_size, max_sub_key_len + curr_len + 1); REGPROC_resize_char_buffer(val_name_buf, val_name_size, max_val_name_len); if (max_val_size > *val_size) { *val_size = max_val_size; if (!*val_buf) *val_buf = HeapAlloc(GetProcessHeap(), 0, *val_size); else *val_buf = HeapReAlloc(GetProcessHeap(), 0, *val_buf, *val_size); CHECK_ENOUGH_MEMORY(val_buf); } REGPROC_resize_char_buffer(line_buf, line_buf_size, lstrlenW(*reg_key_name_buf) + 4); /* output data for the current key */ sprintfW(*line_buf, key_format, *reg_key_name_buf); REGPROC_write_line(file, *line_buf, unicode); /* print all the values */ i = 0; more_data = TRUE; while(more_data) { DWORD value_type; DWORD val_name_size1 = *val_name_size; DWORD val_size1 = *val_size; ret = RegEnumValueW(key, i, *val_name_buf, &val_name_size1, NULL, &value_type, *val_buf, &val_size1); if (ret != ERROR_SUCCESS) { more_data = FALSE; if (ret != ERROR_NO_MORE_ITEMS) { REGPROC_print_error(); } } else { DWORD line_len; i++; if ((*val_name_buf)[0]) { const WCHAR val_start[] = {'"','%','s','"','=',0}; line_len = 3 + lstrlenW(*val_name_buf); REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len); sprintfW(*line_buf, val_start, *val_name_buf); } else { const WCHAR std_val[] = {'@','=',0}; line_len = 2; REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len); lstrcpyW(*line_buf, std_val); } switch (value_type) { case REG_SZ: { WCHAR* wstr = (WCHAR*)*val_buf; if (val_size1 < sizeof(WCHAR) || val_size1 % sizeof(WCHAR) || wstr[val_size1 / sizeof(WCHAR) - 1]) { REGPROC_export_binary(line_buf, line_buf_size, &line_len, value_type, *val_buf, val_size1, unicode); } else { const WCHAR start[] = {'"',0}; const WCHAR end[] = {'"','\n',0}; DWORD len; len = lstrlenW(start); REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len + len); lstrcpyW(*line_buf + line_len, start); line_len += len; /* At this point we know wstr is '\0'-terminated * so we can substract 1 from the size */ REGPROC_export_string(line_buf, line_buf_size, &line_len, wstr, val_size1 / sizeof(WCHAR) - 1); REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len + lstrlenW(end)); lstrcpyW(*line_buf + line_len, end); } break; } case REG_DWORD: { WCHAR format[] = {'d','w','o','r','d',':','%','0','8','x','\n',0}; REGPROC_resize_char_buffer(line_buf, line_buf_size, line_len + 15); sprintfW(*line_buf + line_len, format, *((DWORD *)*val_buf)); break; } default: { char* key_nameA = GetMultiByteString(*reg_key_name_buf); char* value_nameA = GetMultiByteString(*val_name_buf); fprintf(stderr,"%s: warning - unsupported registry format '%d', " "treat as binary\n", getAppName(), value_type); fprintf(stderr,"key name: \"%s\"\n", key_nameA); fprintf(stderr,"value name:\"%s\"\n\n", value_nameA); HeapFree(GetProcessHeap(), 0, key_nameA); HeapFree(GetProcessHeap(), 0, value_nameA); } /* falls through */ case REG_EXPAND_SZ: case REG_MULTI_SZ: /* falls through */ case REG_BINARY: REGPROC_export_binary(line_buf, line_buf_size, &line_len, value_type, *val_buf, val_size1, unicode); } REGPROC_write_line(file, *line_buf, unicode); } } i = 0; more_data = TRUE; (*reg_key_name_buf)[curr_len] = '\\'; while(more_data) { DWORD buf_size = *reg_key_name_size - curr_len - 1; ret = RegEnumKeyExW(key, i, *reg_key_name_buf + curr_len + 1, &buf_size, NULL, NULL, NULL, NULL); if (ret != ERROR_SUCCESS && ret != ERROR_MORE_DATA) { more_data = FALSE; if (ret != ERROR_NO_MORE_ITEMS) { REGPROC_print_error(); } } else { HKEY subkey; i++; if (RegOpenKeyW(key, *reg_key_name_buf + curr_len + 1, &subkey) == ERROR_SUCCESS) { export_hkey(file, subkey, reg_key_name_buf, reg_key_name_size, val_name_buf, val_name_size, val_buf, val_size, line_buf, line_buf_size, unicode); RegCloseKey(subkey); } else { REGPROC_print_error(); } } } (*reg_key_name_buf)[curr_len] = '\0'; } /****************************************************************************** * Open file for export. */ static FILE *REGPROC_open_export_file(WCHAR *file_name, BOOL unicode) { FILE *file; WCHAR dash = '-'; if (strncmpW(file_name,&dash,1)==0) file=stdout; else { CHAR* file_nameA = GetMultiByteString(file_name); file = fopen(file_nameA, "w"); if (!file) { perror(""); fprintf(stderr,"%s: Can't open file \"%s\"\n", getAppName(), file_nameA); HeapFree(GetProcessHeap(), 0, file_nameA); exit(1); } HeapFree(GetProcessHeap(), 0, file_nameA); } if(unicode) { const BYTE unicode_seq[] = {0xff,0xfe}; const WCHAR header[] = {'W','i','n','d','o','w','s',' ','R','e','g','i','s','t','r','y',' ','E','d','i','t','o','r',' ','V','e','r','s','i','o','n',' ','5','.','0','0','\n'}; fwrite(unicode_seq, sizeof(BYTE), sizeof(unicode_seq)/sizeof(unicode_seq[0]), file); fwrite(header, sizeof(WCHAR), sizeof(header)/sizeof(header[0]), file); } else { fputs("REGEDIT4\n", file); } return file; } /****************************************************************************** * Writes contents of the registry key to the specified file stream. * * Parameters: * file_name - name of a file to export registry branch to. * reg_key_name - registry branch to export. The whole registry is exported if * reg_key_name is NULL or contains an empty string. */ BOOL export_registry_key(WCHAR *file_name, WCHAR *reg_key_name, DWORD format) { WCHAR *reg_key_name_buf; WCHAR *val_name_buf; BYTE *val_buf; WCHAR *line_buf; DWORD reg_key_name_size = KEY_MAX_LEN; DWORD val_name_size = KEY_MAX_LEN; DWORD val_size = REG_VAL_BUF_SIZE; DWORD line_buf_size = KEY_MAX_LEN + REG_VAL_BUF_SIZE; FILE *file = NULL; BOOL unicode = (format == REG_FORMAT_5); reg_key_name_buf = HeapAlloc(GetProcessHeap(), 0, reg_key_name_size * sizeof(*reg_key_name_buf)); val_name_buf = HeapAlloc(GetProcessHeap(), 0, val_name_size * sizeof(*val_name_buf)); val_buf = HeapAlloc(GetProcessHeap(), 0, val_size); line_buf = HeapAlloc(GetProcessHeap(), 0, line_buf_size * sizeof(*line_buf)); CHECK_ENOUGH_MEMORY(reg_key_name_buf && val_name_buf && val_buf && line_buf); if (reg_key_name && reg_key_name[0]) { HKEY reg_key_class; WCHAR *branch_name = NULL; HKEY key; REGPROC_resize_char_buffer(®_key_name_buf, ®_key_name_size, lstrlenW(reg_key_name)); lstrcpyW(reg_key_name_buf, reg_key_name); /* open the specified key */ if (!parseKeyName(reg_key_name, ®_key_class, &branch_name)) { CHAR* key_nameA = GetMultiByteString(reg_key_name); fprintf(stderr,"%s: Incorrect registry class specification in '%s'\n", getAppName(), key_nameA); HeapFree(GetProcessHeap(), 0, key_nameA); exit(1); } if (!branch_name[0]) { /* no branch - registry class is specified */ file = REGPROC_open_export_file(file_name, unicode); export_hkey(file, reg_key_class, ®_key_name_buf, ®_key_name_size, &val_name_buf, &val_name_size, &val_buf, &val_size, &line_buf, &line_buf_size, unicode); } else if (RegOpenKeyW(reg_key_class, branch_name, &key) == ERROR_SUCCESS) { file = REGPROC_open_export_file(file_name, unicode); export_hkey(file, key, ®_key_name_buf, ®_key_name_size, &val_name_buf, &val_name_size, &val_buf, &val_size, &line_buf, &line_buf_size, unicode); RegCloseKey(key); } else { CHAR* key_nameA = GetMultiByteString(reg_key_name); fprintf(stderr,"%s: Can't export. Registry key '%s' does not exist!\n", getAppName(), key_nameA); HeapFree(GetProcessHeap(), 0, key_nameA); REGPROC_print_error(); } } else { unsigned int i; /* export all registry classes */ file = REGPROC_open_export_file(file_name, unicode); for (i = 0; i < REG_CLASS_NUMBER; i++) { /* do not export HKEY_CLASSES_ROOT */ if (reg_class_keys[i] != HKEY_CLASSES_ROOT && reg_class_keys[i] != HKEY_CURRENT_USER && reg_class_keys[i] != HKEY_CURRENT_CONFIG && reg_class_keys[i] != HKEY_DYN_DATA) { lstrcpyW(reg_key_name_buf, reg_class_namesW[i]); export_hkey(file, reg_class_keys[i], ®_key_name_buf, ®_key_name_size, &val_name_buf, &val_name_size, &val_buf, &val_size, &line_buf, &line_buf_size, unicode); } } } if (file) { fclose(file); } HeapFree(GetProcessHeap(), 0, reg_key_name); HeapFree(GetProcessHeap(), 0, val_name_buf); HeapFree(GetProcessHeap(), 0, val_buf); HeapFree(GetProcessHeap(), 0, line_buf); return TRUE; } /****************************************************************************** * Reads contents of the specified file into the registry. */ BOOL import_registry_file(FILE* reg_file) { if (reg_file) { BYTE s[2]; if (fread( s, 2, 1, reg_file) == 1) { if (s[0] == 0xff && s[1] == 0xfe) { processRegLinesW(reg_file); } else { rewind(reg_file); processRegLinesA(reg_file); } } return TRUE; } return FALSE; } /****************************************************************************** * Removes the registry key with all subkeys. Parses full key name. * * Parameters: * reg_key_name - full name of registry branch to delete. Ignored if is NULL, * empty, points to register key class, does not exist. */ void delete_registry_key(WCHAR *reg_key_name) { WCHAR *key_name = NULL; HKEY key_class; if (!reg_key_name || !reg_key_name[0]) return; if (!parseKeyName(reg_key_name, &key_class, &key_name)) { char* reg_key_nameA = GetMultiByteString(reg_key_name); fprintf(stderr,"%s: Incorrect registry class specification in '%s'\n", getAppName(), reg_key_nameA); HeapFree(GetProcessHeap(), 0, reg_key_nameA); exit(1); } if (!*key_name) { char* reg_key_nameA = GetMultiByteString(reg_key_name); fprintf(stderr,"%s: Can't delete registry class '%s'\n", getAppName(), reg_key_nameA); HeapFree(GetProcessHeap(), 0, reg_key_nameA); exit(1); } RegDeleteTreeW(key_class, key_name); }