/* * Copyright 1993 Robert J. Amstadt * Copyright 1995 Martin von Loewis * Copyright 1995, 1996, 1997 Alexandre Julliard * Copyright 1997 Eric Youngdale * Copyright 1999 Ulrich Weigand */ #include #include #include #include #include #include #include "winbase.h" #include "winnt.h" #include "module.h" #include "neexe.h" #include "selectors.h" #include "stackframe.h" #include "builtin16.h" #include "thread.h" #ifdef NEED_UNDERSCORE_PREFIX # define PREFIX "_" #else # define PREFIX #endif #ifdef HAVE_ASM_STRING # define STRING ".string" #else # define STRING ".ascii" #endif #if defined(__GNUC__) && !defined(__svr4__) # define USE_STABS #else # undef USE_STABS #endif typedef enum { TYPE_INVALID, TYPE_BYTE, /* byte variable (Win16) */ TYPE_WORD, /* word variable (Win16) */ TYPE_LONG, /* long variable (Win16) */ TYPE_PASCAL_16, /* pascal function with 16-bit return (Win16) */ TYPE_PASCAL, /* pascal function with 32-bit return (Win16) */ TYPE_ABS, /* absolute value (Win16) */ TYPE_REGISTER, /* register function */ TYPE_INTERRUPT, /* interrupt handler function (Win16) */ TYPE_STUB, /* unimplemented stub */ TYPE_STDCALL, /* stdcall function (Win32) */ TYPE_CDECL, /* cdecl function (Win32) */ TYPE_VARARGS, /* varargs function (Win32) */ TYPE_EXTERN, /* external symbol (Win32) */ TYPE_FORWARD, /* forwarded function (Win32) */ TYPE_NBTYPES } ORD_TYPE; static const char * const TypeNames[TYPE_NBTYPES] = { NULL, "byte", /* TYPE_BYTE */ "word", /* TYPE_WORD */ "long", /* TYPE_LONG */ "pascal16", /* TYPE_PASCAL_16 */ "pascal", /* TYPE_PASCAL */ "equate", /* TYPE_ABS */ "register", /* TYPE_REGISTER */ "interrupt", /* TYPE_INTERRUPT */ "stub", /* TYPE_STUB */ "stdcall", /* TYPE_STDCALL */ "cdecl", /* TYPE_CDECL */ "varargs", /* TYPE_VARARGS */ "extern", /* TYPE_EXTERN */ "forward" /* TYPE_FORWARD */ }; #define MAX_ORDINALS 2048 #define MAX_IMPORTS 16 /* Callback function used for stub functions */ #define STUB_CALLBACK \ ((SpecType == SPEC_WIN16) ? "RELAY_Unimplemented16": "RELAY_Unimplemented32") typedef enum { SPEC_INVALID, SPEC_WIN16, SPEC_WIN32 } SPEC_TYPE; typedef struct { int n_values; int *values; } ORD_VARIABLE; typedef struct { int n_args; char arg_types[32]; char link_name[80]; } ORD_FUNCTION; typedef struct { int arg_size; int ret_value; } ORD_RETURN; typedef struct { int value; } ORD_ABS; typedef struct { char link_name[80]; } ORD_VARARGS; typedef struct { char link_name[80]; } ORD_EXTERN; typedef struct { char link_name[80]; } ORD_FORWARD; typedef struct { ORD_TYPE type; int offset; int lineno; char name[80]; union { ORD_VARIABLE var; ORD_FUNCTION func; ORD_RETURN ret; ORD_ABS abs; ORD_VARARGS vargs; ORD_EXTERN ext; ORD_FORWARD fwd; } u; } ORDDEF; static ORDDEF OrdinalDefinitions[MAX_ORDINALS]; static SPEC_TYPE SpecType = SPEC_INVALID; static char DLLName[80]; static char DLLFileName[80]; static int Limit = 0; static int Base = MAX_ORDINALS; static int DLLHeapSize = 0; static char *SpecName; static FILE *SpecFp; static WORD Code_Selector, Data_Selector; static char DLLInitFunc[80]; static char *DLLImports[MAX_IMPORTS]; static int nb_imports = 0; char *ParseBuffer = NULL; char *ParseNext; char ParseSaveChar; int Line; static int UsePIC = 0; static int debugging = 1; /* Offset of a structure field relative to the start of the struct */ #define STRUCTOFFSET(type,field) ((int)&((type *)0)->field) /* Offset of register relative to the start of the CONTEXT struct */ #define CONTEXTOFFSET(reg) STRUCTOFFSET(CONTEXT86,reg) /* Offset of register relative to the start of the STACK16FRAME struct */ #define STACK16OFFSET(reg) STRUCTOFFSET(STACK16FRAME,reg) /* Offset of register relative to the start of the STACK32FRAME struct */ #define STACK32OFFSET(reg) STRUCTOFFSET(STACK32FRAME,reg) /* Offset of the stack pointer relative to %fs:(0) */ #define STACKOFFSET (STRUCTOFFSET(TEB,cur_stack)) static void *xmalloc (size_t size) { void *res; res = malloc (size ? size : 1); if (res == NULL) { fprintf (stderr, "Virtual memory exhausted.\n"); exit (1); } return res; } static void *xrealloc (void *ptr, size_t size) { void *res = realloc (ptr, size); if (res == NULL) { fprintf (stderr, "Virtual memory exhausted.\n"); exit (1); } return res; } static char *xstrdup( const char *str ) { char *res = strdup( str ); if (!res) { fprintf (stderr, "Virtual memory exhausted.\n"); exit (1); } return res; } static int IsNumberString(char *s) { while (*s != '\0') if (!isdigit(*s++)) return 0; return 1; } static char *strupper(char *s) { char *p; for(p = s; *p != '\0'; p++) *p = toupper(*p); return s; } static char * GetTokenInLine(void) { char *p; char *token; if (ParseNext != ParseBuffer) { if (ParseSaveChar == '\0') return NULL; *ParseNext = ParseSaveChar; } /* * Remove initial white space. */ for (p = ParseNext; isspace(*p); p++) ; if ((*p == '\0') || (*p == '#')) return NULL; /* * Find end of token. */ token = p++; if (*token != '(' && *token != ')') while (*p != '\0' && *p != '(' && *p != ')' && !isspace(*p)) p++; ParseSaveChar = *p; ParseNext = p; *p = '\0'; return token; } static char * GetToken(void) { char *token; if (ParseBuffer == NULL) { ParseBuffer = xmalloc(512); ParseNext = ParseBuffer; while (1) { Line++; if (fgets(ParseBuffer, 511, SpecFp) == NULL) return NULL; if (ParseBuffer[0] != '#') break; } } while ((token = GetTokenInLine()) == NULL) { ParseNext = ParseBuffer; while (1) { Line++; if (fgets(ParseBuffer, 511, SpecFp) == NULL) return NULL; if (ParseBuffer[0] != '#') break; } } return token; } /******************************************************************* * ParseVariable * * Parse a variable definition. */ static int ParseVariable( ORDDEF *odp ) { char *endptr; int *value_array; int n_values; int value_array_size; char *token = GetToken(); if (*token != '(') { fprintf(stderr, "%s:%d: Expected '(' got '%s'\n", SpecName, Line, token); return -1; } n_values = 0; value_array_size = 25; value_array = xmalloc(sizeof(*value_array) * value_array_size); while ((token = GetToken()) != NULL) { if (*token == ')') break; value_array[n_values++] = strtol(token, &endptr, 0); if (n_values == value_array_size) { value_array_size += 25; value_array = xrealloc(value_array, sizeof(*value_array) * value_array_size); } if (endptr == NULL || *endptr != '\0') { fprintf(stderr, "%s:%d: Expected number value, got '%s'\n", SpecName, Line, token); return -1; } } if (token == NULL) { fprintf(stderr, "%s:%d: End of file in variable declaration\n", SpecName, Line); return -1; } odp->u.var.n_values = n_values; odp->u.var.values = xrealloc(value_array, sizeof(*value_array) * n_values); return 0; } /******************************************************************* * ParseExportFunction * * Parse a function definition. */ static int ParseExportFunction( ORDDEF *odp ) { char *token; int i; switch(SpecType) { case SPEC_WIN16: if (odp->type == TYPE_STDCALL) { fprintf( stderr, "%s:%d: 'stdcall' not supported for Win16\n", SpecName, Line ); return -1; } break; case SPEC_WIN32: if ((odp->type == TYPE_PASCAL) || (odp->type == TYPE_PASCAL_16)) { fprintf( stderr, "%s:%d: 'pascal' not supported for Win32\n", SpecName, Line ); return -1; } break; default: break; } token = GetToken(); if (*token != '(') { fprintf(stderr, "%s:%d: Expected '(' got '%s'\n", SpecName, Line, token); return -1; } for (i = 0; i < sizeof(odp->u.func.arg_types)-1; i++) { token = GetToken(); if (*token == ')') break; if (!strcmp(token, "word")) odp->u.func.arg_types[i] = 'w'; else if (!strcmp(token, "s_word")) odp->u.func.arg_types[i] = 's'; else if (!strcmp(token, "long") || !strcmp(token, "segptr")) odp->u.func.arg_types[i] = 'l'; else if (!strcmp(token, "ptr")) odp->u.func.arg_types[i] = 'p'; else if (!strcmp(token, "str")) odp->u.func.arg_types[i] = 't'; else if (!strcmp(token, "wstr")) odp->u.func.arg_types[i] = 'W'; else if (!strcmp(token, "segstr")) odp->u.func.arg_types[i] = 'T'; else if (!strcmp(token, "double")) { odp->u.func.arg_types[i++] = 'l'; odp->u.func.arg_types[i] = 'l'; } else { fprintf(stderr, "%s:%d: Unknown variable type '%s'\n", SpecName, Line, token); return -1; } if (SpecType == SPEC_WIN32) { if (strcmp(token, "long") && strcmp(token, "ptr") && strcmp(token, "str") && strcmp(token, "wstr") && strcmp(token, "double")) { fprintf( stderr, "%s:%d: Type '%s' not supported for Win32\n", SpecName, Line, token ); return -1; } } } if ((*token != ')') || (i >= sizeof(odp->u.func.arg_types))) { fprintf( stderr, "%s:%d: Too many arguments\n", SpecName, Line ); return -1; } odp->u.func.arg_types[i] = '\0'; if ((odp->type == TYPE_STDCALL) && !i) odp->type = TYPE_CDECL; /* stdcall is the same as cdecl for 0 args */ strcpy(odp->u.func.link_name, GetToken()); return 0; } /******************************************************************* * ParseEquate * * Parse an 'equate' definition. */ static int ParseEquate( ORDDEF *odp ) { char *endptr; char *token = GetToken(); int value = strtol(token, &endptr, 0); if (endptr == NULL || *endptr != '\0') { fprintf(stderr, "%s:%d: Expected number value, got '%s'\n", SpecName, Line, token); return -1; } if (SpecType == SPEC_WIN32) { fprintf( stderr, "%s:%d: 'equate' not supported for Win32\n", SpecName, Line ); return -1; } odp->u.abs.value = value; return 0; } /******************************************************************* * ParseStub * * Parse a 'stub' definition. */ static int ParseStub( ORDDEF *odp ) { odp->u.func.arg_types[0] = '\0'; strcpy( odp->u.func.link_name, STUB_CALLBACK ); return 0; } /******************************************************************* * ParseVarargs * * Parse an 'varargs' definition. */ static int ParseVarargs( ORDDEF *odp ) { char *token; if (SpecType == SPEC_WIN16) { fprintf( stderr, "%s:%d: 'varargs' not supported for Win16\n", SpecName, Line ); return -1; } token = GetToken(); if (*token != '(') { fprintf(stderr, "%s:%d: Expected '(' got '%s'\n", SpecName, Line, token); return -1; } token = GetToken(); if (*token != ')') { fprintf(stderr, "%s:%d: Expected ')' got '%s'\n", SpecName, Line, token); return -1; } strcpy( odp->u.vargs.link_name, GetToken() ); return 0; } /******************************************************************* * ParseInterrupt * * Parse an 'interrupt' definition. */ static int ParseInterrupt( ORDDEF *odp ) { char *token; if (SpecType == SPEC_WIN32) { fprintf( stderr, "%s:%d: 'interrupt' not supported for Win32\n", SpecName, Line ); return -1; } token = GetToken(); if (*token != '(') { fprintf(stderr, "%s:%d: Expected '(' got '%s'\n", SpecName, Line, token); return -1; } token = GetToken(); if (*token != ')') { fprintf(stderr, "%s:%d: Expected ')' got '%s'\n", SpecName, Line, token); return -1; } odp->u.func.arg_types[0] = '\0'; strcpy( odp->u.func.link_name, GetToken() ); return 0; } /******************************************************************* * ParseExtern * * Parse an 'extern' definition. */ static int ParseExtern( ORDDEF *odp ) { if (SpecType == SPEC_WIN16) { fprintf( stderr, "%s:%d: 'extern' not supported for Win16\n", SpecName, Line ); return -1; } strcpy( odp->u.ext.link_name, GetToken() ); return 0; } /******************************************************************* * ParseForward * * Parse a 'forward' definition. */ static int ParseForward( ORDDEF *odp ) { if (SpecType == SPEC_WIN16) { fprintf( stderr, "%s:%d: 'forward' not supported for Win16\n", SpecName, Line ); return -1; } strcpy( odp->u.fwd.link_name, GetToken() ); return 0; } /******************************************************************* * ParseOrdinal * * Parse an ordinal definition. */ static int ParseOrdinal(int ordinal) { ORDDEF *odp; char *token; if (ordinal >= MAX_ORDINALS) { fprintf(stderr, "%s:%d: Ordinal number too large\n", SpecName, Line ); return -1; } if (ordinal > Limit) Limit = ordinal; if (ordinal < Base) Base = ordinal; odp = &OrdinalDefinitions[ordinal]; if (!(token = GetToken())) { fprintf(stderr, "%s:%d: Expected type after ordinal\n", SpecName, Line); return -1; } for (odp->type = 0; odp->type < TYPE_NBTYPES; odp->type++) if (TypeNames[odp->type] && !strcmp( token, TypeNames[odp->type] )) break; if (odp->type >= TYPE_NBTYPES) { fprintf( stderr, "%s:%d: Expected type after ordinal, found '%s' instead\n", SpecName, Line, token ); return -1; } if (!(token = GetToken())) { fprintf( stderr, "%s:%d: Expected name after type\n", SpecName, Line ); return -1; } strcpy( odp->name, token ); odp->lineno = Line; switch(odp->type) { case TYPE_BYTE: case TYPE_WORD: case TYPE_LONG: return ParseVariable( odp ); case TYPE_PASCAL_16: case TYPE_PASCAL: case TYPE_REGISTER: case TYPE_STDCALL: case TYPE_CDECL: return ParseExportFunction( odp ); case TYPE_INTERRUPT: return ParseInterrupt( odp ); case TYPE_ABS: return ParseEquate( odp ); case TYPE_STUB: return ParseStub( odp ); case TYPE_VARARGS: return ParseVarargs( odp ); case TYPE_EXTERN: return ParseExtern( odp ); case TYPE_FORWARD: return ParseForward( odp ); default: fprintf( stderr, "Should not happen\n" ); return -1; } } /******************************************************************* * ParseTopLevel * * Parse a spec file. */ static int ParseTopLevel(void) { char *token; while ((token = GetToken()) != NULL) { if (strcmp(token, "name") == 0) { strcpy(DLLName, GetToken()); strupper(DLLName); if (!DLLFileName[0]) sprintf( DLLFileName, "%s.DLL", DLLName ); } else if (strcmp(token, "file") == 0) { strcpy(DLLFileName, GetToken()); strupper(DLLFileName); } else if (strcmp(token, "type") == 0) { token = GetToken(); if (!strcmp(token, "win16" )) SpecType = SPEC_WIN16; else if (!strcmp(token, "win32" )) SpecType = SPEC_WIN32; else { fprintf(stderr, "%s:%d: Type must be 'win16' or 'win32'\n", SpecName, Line); return -1; } } else if (strcmp(token, "heap") == 0) { token = GetToken(); if (!IsNumberString(token)) { fprintf(stderr, "%s:%d: Expected number after heap\n", SpecName, Line); return -1; } DLLHeapSize = atoi(token); } else if (strcmp(token, "init") == 0) { strcpy(DLLInitFunc, GetToken()); if (!DLLInitFunc[0]) fprintf(stderr, "%s:%d: Expected function name after init\n", SpecName, Line); } else if (strcmp(token, "import") == 0) { if (nb_imports >= MAX_IMPORTS) { fprintf( stderr, "%s:%d: Too many imports (limit %d)\n", SpecName, Line, MAX_IMPORTS ); return -1; } if (SpecType != SPEC_WIN32) { fprintf( stderr, "%s:%d: Imports not supported for Win16\n", SpecName, Line ); return -1; } DLLImports[nb_imports++] = xstrdup(GetToken()); } else if (IsNumberString(token)) { int ordinal; int rv; ordinal = atoi(token); if ((rv = ParseOrdinal(ordinal)) < 0) return rv; } else { fprintf(stderr, "%s:%d: Expected name, id, length or ordinal\n", SpecName, Line); return -1; } } return 0; } /******************************************************************* * StoreVariableCode * * Store a list of ints into a byte array. */ static int StoreVariableCode( unsigned char *buffer, int size, ORDDEF *odp ) { int i; switch(size) { case 1: for (i = 0; i < odp->u.var.n_values; i++) buffer[i] = odp->u.var.values[i]; break; case 2: for (i = 0; i < odp->u.var.n_values; i++) ((unsigned short *)buffer)[i] = odp->u.var.values[i]; break; case 4: for (i = 0; i < odp->u.var.n_values; i++) ((unsigned int *)buffer)[i] = odp->u.var.values[i]; break; } return odp->u.var.n_values * size; } /******************************************************************* * DumpBytes * * Dump a byte stream into the assembly code. */ static void DumpBytes( FILE *outfile, const unsigned char *data, int len, const char *label ) { int i; fprintf( outfile, "\nstatic BYTE %s[] = \n{", label ); for (i = 0; i < len; i++) { if (!(i & 0x0f)) fprintf( outfile, "\n " ); fprintf( outfile, "%d", *data++ ); if (i < len - 1) fprintf( outfile, ", " ); } fprintf( outfile, "\n};\n" ); } /******************************************************************* * BuildModule16 * * Build the in-memory representation of a 16-bit NE module, and dump it * as a byte stream into the assembly code. */ static int BuildModule16( FILE *outfile, int max_code_offset, int max_data_offset ) { ORDDEF *odp; int i; char *buffer; NE_MODULE *pModule; SEGTABLEENTRY *pSegment; OFSTRUCT *pFileInfo; BYTE *pstr; WORD *pword; ET_BUNDLE *bundle = 0; ET_ENTRY *entry = 0; /* Module layout: * NE_MODULE Module * OFSTRUCT File information * SEGTABLEENTRY Segment 1 (code) * SEGTABLEENTRY Segment 2 (data) * WORD[2] Resource table (empty) * BYTE[2] Imported names (empty) * BYTE[n] Resident names table * BYTE[n] Entry table */ buffer = xmalloc( 0x10000 ); pModule = (NE_MODULE *)buffer; memset( pModule, 0, sizeof(*pModule) ); pModule->magic = IMAGE_OS2_SIGNATURE; pModule->count = 1; pModule->next = 0; pModule->flags = NE_FFLAGS_SINGLEDATA | NE_FFLAGS_BUILTIN | NE_FFLAGS_LIBMODULE; pModule->dgroup = 2; pModule->heap_size = DLLHeapSize; pModule->stack_size = 0; pModule->ip = 0; pModule->cs = 0; pModule->sp = 0; pModule->ss = 0; pModule->seg_count = 2; pModule->modref_count = 0; pModule->nrname_size = 0; pModule->modref_table = 0; pModule->nrname_fpos = 0; pModule->moveable_entries = 0; pModule->alignment = 0; pModule->truetype = 0; pModule->os_flags = NE_OSFLAGS_WINDOWS; pModule->misc_flags = 0; pModule->dlls_to_init = 0; pModule->nrname_handle = 0; pModule->min_swap_area = 0; pModule->expected_version = 0x030a; pModule->module32 = 0; pModule->self = 0; pModule->self_loading_sel = 0; /* File information */ pFileInfo = (OFSTRUCT *)(pModule + 1); pModule->fileinfo = (int)pFileInfo - (int)pModule; memset( pFileInfo, 0, sizeof(*pFileInfo) - sizeof(pFileInfo->szPathName) ); pFileInfo->cBytes = sizeof(*pFileInfo) - sizeof(pFileInfo->szPathName) + strlen(DLLFileName); strcpy( pFileInfo->szPathName, DLLFileName ); pstr = (char *)pFileInfo + pFileInfo->cBytes + 1; #ifdef __i386__ /* FIXME: Alignment problems! */ /* Segment table */ pSegment = (SEGTABLEENTRY *)pstr; pModule->seg_table = (int)pSegment - (int)pModule; pSegment->filepos = 0; pSegment->size = max_code_offset; pSegment->flags = 0; pSegment->minsize = max_code_offset; pSegment->hSeg = 0; pSegment++; pModule->dgroup_entry = (int)pSegment - (int)pModule; pSegment->filepos = 0; pSegment->size = max_data_offset; pSegment->flags = NE_SEGFLAGS_DATA; pSegment->minsize = max_data_offset; pSegment->hSeg = 0; pSegment++; /* Resource table */ pword = (WORD *)pSegment; pModule->res_table = (int)pword - (int)pModule; *pword++ = 0; *pword++ = 0; /* Imported names table */ pstr = (char *)pword; pModule->import_table = (int)pstr - (int)pModule; *pstr++ = 0; *pstr++ = 0; /* Resident names table */ pModule->name_table = (int)pstr - (int)pModule; /* First entry is module name */ *pstr = strlen(DLLName ); strcpy( pstr + 1, DLLName ); pstr += *pstr + 1; *(WORD *)pstr = 0; pstr += sizeof(WORD); /* Store all ordinals */ odp = OrdinalDefinitions + 1; for (i = 1; i <= Limit; i++, odp++) { if (!odp->name[0]) continue; *pstr = strlen( odp->name ); strcpy( pstr + 1, odp->name ); strupper( pstr + 1 ); pstr += *pstr + 1; *(WORD *)pstr = i; pstr += sizeof(WORD); } *pstr++ = 0; /* Entry table */ pModule->entry_table = (int)pstr - (int)pModule; odp = OrdinalDefinitions + 1; for (i = 1; i <= Limit; i++, odp++) { int selector = 0; switch (odp->type) { case TYPE_CDECL: case TYPE_PASCAL: case TYPE_PASCAL_16: case TYPE_REGISTER: case TYPE_INTERRUPT: case TYPE_STUB: selector = 1; /* Code selector */ break; case TYPE_BYTE: case TYPE_WORD: case TYPE_LONG: selector = 2; /* Data selector */ break; case TYPE_ABS: selector = 0xfe; /* Constant selector */ break; default: selector = 0; /* Invalid selector */ break; } if ( !selector ) continue; if ( bundle && bundle->last+1 == i ) bundle->last++; else { if ( bundle ) bundle->next = (char *)pstr - (char *)pModule; bundle = (ET_BUNDLE *)pstr; bundle->first = i-1; bundle->last = i; bundle->next = 0; pstr += sizeof(ET_BUNDLE); } /* FIXME: is this really correct ?? */ entry = (ET_ENTRY *)pstr; entry->type = 0xff; /* movable */ entry->flags = 3; /* exported & public data */ entry->segnum = selector; entry->offs = odp->offset; pstr += sizeof(ET_ENTRY); } *pstr++ = 0; #endif /* Dump the module content */ DumpBytes( outfile, (char *)pModule, (int)pstr - (int)pModule, "Module" ); return (int)pstr - (int)pModule; } /******************************************************************* * BuildSpec32File * * Build a Win32 C file from a spec file. */ static int BuildSpec32File( char * specfile, FILE *outfile ) { ORDDEF *odp; int i, nb_names, fwd_size = 0; fprintf( outfile, "/* File generated automatically from %s; do not edit! */\n\n", specfile ); fprintf( outfile, "#include \"builtin32.h\"\n\n" ); /* Output code for all stubs functions */ fprintf( outfile, "extern const BUILTIN32_DESCRIPTOR %s_Descriptor;\n", DLLName ); for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++) { if (odp->type != TYPE_STUB) continue; fprintf( outfile, "static void __stub_%d() { BUILTIN32_Unimplemented(&%s_Descriptor,%d); }\n", i, DLLName, i ); } /* Output code for all register functions */ fprintf( outfile, "#ifdef __i386__\n" ); fprintf( outfile, "#ifndef __GNUC__\n" ); fprintf( outfile, "static void __asm__dummy() {\n" ); fprintf( outfile, "#endif /* !defined(__GNUC__) */\n" ); for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++) { if (odp->type != TYPE_REGISTER) continue; fprintf( outfile, "__asm__(\".align 4\\n\\t\"\n" " \".globl " PREFIX "%s\\n\\t\"\n" " \".type " PREFIX "%s,@function\\n\\t\"\n" " \"" PREFIX "%s:\\n\\t\"\n" " \"call " PREFIX "CALL32_Regs\\n\\t\"\n" " \".long " PREFIX "__regs_%s\\n\\t\"\n" " \".byte %d,%d\");\n", odp->u.func.link_name, odp->u.func.link_name, odp->u.func.link_name, odp->u.func.link_name, 4 * strlen(odp->u.func.arg_types), 4 * strlen(odp->u.func.arg_types) ); } fprintf( outfile, "#ifndef __GNUC__\n" ); fprintf( outfile, "}\n" ); fprintf( outfile, "#endif /* !defined(__GNUC__) */\n" ); fprintf( outfile, "#endif /* defined(__i386__) */\n" ); /* Output the DLL functions prototypes */ for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++) { switch(odp->type) { case TYPE_VARARGS: fprintf( outfile, "extern void %s();\n", odp->u.vargs.link_name ); break; case TYPE_EXTERN: fprintf( outfile, "extern void %s();\n", odp->u.ext.link_name ); break; case TYPE_REGISTER: case TYPE_STDCALL: case TYPE_CDECL: fprintf( outfile, "extern void %s();\n", odp->u.func.link_name ); break; case TYPE_FORWARD: fwd_size += strlen(odp->u.fwd.link_name) + 1; break; case TYPE_INVALID: case TYPE_STUB: break; default: fprintf(stderr,"build: function type %d not available for Win32\n", odp->type); return -1; } } /* Output LibMain function */ if (DLLInitFunc[0]) fprintf( outfile, "extern void %s();\n", DLLInitFunc ); /* Output the DLL functions table */ fprintf( outfile, "\nstatic const ENTRYPOINT32 Functions[%d] =\n{\n", Limit - Base + 1 ); for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++) { switch(odp->type) { case TYPE_INVALID: fprintf( outfile, " 0" ); break; case TYPE_VARARGS: fprintf( outfile, " %s", odp->u.vargs.link_name ); break; case TYPE_EXTERN: fprintf( outfile, " %s", odp->u.ext.link_name ); break; case TYPE_REGISTER: case TYPE_STDCALL: case TYPE_CDECL: fprintf( outfile, " %s", odp->u.func.link_name); break; case TYPE_STUB: fprintf( outfile, " __stub_%d", i ); break; case TYPE_FORWARD: fprintf( outfile, " (ENTRYPOINT32)\"%s\"", odp->u.fwd.link_name ); break; default: return -1; } if (i < Limit) fprintf( outfile, ",\n" ); } fprintf( outfile, "\n};\n\n" ); /* Output the DLL names table */ nb_names = 0; fprintf( outfile, "static const char * const FuncNames[] =\n{\n" ); for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++) { if (odp->type == TYPE_INVALID) continue; if (nb_names++) fprintf( outfile, ",\n" ); fprintf( outfile, " \"%s\"", odp->name ); } fprintf( outfile, "\n};\n\n" ); /* Output the DLL argument types */ fprintf( outfile, "static const unsigned int ArgTypes[%d] =\n{\n", Limit - Base + 1 ); for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++) { unsigned int j, mask = 0; if ((odp->type == TYPE_STDCALL) || (odp->type == TYPE_CDECL) || (odp->type == TYPE_REGISTER)) for (j = 0; odp->u.func.arg_types[j]; j++) { if (odp->u.func.arg_types[j] == 't') mask |= 1<< (j*2); if (odp->u.func.arg_types[j] == 'W') mask |= 2<< (j*2); } fprintf( outfile, " %d", mask ); if (i < Limit) fprintf( outfile, ",\n" ); } fprintf( outfile, "\n};\n\n" ); /* Output the DLL ordinals table */ fprintf( outfile, "static const unsigned short FuncOrdinals[] =\n{\n" ); nb_names = 0; for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++) { if (odp->type == TYPE_INVALID) continue; if (nb_names++) fprintf( outfile, ",\n" ); fprintf( outfile, " %d", i - Base ); } fprintf( outfile, "\n};\n\n" ); /* Output the DLL functions arguments */ fprintf( outfile, "static const unsigned char FuncArgs[%d] =\n{\n", Limit - Base + 1 ); for (i = Base, odp = OrdinalDefinitions + Base; i <= Limit; i++, odp++) { unsigned char args; switch(odp->type) { case TYPE_STDCALL: args = (unsigned char)strlen(odp->u.func.arg_types); break; case TYPE_CDECL: args = 0x80 | (unsigned char)strlen(odp->u.func.arg_types); break; case TYPE_REGISTER: args = 0x40 | (unsigned char)strlen(odp->u.func.arg_types); break; case TYPE_FORWARD: args = 0xfd; break; default: args = 0xff; break; } fprintf( outfile, " 0x%02x", args ); if (i < Limit) fprintf( outfile, ",\n" ); } fprintf( outfile, "\n};\n\n" ); /* Output the DLL imports */ if (nb_imports) { fprintf( outfile, "static const char * const Imports[%d] =\n{\n", nb_imports ); for (i = 0; i < nb_imports; i++) { fprintf( outfile, " \"%s\"", DLLImports[i] ); if (i < nb_imports-1) fprintf( outfile, ",\n" ); } fprintf( outfile, "\n};\n\n" ); } /* Output the DLL descriptor */ fprintf( outfile, "const BUILTIN32_DESCRIPTOR %s_Descriptor =\n{\n", DLLName ); fprintf( outfile, " \"%s\",\n", DLLName ); fprintf( outfile, " %d,\n", Base ); fprintf( outfile, " %d,\n", Limit - Base + 1 ); fprintf( outfile, " %d,\n", nb_names ); fprintf( outfile, " %d,\n", nb_imports ); fprintf( outfile, " %d,\n", (fwd_size + 3) & ~3 ); fprintf( outfile, " Functions,\n" " FuncNames,\n" " FuncOrdinals,\n" " FuncArgs,\n" " ArgTypes,\n"); fprintf( outfile, " %s,\n", nb_imports ? "Imports" : "0" ); fprintf( outfile, " %s\n", DLLInitFunc[0] ? DLLInitFunc : "0" ); fprintf( outfile, "};\n" ); return 0; } /******************************************************************* * Spec16TypeCompare */ static int Spec16TypeCompare( const void *e1, const void *e2 ) { const ORDDEF *odp1 = *(const ORDDEF **)e1; const ORDDEF *odp2 = *(const ORDDEF **)e2; int type1 = (odp1->type == TYPE_CDECL) ? 0 : (odp1->type == TYPE_REGISTER) ? 3 : (odp1->type == TYPE_INTERRUPT) ? 4 : (odp1->type == TYPE_PASCAL_16) ? 1 : 2; int type2 = (odp2->type == TYPE_CDECL) ? 0 : (odp2->type == TYPE_REGISTER) ? 3 : (odp2->type == TYPE_INTERRUPT) ? 4 : (odp2->type == TYPE_PASCAL_16) ? 1 : 2; int retval = type1 - type2; if ( !retval ) retval = strcmp( odp1->u.func.arg_types, odp2->u.func.arg_types ); return retval; } /******************************************************************* * BuildSpec16File * * Build a Win16 assembly file from a spec file. */ static int BuildSpec16File( char * specfile, FILE *outfile ) { ORDDEF *odp, **typelist; int i, j, k; int code_offset, data_offset, module_size; unsigned char *data; /* File header */ fprintf( outfile, "/* File generated automatically from %s; do not edit! */\n\n", specfile ); fprintf( outfile, "#define __FLATCS__ 0x%04x\n", Code_Selector ); fprintf( outfile, "#include \"builtin16.h\"\n\n" ); data = (unsigned char *)xmalloc( 0x10000 ); memset( data, 0, 16 ); data_offset = 16; /* Build sorted list of all argument types, without duplicates */ typelist = (ORDDEF **)calloc( Limit+1, sizeof(ORDDEF *) ); odp = OrdinalDefinitions; for (i = j = 0; i <= Limit; i++, odp++) { switch (odp->type) { case TYPE_REGISTER: case TYPE_INTERRUPT: case TYPE_CDECL: case TYPE_PASCAL: case TYPE_PASCAL_16: case TYPE_STUB: typelist[j++] = odp; default: break; } } qsort( typelist, j, sizeof(ORDDEF *), Spec16TypeCompare ); i = k = 0; while ( i < j ) { typelist[k++] = typelist[i++]; while ( i < j && Spec16TypeCompare( typelist + i, typelist + k-1 ) == 0 ) i++; } /* Output CallFrom16 profiles needed by this .spec file */ fprintf( outfile, "\n/* ### start build ### */\n" ); for ( i = 0; i < k; i++ ) fprintf( outfile, "extern void %s_CallFrom16_%s_%s_%s();\n", DLLName, (typelist[i]->type == TYPE_CDECL) ? "c" : "p", (typelist[i]->type == TYPE_REGISTER) ? "regs" : (typelist[i]->type == TYPE_INTERRUPT) ? "intr" : (typelist[i]->type == TYPE_PASCAL_16) ? "word" : "long", typelist[i]->u.func.arg_types ); fprintf( outfile, "/* ### stop build ### */\n\n" ); /* Output the DLL functions prototypes */ odp = OrdinalDefinitions; for (i = 0; i <= Limit; i++, odp++) { switch(odp->type) { case TYPE_REGISTER: case TYPE_INTERRUPT: case TYPE_CDECL: case TYPE_PASCAL: case TYPE_PASCAL_16: fprintf( outfile, "extern void %s();\n", odp->u.func.link_name ); break; default: break; } } /* Output code segment */ fprintf( outfile, "\nstatic ENTRYPOINT16 Code_Segment[] = \n{\n" ); code_offset = 0; odp = OrdinalDefinitions; for (i = 0; i <= Limit; i++, odp++) { switch (odp->type) { case TYPE_INVALID: odp->offset = 0xffff; break; case TYPE_ABS: odp->offset = LOWORD(odp->u.abs.value); break; case TYPE_BYTE: odp->offset = data_offset; data_offset += StoreVariableCode( data + data_offset, 1, odp); break; case TYPE_WORD: odp->offset = data_offset; data_offset += StoreVariableCode( data + data_offset, 2, odp); break; case TYPE_LONG: odp->offset = data_offset; data_offset += StoreVariableCode( data + data_offset, 4, odp); break; case TYPE_REGISTER: case TYPE_INTERRUPT: case TYPE_CDECL: case TYPE_PASCAL: case TYPE_PASCAL_16: case TYPE_STUB: fprintf( outfile, " /* %s.%d */ ", DLLName, i ); fprintf( outfile, "EP( %s, %s_CallFrom16_%s_%s_%s ),\n", odp->u.func.link_name, DLLName, (odp->type == TYPE_CDECL) ? "c" : "p", (odp->type == TYPE_REGISTER) ? "regs" : (odp->type == TYPE_INTERRUPT) ? "intr" : (odp->type == TYPE_PASCAL_16) ? "word" : "long", odp->u.func.arg_types ); odp->offset = code_offset; code_offset += sizeof(ENTRYPOINT16); break; default: fprintf(stderr,"build: function type %d not available for Win16\n", odp->type); return -1; } } if (!code_offset) /* Make sure the code segment is not empty */ { fprintf( outfile, " { },\n" ); code_offset += sizeof(ENTRYPOINT16); } fprintf( outfile, "};\n" ); /* Output data segment */ DumpBytes( outfile, data, data_offset, "Data_Segment" ); /* Build the module */ module_size = BuildModule16( outfile, code_offset, data_offset ); /* Output the DLL descriptor */ fprintf( outfile, "\nWIN16_DESCRIPTOR %s_Descriptor = \n{\n", DLLName ); fprintf( outfile, " \"%s\",\n", DLLName ); fprintf( outfile, " Module,\n" ); fprintf( outfile, " sizeof(Module),\n" ); fprintf( outfile, " (BYTE *)Code_Segment,\n" ); fprintf( outfile, " (BYTE *)Data_Segment\n" ); fprintf( outfile, "};\n" ); return 0; } /******************************************************************* * BuildSpecFile * * Build an assembly file from a spec file. */ static int BuildSpecFile( FILE *outfile, char *specname ) { SpecName = specname; SpecFp = fopen( specname, "r"); if (SpecFp == NULL) { fprintf(stderr, "Could not open specification file, '%s'\n", specname); return -1; } if (ParseTopLevel() < 0) return -1; switch(SpecType) { case SPEC_WIN16: return BuildSpec16File( specname, outfile ); case SPEC_WIN32: return BuildSpec32File( specname, outfile ); default: fprintf( stderr, "%s: Missing 'type' declaration\n", specname ); return -1; } } /******************************************************************* * BuildCallFrom16Func * * Build a 16-bit-to-Wine callback glue function. The syntax of the function * profile is: call_type_xxxxx, where 'call' is the letter 'c' or 'p' for C or * Pascal calling convention, 'type' is one of 'regs', 'intr', 'word' or * 'long' and each 'x' is an argument ('w'=word, 's'=signed word, * 'l'=long, 'p'=linear pointer, 't'=linear pointer to null-terminated string, * 'T'=segmented pointer to null-terminated string). * For register functions, the arguments (if present) are converted just * the same as for normal functions, but in addition a CONTEXT pointer * filled with the current register values is passed to the 32-bit routine. * A 'intr' interrupt handler routine is treated like a register routine * without arguments, except that upon return, the flags word pushed onto * the stack by the interrupt is removed. * * This glue function contains only that part of the 16->32 thunk that is * variable (depending on the type and number of arguments); the glue routine * is part of a particular DLL and uses a routine provided by the core to * perform those actions that do not depend on the argument type. * * The 16->32 glue routine consists of a main entry point (which must be part * of the ELF .data section) and two auxillary routines (in the .text section). * The main entry point pushes address of the 'Thunk' auxillary routine onto * the stack and then jumps to the appropriate core CallFrom16... routine. * Furthermore, at a fixed position relative to the main entry point, the * function profile string is stored if relay debugging is active; this string * will be consulted by the debugging routines in the core to correctly * display the arguments. * * The core will perform the switch to 32-bit, and then call back to the * 'Thunk' auxillary routine. This routine is expected to perform the * following tasks: * - modify the auxillary routine address in the STACK16FRAME to now * point to the 'ThunkRet' routine * - convert arguemnts and push them onto the 32-bit stack * - call the 32-bit target routine * * After the target routine (and then the 'Thunk' routine) have returned, * the core part will switch back to 16-bit, and finally jump to the * 'ThunkRet' auxillary routine. This routine is expected to convert the * return value if necessary (%eax -> %dx:%ax), and perform the appropriate * return to the 16-bit caller (lret or lret $argsize). * * In the case of a 'register' routine, there is no 'ThunkRet' auxillary * routine, as the reloading of all registers and return to 16-bit code * is done by the core routine. The number of arguments to be popped off * the caller's stack must be returned (in %eax) by the 'Thunk' routine. * * NOTE: The generated routines contain only proper position-independent * code and may thus be used within shared objects (e.g. libwine.so * or elfdlls). The exception is the main entry point, which must * contain absolute relocations but cannot yet use the GOT; thus * this entry point is made part of the ELF .data section. */ static void BuildCallFrom16Func( FILE *outfile, char *profile, char *prefix ) { int i, pos, argsize = 0; int short_ret = 0; int reg_func = 0; int usecdecl = 0; char *args = profile + 7; /* Parse function type */ if (!strncmp( "c_", profile, 2 )) usecdecl = 1; else if (strncmp( "p_", profile, 2 )) { fprintf( stderr, "Invalid function name '%s', ignored\n", profile ); return; } if (!strncmp( "word_", profile + 2, 5 )) short_ret = 1; else if (!strncmp( "regs_", profile + 2, 5 )) reg_func = 1; else if (!strncmp( "intr_", profile + 2, 5 )) reg_func = 2; else if (strncmp( "long_", profile + 2, 5 )) { fprintf( stderr, "Invalid function name '%s', ignored\n", profile ); return; } for ( i = 0; args[i]; i++ ) switch ( args[i] ) { case 'w': /* word */ case 's': /* s_word */ argsize += 2; break; case 'l': /* long or segmented pointer */ case 'T': /* segmented pointer to null-terminated string */ case 'p': /* linear pointer */ case 't': /* linear pointer to null-terminated string */ argsize += 4; break; } /* * Build main entry point (in .data section) * * NOTE: If you change this, you must also change the retrieval of * the profile string relative to the main entry point address * (see BUILTIN_GetEntryPoint16 in if1632/builtin.c). */ fprintf( outfile, "\t.data\n" ); fprintf( outfile, "\t.globl " PREFIX "%s_CallFrom16_%s\n", prefix, profile ); fprintf( outfile, PREFIX "%s_CallFrom16_%s:\n", prefix, profile ); fprintf( outfile, "\tpushl $.L%s_Thunk_%s\n", prefix, profile ); fprintf( outfile, "\tjmp " PREFIX "%s\n", !reg_func? "CallFrom16" : "CallFrom16Register" ); if ( debugging ) fprintf( outfile, "\t" STRING " \"%s\\0\"\n", profile ); /* * Build *Thunk* routine * * This routine gets called by the main CallFrom16 routine with * registers set up as follows: * * STACK16FRAME is completely set up on the 16-bit stack * DS, ES, SS: flat data segment * FS: current TEB * ESP: points to 32-bit stack * EBP: points to ebp member of last STACK32FRAME * EDX: points to current STACK16FRAME * ECX: points to ldt_copy */ fprintf( outfile, "\t.text\n" ); fprintf( outfile, ".L%s_Thunk_%s:\n", prefix, profile ); if ( reg_func ) fprintf( outfile, "\tleal 4(%%esp), %%eax\n" "\tpushl %%eax\n" ); else fprintf( outfile, "\taddl $[.L%s_ThunkRet_%s - .L%s_Thunk_%s], %d(%%edx)\n", prefix, profile, prefix, profile, STACK16OFFSET(relay)); /* Copy the arguments */ pos = (usecdecl? argsize : 0) + sizeof( STACK16FRAME ); args = profile + 7; for ( i = strlen(args)-1; i >= 0; i-- ) switch (args[i]) { case 'w': /* word */ if ( usecdecl ) pos -= 2; fprintf( outfile, "\tmovzwl %d(%%edx),%%eax\n", pos ); fprintf( outfile, "\tpushl %%eax\n" ); if ( !usecdecl ) pos += 2; break; case 's': /* s_word */ if ( usecdecl ) pos -= 2; fprintf( outfile, "\tmovswl %d(%%edx),%%eax\n", pos ); fprintf( outfile, "\tpushl %%eax\n" ); if ( !usecdecl ) pos += 2; break; case 'l': /* long or segmented pointer */ case 'T': /* segmented pointer to null-terminated string */ if ( usecdecl ) pos -= 4; fprintf( outfile, "\tpushl %d(%%edx)\n", pos ); if ( !usecdecl ) pos += 4; break; case 'p': /* linear pointer */ case 't': /* linear pointer to null-terminated string */ if ( usecdecl ) pos -= 4; /* Get the selector */ fprintf( outfile, "\tmovzwl %d(%%edx),%%eax\n", pos + 2 ); /* Get the selector base */ fprintf( outfile, "\tandl $0xfff8,%%eax\n" ); fprintf( outfile, "\tpushl (%%ecx,%%eax)\n" ); /* Add the offset */ fprintf( outfile, "\tmovzwl %d(%%edx),%%eax\n", pos ); fprintf( outfile, "\taddl %%eax,(%%esp)\n" ); if ( !usecdecl ) pos += 4; break; default: fprintf( stderr, "Unknown arg type '%c'\n", args[i] ); } /* Call entry point */ fprintf( outfile, "\tcall *%d(%%edx)\n", STACK16OFFSET(entry_point) ); if ( reg_func ) fprintf( outfile, "\tmovl $%d, %%eax\n", reg_func == 2 ? 2 : argsize ); fprintf( outfile, "\tret\n" ); /* * Build *ThunkRet* routine * * At this point, all registers are set up for return to 16-bit code. * EAX contains the function return value. * SS:SP point to the return address to the caller (on 16-bit stack). */ if ( !reg_func ) { fprintf( outfile, ".L%s_ThunkRet_%s:\n", prefix, profile ); if ( !short_ret ) fprintf( outfile, "\tshldl $16, %%eax, %%edx\n" ); if ( !usecdecl && argsize ) { fprintf( outfile, "\t.byte 0x66\n" ); fprintf( outfile, "\tlret $%d\n", argsize ); } else { fprintf( outfile, "\t.byte 0x66\n" ); fprintf( outfile, "\tlret\n" ); } } fprintf( outfile, "\n" ); } /******************************************************************* * BuildCallTo16Func * * Build a Wine-to-16-bit callback glue function. As above, this glue * routine will only contain the argument-type dependent part of the * thunk; the rest will be done by a routine provided by the core. * * Prototypes for the CallTo16 functions: * extern WORD PREFIX_CallTo16_word_xxx( FARPROC16 func, args... ); * extern LONG PREFIX_CallTo16_long_xxx( FARPROC16 func, args... ); * * The main entry point of the glue routine simply performs a call to * the proper core routine depending on the return type (WORD/LONG). * Note that the core will never perform a return from this call; however, * it will use the return address on the stack to access the other * argument-type dependent parts of the thunk. (If relay debugging is * active, the core routine will access the number of arguments stored * in the code section immediately precending the main entry point). * * After the core routine has performed the switch to 16-bit code, it * will call the argument-transfer routine provided by the glue code * immediately after the main entry point. This routine is expected * to transfer the arguments to the 16-bit stack, finish loading the * register for 16-bit code (%ds and %es must be loaded from %ss), * and call the 16-bit target. * * The target will return to a 16:16 return address provided by the core. * The core will finalize the switch back to 32-bit and the return to * the caller without additional support by the glue code. Note that * the 32-bit arguments will not be popped off the stack (hence the * CallTo... routine must *not* be declared WINAPI/CALLBACK). * */ static void BuildCallTo16Func( FILE *outfile, char *profile, char *prefix ) { char *args = profile + 5; int pos, short_ret = 0; if (!strncmp( "word_", profile, 5 )) short_ret = 1; else if (strncmp( "long_", profile, 5 )) { fprintf( stderr, "Invalid function name '%s'.\n", profile ); exit(1); } if ( debugging ) { /* Number of arguments (for relay debugging) */ fprintf( outfile, "\n\t.align 4\n" ); fprintf( outfile, "\t.long %d\n", strlen(args) ); } /* Main entry point */ #ifdef USE_STABS fprintf( outfile, ".stabs \"%s_CallTo16_%s:F1\",36,0,0," PREFIX "%s_CallTo16_%s\n", prefix, profile, prefix, profile); #endif fprintf( outfile, "\t.globl " PREFIX "%s_CallTo16_%s\n", prefix, profile ); fprintf( outfile, PREFIX "%s_CallTo16_%s:\n", prefix, profile ); if ( short_ret ) fprintf( outfile, "\tcall " PREFIX "CallTo16Word\n" ); else fprintf( outfile, "\tcall " PREFIX "CallTo16Long\n" ); /* Return to caller (using STDCALL calling convention) */ if ( strlen( args ) > 0 ) fprintf( outfile, "\tret $%d\n", strlen( args ) * 4 ); else { fprintf( outfile, "\tret\n" ); /* Note: the arg transfer routine must start exactly three bytes after the return stub, hence the nop's */ fprintf( outfile, "\tnop\n" ); fprintf( outfile, "\tnop\n" ); } /* * The core routine will call here with registers set up as follows: * * SS:SP points to the 16-bit stack * SS:BP points to the bp member of last STACK16FRAME * EDX points to the current STACK32FRAME * ECX contains the 16:16 return address * FS contains the last 16-bit %fs value */ /* Transfer the arguments */ pos = STACK32OFFSET(args) + 4; /* first arg is target address */ while (*args) { switch (*args++) { case 'w': /* word */ fprintf( outfile, "\tpushw %d(%%edx)\n", pos ); break; case 'l': /* long */ fprintf( outfile, "\tpushl %d(%%edx)\n", pos ); break; default: fprintf( stderr, "Unexpected case '%c' in BuildCallTo16Func\n", args[-1] ); } pos += 4; } /* Push the return address */ fprintf( outfile, "\tpushl %%ecx\n" ); /* Push the called routine address */ fprintf( outfile, "\tpushl %d(%%edx)\n", STACK32OFFSET(args) ); /* Set %ds and %es (and %ax just in case) equal to %ss */ fprintf( outfile, "\tmovw %%ss,%%ax\n" ); fprintf( outfile, "\tmovw %%ax,%%ds\n" ); fprintf( outfile, "\tmovw %%ax,%%es\n" ); /* Jump to the called routine */ fprintf( outfile, "\t.byte 0x66\n" ); fprintf( outfile, "\tlret\n" ); } /******************************************************************* * BuildCallFrom16Core * * This routine builds the core routines used in 16->32 thunks: * CallFrom16, CallFrom16Register, and CallFrom16Thunk. * * CallFrom16 and CallFrom16Register are used by the 16->32 glue code * as described above. CallFrom16Thunk is a special variant used by * the implementation of the Win95 16->32 thunk functions C16ThkSL and * C16ThkSL01 and is implemented as follows: * On entry, the EBX register is set up to contain a flat pointer to the * 16-bit stack such that EBX+22 points to the first argument. * Then, the entry point is called, while EBP is set up to point * to the return address (on the 32-bit stack). * The called function returns with CX set to the number of bytes * to be popped of the caller's stack. * * Stack layout upon entry to the core routine (STACK16FRAME): * ... ... * (sp+22) word first 16-bit arg * (sp+20) word cs * (sp+18) word ip * (sp+16) word bp * (sp+12) long 32-bit entry point (reused for Win16 mutex recursion count) * (sp+8) long cs of 16-bit entry point * (sp+4) long ip of 16-bit entry point * (sp) long auxillary relay function address * * Added on the stack: * (sp-2) word saved gs * (sp-4) word saved fs * (sp-6) word saved es * (sp-8) word saved ds * (sp-12) long saved ebp * (sp-16) long saved ecx * (sp-20) long saved edx * (sp-24) long saved previous stack */ static void BuildCallFrom16Core( FILE *outfile, int reg_func, int thunk ) { char *name = thunk? "Thunk" : reg_func? "Register" : ""; /* Function header */ fprintf( outfile, "\n\t.align 4\n" ); #ifdef USE_STABS fprintf( outfile, ".stabs \"CallFrom16%s:F1\",36,0,0," PREFIX "CallFrom16%s\n", name, name); #endif fprintf( outfile, "\t.globl " PREFIX "CallFrom16%s\n", name ); fprintf( outfile, PREFIX "CallFrom16%s:\n", name ); /* No relay function for 'thunk' */ if ( thunk ) fprintf( outfile, "\tpushl $0\n" ); /* Create STACK16FRAME (except STACK32FRAME link) */ fprintf( outfile, "\tpushw %%gs\n" ); fprintf( outfile, "\tpushw %%fs\n" ); fprintf( outfile, "\tpushw %%es\n" ); fprintf( outfile, "\tpushw %%ds\n" ); fprintf( outfile, "\tpushl %%ebp\n" ); fprintf( outfile, "\tpushl %%ecx\n" ); fprintf( outfile, "\tpushl %%edx\n" ); if ( UsePIC ) { /* Get Global Offset Table into %ecx */ fprintf( outfile, "\tcall .LCallFrom16%s.getgot1\n", name ); fprintf( outfile, ".LCallFrom16%s.getgot1:\n", name ); fprintf( outfile, "\tpopl %%ecx\n" ); fprintf( outfile, "\taddl $_GLOBAL_OFFSET_TABLE_+[.-.LCallFrom16%s.getgot1], %%ecx\n", name ); } /* Load 32-bit segment registers */ fprintf( outfile, "\tmovw $0x%04x, %%dx\n", Data_Selector ); #ifdef __svr4__ fprintf( outfile, "\tdata16\n"); #endif fprintf( outfile, "\tmovw %%dx, %%ds\n" ); #ifdef __svr4__ fprintf( outfile, "\tdata16\n"); #endif fprintf( outfile, "\tmovw %%dx, %%es\n" ); if ( UsePIC ) { fprintf( outfile, "\tmovl " PREFIX "SYSLEVEL_Win16CurrentTeb@GOT(%%ecx), %%edx\n" ); fprintf( outfile, "\tmovw (%%edx), %%fs\n" ); } else fprintf( outfile, "\tmovw " PREFIX "SYSLEVEL_Win16CurrentTeb, %%fs\n" ); /* Get address of ldt_copy array into %ecx */ if ( UsePIC ) fprintf( outfile, "\tmovl " PREFIX "ldt_copy@GOT(%%ecx), %%ecx\n" ); else fprintf( outfile, "\tmovl $" PREFIX "ldt_copy, %%ecx\n" ); /* Translate STACK16FRAME base to flat offset in %edx */ fprintf( outfile, "\tmovw %%ss, %%dx\n" ); fprintf( outfile, "\tandl $0xfff8, %%edx\n" ); fprintf( outfile, "\tmovl (%%ecx,%%edx), %%edx\n" ); fprintf( outfile, "\tmovzwl %%sp, %%ebp\n" ); fprintf( outfile, "\tleal -4(%%ebp,%%edx), %%edx\n" ); /* -4 since STACK16FRAME not yet complete! */ /* Get the 32-bit stack pointer from the TEB and complete STACK16FRAME */ fprintf( outfile, "\t.byte 0x64\n\tmovl (%d), %%ebp\n", STACKOFFSET ); fprintf( outfile, "\tpushl %%ebp\n" ); /* Switch stacks */ #ifdef __svr4__ fprintf( outfile,"\tdata16\n"); #endif fprintf( outfile, "\t.byte 0x64\n\tmovw %%ss, (%d)\n", STACKOFFSET + 2 ); fprintf( outfile, "\t.byte 0x64\n\tmovw %%sp, (%d)\n", STACKOFFSET ); fprintf( outfile, "\tpushl %%ds\n" ); fprintf( outfile, "\tpopl %%ss\n" ); fprintf( outfile, "\tmovl %%ebp, %%esp\n" ); fprintf( outfile, "\taddl $%d, %%ebp\n", STRUCTOFFSET(STACK32FRAME, ebp) ); /* At this point: STACK16FRAME is completely set up DS, ES, SS: flat data segment FS: current TEB ESP: points to last STACK32FRAME EBP: points to ebp member of last STACK32FRAME EDX: points to current STACK16FRAME ECX: points to ldt_copy all other registers: unchanged */ /* Special case: C16ThkSL stub */ if ( thunk ) { /* Set up registers as expected and call thunk */ fprintf( outfile, "\tleal %d(%%edx), %%ebx\n", sizeof(STACK16FRAME)-22 ); fprintf( outfile, "\tleal -4(%%esp), %%ebp\n" ); fprintf( outfile, "\tcall *%d(%%edx)\n", STACK16OFFSET(entry_point) ); /* Switch stack back */ /* fprintf( outfile, "\t.byte 0x64\n\tlssw (%d), %%sp\n", STACKOFFSET ); */ fprintf( outfile, "\t.byte 0x64,0x66,0x0f,0xb2,0x25\n\t.long %d\n", STACKOFFSET ); fprintf( outfile, "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET ); /* Restore registers and return directly to caller */ fprintf( outfile, "\taddl $8, %%esp\n" ); fprintf( outfile, "\tpopl %%ebp\n" ); fprintf( outfile, "\tpopw %%ds\n" ); fprintf( outfile, "\tpopw %%es\n" ); fprintf( outfile, "\tpopw %%fs\n" ); fprintf( outfile, "\tpopw %%gs\n" ); fprintf( outfile, "\taddl $18, %%esp\n" ); fprintf( outfile, "\txorb %%ch, %%ch\n" ); fprintf( outfile, "\tpopl %%ebx\n" ); fprintf( outfile, "\taddw %%cx, %%sp\n" ); fprintf( outfile, "\tpush %%ebx\n" ); fprintf( outfile, "\t.byte 0x66\n" ); fprintf( outfile, "\tlret\n" ); return; } /* Build register CONTEXT */ if ( reg_func ) { fprintf( outfile, "\tsubl $%d, %%esp\n", sizeof(CONTEXT86) ); fprintf( outfile, "\tpushfl\n" ); fprintf( outfile, "\tpopl %d(%%esp)\n", CONTEXTOFFSET(EFlags) ); fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Eax) ); fprintf( outfile, "\tmovl %%ebx, %d(%%esp)\n", CONTEXTOFFSET(Ebx) ); fprintf( outfile, "\tmovl %%esi, %d(%%esp)\n", CONTEXTOFFSET(Esi) ); fprintf( outfile, "\tmovl %%edi, %d(%%esp)\n", CONTEXTOFFSET(Edi) ); fprintf( outfile, "\tmovl %d(%%edx), %%eax\n", STACK16OFFSET(ebp) ); fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Ebp) ); fprintf( outfile, "\tmovl %d(%%edx), %%eax\n", STACK16OFFSET(ecx) ); fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Ecx) ); fprintf( outfile, "\tmovl %d(%%edx), %%eax\n", STACK16OFFSET(edx) ); fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Edx) ); fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(ds) ); fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegDs) ); fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(es) ); fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegEs) ); fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(fs) ); fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegFs) ); fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(gs) ); fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegGs) ); fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(cs) ); fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegCs) ); fprintf( outfile, "\tmovzwl %d(%%edx), %%eax\n", STACK16OFFSET(ip) ); fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Eip) ); fprintf( outfile, "\t.byte 0x64\n\tmovzwl (%d), %%eax\n", STACKOFFSET+2 ); fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(SegSs) ); fprintf( outfile, "\t.byte 0x64\n\tmovzwl (%d), %%eax\n", STACKOFFSET ); fprintf( outfile, "\taddl $%d, %%eax\n", STACK16OFFSET(ip) ); fprintf( outfile, "\tmovl %%eax, %d(%%esp)\n", CONTEXTOFFSET(Esp) ); #if 0 fprintf( outfile, "\tfsave %d(%%esp)\n", CONTEXTOFFSET(FloatSave) ); #endif } /* Print debug info before call */ if ( debugging ) { if ( UsePIC ) { fprintf( outfile, "\tpushl %%ebx\n" ); /* Get Global Offset Table into %ebx (for PLT call) */ fprintf( outfile, "\tcall .LCallFrom16%s.getgot2\n", name ); fprintf( outfile, ".LCallFrom16%s.getgot2:\n", name ); fprintf( outfile, "\tpopl %%ebx\n" ); fprintf( outfile, "\taddl $_GLOBAL_OFFSET_TABLE_+[.-.LCallFrom16%s.getgot2], %%ebx\n", name ); } fprintf( outfile, "\tpushl %%ecx\n" ); fprintf( outfile, "\tpushl %%edx\n" ); if ( reg_func ) fprintf( outfile, "\tleal -%d(%%ebp), %%eax\n\tpushl %%eax\n", sizeof(CONTEXT) + STRUCTOFFSET(STACK32FRAME, ebp) ); else fprintf( outfile, "\tpushl $0\n" ); if ( UsePIC ) fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallFrom16@PLT\n "); else fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallFrom16\n "); fprintf( outfile, "\tpopl %%edx\n" ); fprintf( outfile, "\tpopl %%edx\n" ); fprintf( outfile, "\tpopl %%ecx\n" ); if ( UsePIC ) fprintf( outfile, "\tpopl %%ebx\n" ); } /* Call *Thunk* relay routine (which will call the API entry point) */ fprintf( outfile, "\tcall *%d(%%edx)\n", STACK16OFFSET(relay) ); /* Print debug info after call */ if ( debugging ) { if ( UsePIC ) { fprintf( outfile, "\tpushl %%ebx\n" ); /* Get Global Offset Table into %ebx (for PLT call) */ fprintf( outfile, "\tcall .LCallFrom16%s.getgot3\n", name ); fprintf( outfile, ".LCallFrom16%s.getgot3:\n", name ); fprintf( outfile, "\tpopl %%ebx\n" ); fprintf( outfile, "\taddl $_GLOBAL_OFFSET_TABLE_+[.-.LCallFrom16%s.getgot3], %%ebx\n", name ); } fprintf( outfile, "\tpushl %%eax\n" ); if ( reg_func ) fprintf( outfile, "\tleal -%d(%%ebp), %%eax\n\tpushl %%eax\n", sizeof(CONTEXT) + STRUCTOFFSET(STACK32FRAME, ebp) ); else fprintf( outfile, "\tpushl $0\n" ); if ( UsePIC ) fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallFrom16Ret@PLT\n "); else fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallFrom16Ret\n "); fprintf( outfile, "\tpopl %%eax\n" ); fprintf( outfile, "\tpopl %%eax\n" ); if ( UsePIC ) fprintf( outfile, "\tpopl %%ebx\n" ); } if ( reg_func ) { fprintf( outfile, "\tmovl %%esp, %%ebx\n" ); /* Switch stack back */ /* fprintf( outfile, "\t.byte 0x64\n\tlssw (%d), %%sp\n", STACKOFFSET ); */ fprintf( outfile, "\t.byte 0x64,0x66,0x0f,0xb2,0x25\n\t.long %d\n", STACKOFFSET ); fprintf( outfile, "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET ); /* Restore all registers from CONTEXT */ fprintf( outfile, "\tmovw %d(%%ebx), %%ss\n", CONTEXTOFFSET(SegSs) ); fprintf( outfile, "\tmovl %d(%%ebx), %%esp\n", CONTEXTOFFSET(Esp) ); fprintf( outfile, "\tleal 4(%%esp, %%eax), %%esp\n" ); fprintf( outfile, "\tpushw %d(%%ebx)\n", CONTEXTOFFSET(SegCs) ); fprintf( outfile, "\tpushw %d(%%ebx)\n", CONTEXTOFFSET(Eip) ); fprintf( outfile, "\tpushl %d(%%ebx)\n", CONTEXTOFFSET(EFlags) ); fprintf( outfile, "\tpushl %d(%%ebx)\n", CONTEXTOFFSET(SegDs) ); fprintf( outfile, "\tmovw %d(%%ebx), %%es\n", CONTEXTOFFSET(SegEs) ); fprintf( outfile, "\tmovw %d(%%ebx), %%fs\n", CONTEXTOFFSET(SegFs) ); fprintf( outfile, "\tmovw %d(%%ebx), %%gs\n", CONTEXTOFFSET(SegGs) ); fprintf( outfile, "\tmovl %d(%%ebx), %%ebp\n", CONTEXTOFFSET(Ebp) ); fprintf( outfile, "\tmovl %d(%%ebx), %%esi\n", CONTEXTOFFSET(Esi) ); fprintf( outfile, "\tmovl %d(%%ebx), %%edi\n", CONTEXTOFFSET(Edi) ); fprintf( outfile, "\tmovl %d(%%ebx), %%eax\n", CONTEXTOFFSET(Eax) ); fprintf( outfile, "\tmovl %d(%%ebx), %%edx\n", CONTEXTOFFSET(Edx) ); fprintf( outfile, "\tmovl %d(%%ebx), %%ecx\n", CONTEXTOFFSET(Ecx) ); fprintf( outfile, "\tmovl %d(%%ebx), %%ebx\n", CONTEXTOFFSET(Ebx) ); fprintf( outfile, "\tpopl %%ds\n" ); fprintf( outfile, "\tpopfl\n" ); fprintf( outfile, "\t.byte 0x66\n" ); fprintf( outfile, "\tlret\n" ); } else { /* Switch stack back */ /* fprintf( outfile, "\t.byte 0x64\n\tlssw (%d), %%sp\n", STACKOFFSET ); */ fprintf( outfile, "\t.byte 0x64,0x66,0x0f,0xb2,0x25\n\t.long %d\n", STACKOFFSET ); fprintf( outfile, "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET ); /* Set flags according to return value */ fprintf( outfile, "\torl %%eax, %%eax\n" ); /* Restore registers and return to *ThunkRet* routine */ fprintf( outfile, "\tpopl %%edx\n" ); fprintf( outfile, "\tpopl %%ecx\n" ); fprintf( outfile, "\tpopl %%ebp\n" ); fprintf( outfile, "\tpopw %%ds\n" ); fprintf( outfile, "\tpopw %%es\n" ); fprintf( outfile, "\tpopw %%fs\n" ); fprintf( outfile, "\tpopw %%gs\n" ); fprintf( outfile, "\tret $14\n" ); } } /******************************************************************* * BuildCallTo16Core * * This routine builds the core routines used in 32->16 thunks: * CallTo16Word, CallTo16Long, CallTo16RegisterShort, and * CallTo16RegisterLong. * * CallTo16Word and CallTo16Long are used by the 32->16 glue code * as described above. The register functions can be called directly: * * extern void CALLBACK CallTo16RegisterShort( const CONTEXT86 *context, int nb_args ); * extern void CALLBACK CallTo16RegisterLong ( const CONTEXT86 *context, int nb_args ); * * They call to 16-bit code with all registers except SS:SP set up as specified * by the 'context' structure, and SS:SP set to point to the current 16-bit * stack, decremented by the value specified in the 'nb_args' argument. */ static void BuildCallTo16Core( FILE *outfile, int short_ret, int reg_func ) { char *name = reg_func == 2 ? "RegisterLong" : reg_func == 1 ? "RegisterShort" : short_ret? "Word" : "Long"; /* Function header */ fprintf( outfile, "\n\t.align 4\n" ); #ifdef USE_STABS fprintf( outfile, ".stabs \"CallTo16%s:F1\",36,0,0," PREFIX "CallTo16%s\n", name, name); #endif fprintf( outfile, "\t.globl " PREFIX "CallTo16%s\n", name ); fprintf( outfile, PREFIX "CallTo16%s:\n", name ); /* No relay stub for 'register' functions */ if ( reg_func ) fprintf( outfile, "\tpushl $0\n" ); /* Function entry sequence */ fprintf( outfile, "\tpushl %%ebp\n" ); fprintf( outfile, "\tmovl %%esp, %%ebp\n" ); /* Save the 32-bit registers */ fprintf( outfile, "\tpushl %%ebx\n" ); fprintf( outfile, "\tpushl %%ecx\n" ); fprintf( outfile, "\tpushl %%edx\n" ); fprintf( outfile, "\tpushl %%esi\n" ); fprintf( outfile, "\tpushl %%edi\n" ); if ( UsePIC ) { /* Get Global Offset Table into %ebx */ fprintf( outfile, "\tcall .LCallTo16%s.getgot1\n", name ); fprintf( outfile, ".LCallTo16%s.getgot1:\n", name ); fprintf( outfile, "\tpopl %%ebx\n" ); fprintf( outfile, "\taddl $_GLOBAL_OFFSET_TABLE_+[.-.LCallTo16%s.getgot1], %%ebx\n", name ); } /* Move relay target address to %edi */ if ( !reg_func ) { fprintf( outfile, "\tmovl 4(%%ebp), %%edi\n" ); fprintf( outfile, "\taddl $3, %%edi\n" ); } /* Enter Win16 Mutex */ if ( UsePIC ) fprintf( outfile, "\tcall " PREFIX "SYSLEVEL_EnterWin16Lock@PLT\n" ); else fprintf( outfile, "\tcall " PREFIX "SYSLEVEL_EnterWin16Lock\n" ); /* Print debugging info */ if (debugging) { /* Push number of arguments (from relay stub) */ if ( reg_func ) fprintf( outfile, "\tpushl $-1\n" ); else fprintf( outfile, "\tpushl -12(%%edi)\n" ); /* Push the address of the first argument */ fprintf( outfile, "\tleal 12(%%ebp),%%eax\n" ); fprintf( outfile, "\tpushl %%eax\n" ); if ( UsePIC ) fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallTo16@PLT\n" ); else fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallTo16\n" ); fprintf( outfile, "\tpopl %%eax\n" ); fprintf( outfile, "\tpopl %%eax\n" ); } /* Get return address */ if ( UsePIC ) fprintf( outfile, "\tmovl " PREFIX "CallTo16_RetAddr@GOTOFF(%%ebx), %%ecx\n" ); else fprintf( outfile, "\tmovl " PREFIX "CallTo16_RetAddr, %%ecx\n" ); /* Call the actual CallTo16 routine (simulate a lcall) */ fprintf( outfile, "\tpushl %%cs\n" ); fprintf( outfile, "\tcall .LCallTo16%s\n", name ); /* Convert and push return value */ if ( short_ret ) { fprintf( outfile, "\tmovzwl %%ax, %%eax\n" ); fprintf( outfile, "\tpushl %%eax\n" ); } else if ( reg_func != 2 ) { fprintf( outfile, "\tshll $16,%%edx\n" ); fprintf( outfile, "\tmovw %%ax,%%dx\n" ); fprintf( outfile, "\tpushl %%edx\n" ); } else fprintf( outfile, "\tpushl %%eax\n" ); if ( UsePIC ) { /* Get Global Offset Table into %ebx (might have been overwritten) */ fprintf( outfile, "\tcall .LCallTo16%s.getgot2\n", name ); fprintf( outfile, ".LCallTo16%s.getgot2:\n", name ); fprintf( outfile, "\tpopl %%ebx\n" ); fprintf( outfile, "\taddl $_GLOBAL_OFFSET_TABLE_+[.-.LCallTo16%s.getgot2], %%ebx\n", name ); } /* Print debugging info */ if (debugging) { if ( UsePIC ) fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallTo16Ret@PLT\n" ); else fprintf( outfile, "\tcall " PREFIX "RELAY_DebugCallTo16Ret\n" ); } /* Leave Win16 Mutex */ if ( UsePIC ) fprintf( outfile, "\tcall " PREFIX "SYSLEVEL_LeaveWin16Lock@PLT\n" ); else fprintf( outfile, "\tcall " PREFIX "SYSLEVEL_LeaveWin16Lock\n" ); /* Get return value */ fprintf( outfile, "\tpopl %%eax\n" ); /* Restore the 32-bit registers */ fprintf( outfile, "\tpopl %%edi\n" ); fprintf( outfile, "\tpopl %%esi\n" ); fprintf( outfile, "\tpopl %%edx\n" ); fprintf( outfile, "\tpopl %%ecx\n" ); fprintf( outfile, "\tpopl %%ebx\n" ); /* Function exit sequence */ fprintf( outfile, "\tpopl %%ebp\n" ); if ( !reg_func ) fprintf( outfile, "\tret\n" ); /* return to relay return stub */ else { fprintf( outfile, "\taddl $4, %%esp\n" ); fprintf( outfile, "\tret $8\n" ); } /* Start of the actual CallTo16 routine */ fprintf( outfile, ".LCallTo16%s:\n", name ); /* Complete STACK32FRAME */ fprintf( outfile, "\t.byte 0x64\n\tpushl (%d)\n", STACKOFFSET ); fprintf( outfile, "\tmovl %%esp,%%edx\n" ); /* Switch to the 16-bit stack */ #ifdef __svr4__ fprintf( outfile,"\tdata16\n"); #endif fprintf( outfile, "\t.byte 0x64\n\tmovw (%d),%%ss\n", STACKOFFSET + 2); fprintf( outfile, "\t.byte 0x64\n\tmovw (%d),%%sp\n", STACKOFFSET ); fprintf( outfile, "\t.byte 0x64\n\tmovl %%edx,(%d)\n", STACKOFFSET ); if (reg_func) { /* Add the specified offset to the new sp */ fprintf( outfile, "\tsubw %d(%%edx), %%sp\n", STACK32OFFSET(args)+4 ); /* Push the return address * With sreg suffix, we push 16:16 address (normal lret) * With lreg suffix, we push 16:32 address (0x66 lret, for KERNEL32_45) */ if (reg_func == 1) fprintf( outfile, "\tpushl %%ecx\n" ); else { fprintf( outfile, "\tshldl $16, %%ecx, %%eax\n" ); fprintf( outfile, "\tpushw $0\n" ); fprintf( outfile, "\tpushw %%ax\n" ); fprintf( outfile, "\tpushw $0\n" ); fprintf( outfile, "\tpushw %%cx\n" ); } /* Push the called routine address */ fprintf( outfile, "\tmovl %d(%%edx),%%edx\n", STACK32OFFSET(args) ); fprintf( outfile, "\tpushw %d(%%edx)\n", CONTEXTOFFSET(SegCs) ); fprintf( outfile, "\tpushw %d(%%edx)\n", CONTEXTOFFSET(Eip) ); /* Get the registers */ fprintf( outfile, "\tpushw %d(%%edx)\n", CONTEXTOFFSET(SegDs) ); fprintf( outfile, "\tmovl %d(%%edx),%%eax\n", CONTEXTOFFSET(SegEs) ); fprintf( outfile, "\tmovw %%ax,%%es\n" ); fprintf( outfile, "\tmovl %d(%%edx),%%eax\n", CONTEXTOFFSET(SegFs) ); fprintf( outfile, "\tmovw %%ax,%%fs\n" ); fprintf( outfile, "\tmovl %d(%%edx),%%ebp\n", CONTEXTOFFSET(Ebp) ); fprintf( outfile, "\tmovl %d(%%edx),%%esi\n", CONTEXTOFFSET(Esi) ); fprintf( outfile, "\tmovl %d(%%edx),%%edi\n", CONTEXTOFFSET(Edi) ); fprintf( outfile, "\tmovl %d(%%edx),%%eax\n", CONTEXTOFFSET(Eax) ); fprintf( outfile, "\tmovl %d(%%edx),%%ebx\n", CONTEXTOFFSET(Ebx) ); fprintf( outfile, "\tmovl %d(%%edx),%%ecx\n", CONTEXTOFFSET(Ecx) ); fprintf( outfile, "\tmovl %d(%%edx),%%edx\n", CONTEXTOFFSET(Edx) ); /* Get the 16-bit ds */ fprintf( outfile, "\tpopw %%ds\n" ); /* Jump to the called routine */ fprintf( outfile, "\t.byte 0x66\n" ); fprintf( outfile, "\tlret\n" ); } else /* not a register function */ { /* Make %bp point to the previous stackframe (built by CallFrom16) */ fprintf( outfile, "\tmovzwl %%sp,%%ebp\n" ); fprintf( outfile, "\tleal %d(%%ebp),%%ebp\n", STACK16OFFSET(bp) ); /* Set %fs to the value saved by the last CallFrom16 */ fprintf( outfile, "\tmovw %d(%%ebp),%%ax\n", STACK16OFFSET(fs)-STACK16OFFSET(bp) ); fprintf( outfile, "\tmovw %%ax,%%fs\n" ); /* Jump to the relay code */ fprintf( outfile, "\tjmp *%%edi\n" ); } } /******************************************************************* * BuildRet16Func * * Build the return code for 16-bit callbacks */ static void BuildRet16Func( FILE *outfile ) { /* * Note: This must reside in the .data section to allow * run-time relocation of the SYSLEVEL_Win16CurrentTeb symbol */ fprintf( outfile, "\n\t.globl " PREFIX "CallTo16_Ret\n" ); fprintf( outfile, PREFIX "CallTo16_Ret:\n" ); /* Restore 32-bit segment registers */ fprintf( outfile, "\tmovw $0x%04x,%%bx\n", Data_Selector ); #ifdef __svr4__ fprintf( outfile, "\tdata16\n"); #endif fprintf( outfile, "\tmovw %%bx,%%ds\n" ); #ifdef __svr4__ fprintf( outfile, "\tdata16\n"); #endif fprintf( outfile, "\tmovw %%bx,%%es\n" ); fprintf( outfile, "\tmovw " PREFIX "SYSLEVEL_Win16CurrentTeb,%%fs\n" ); /* Restore the 32-bit stack */ #ifdef __svr4__ fprintf( outfile, "\tdata16\n"); #endif fprintf( outfile, "\tmovw %%bx,%%ss\n" ); fprintf( outfile, "\t.byte 0x64\n\tmovl (%d),%%esp\n", STACKOFFSET ); fprintf( outfile, "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET ); /* Return to caller */ fprintf( outfile, "\tlret\n" ); /* Declare the return address variable */ fprintf( outfile, "\n\t.globl " PREFIX "CallTo16_RetAddr\n" ); fprintf( outfile, PREFIX "CallTo16_RetAddr:\t.long 0\n" ); } /******************************************************************* * BuildCallTo32CBClient * * Call a CBClient relay stub from 32-bit code (KERNEL.620). * * Since the relay stub is itself 32-bit, this should not be a problem; * unfortunately, the relay stubs are expected to switch back to a * 16-bit stack (and 16-bit code) after completion :-( * * This would conflict with our 16- vs. 32-bit stack handling, so * we simply switch *back* to our 32-bit stack before returning to * the caller ... * * The CBClient relay stub expects to be called with the following * 16-bit stack layout, and with ebp and ebx pointing into the 16-bit * stack at the designated places: * * ... * (ebp+14) original arguments to the callback routine * (ebp+10) far return address to original caller * (ebp+6) Thunklet target address * (ebp+2) Thunklet relay ID code * (ebp) BP (saved by CBClientGlueSL) * (ebp-2) SI (saved by CBClientGlueSL) * (ebp-4) DI (saved by CBClientGlueSL) * (ebp-6) DS (saved by CBClientGlueSL) * * ... buffer space used by the 16-bit side glue for temp copies * * (ebx+4) far return address to 16-bit side glue code * (ebx) saved 16-bit ss:sp (pointing to ebx+4) * * The 32-bit side glue code accesses both the original arguments (via ebp) * and the temporary copies prepared by the 16-bit side glue (via ebx). * After completion, the stub will load ss:sp from the buffer at ebx * and perform a far return to 16-bit code. * * To trick the relay stub into returning to us, we replace the 16-bit * return address to the glue code by a cs:ip pair pointing to our * return entry point (the original return address is saved first). * Our return stub thus called will then reload the 32-bit ss:esp and * return to 32-bit code (by using and ss:esp value that we have also * pushed onto the 16-bit stack before and a cs:eip values found at * that position on the 32-bit stack). The ss:esp to be restored is * found relative to the 16-bit stack pointer at: * * (ebx-4) ss (flat) * (ebx-8) sp (32-bit stack pointer) * * The second variant of this routine, CALL32_CBClientEx, which is used * to implement KERNEL.621, has to cope with yet another problem: Here, * the 32-bit side directly returns to the caller of the CBClient thunklet, * restoring registers saved by CBClientGlueSL and cleaning up the stack. * As we have to return to our 32-bit code first, we have to adapt the * layout of our temporary area so as to include values for the registers * that are to be restored, and later (in the implementation of KERNEL.621) * we *really* restore them. The return stub restores DS, DI, SI, and BP * from the stack, skips the next 8 bytes (CBClient relay code / target), * and then performs a lret NN, where NN is the number of arguments to be * removed. Thus, we prepare our temporary area as follows: * * (ebx+22) 16-bit cs (this segment) * (ebx+20) 16-bit ip ('16-bit' return entry point) * (ebx+16) 32-bit ss (flat) * (ebx+12) 32-bit sp (32-bit stack pointer) * (ebx+10) 16-bit bp (points to ebx+24) * (ebx+8) 16-bit si (ignored) * (ebx+6) 16-bit di (ignored) * (ebx+4) 16-bit ds (we actually use the flat DS here) * (ebx+2) 16-bit ss (16-bit stack segment) * (ebx+0) 16-bit sp (points to ebx+4) * * Note that we ensure that DS is not changed and remains the flat segment, * and the 32-bit stack pointer our own return stub needs fits just * perfectly into the 8 bytes that are skipped by the Windows stub. * One problem is that we have to determine the number of removed arguments, * as these have to be really removed in KERNEL.621. Thus, the BP value * that we place in the temporary area to be restored, contains the value * that SP would have if no arguments were removed. By comparing the actual * value of SP with this value in our return stub we can compute the number * of removed arguments. This is then returned to KERNEL.621. * * The stack layout of this function: * (ebp+20) nArgs pointer to variable receiving nr. of args (Ex only) * (ebp+16) esi pointer to caller's esi value * (ebp+12) arg ebp value to be set for relay stub * (ebp+8) func CBClient relay stub address * (ebp+4) ret addr * (ebp) ebp */ static void BuildCallTo32CBClient( FILE *outfile, BOOL isEx ) { char *name = isEx? "CBClientEx" : "CBClient"; int size = isEx? 24 : 12; /* Function header */ fprintf( outfile, "\n\t.align 4\n" ); #ifdef USE_STABS fprintf( outfile, ".stabs \"CALL32_%s:F1\",36,0,0," PREFIX "CALL32_%s\n", name, name ); #endif fprintf( outfile, "\t.globl " PREFIX "CALL32_%s\n", name ); fprintf( outfile, PREFIX "CALL32_%s:\n", name ); /* Entry code */ fprintf( outfile, "\tpushl %%ebp\n" ); fprintf( outfile, "\tmovl %%esp,%%ebp\n" ); fprintf( outfile, "\tpushl %%edi\n" ); fprintf( outfile, "\tpushl %%esi\n" ); fprintf( outfile, "\tpushl %%ebx\n" ); /* Get the 16-bit stack */ fprintf( outfile, "\t.byte 0x64\n\tmovl (%d),%%ebx\n", STACKOFFSET); /* Convert it to a flat address */ fprintf( outfile, "\tshldl $16,%%ebx,%%eax\n" ); fprintf( outfile, "\tandl $0xfff8,%%eax\n" ); fprintf( outfile, "\tmovl " PREFIX "ldt_copy(%%eax),%%esi\n" ); fprintf( outfile, "\tmovw %%bx,%%ax\n" ); fprintf( outfile, "\taddl %%eax,%%esi\n" ); /* Allocate temporary area (simulate STACK16_PUSH) */ fprintf( outfile, "\tpushf\n" ); fprintf( outfile, "\tcld\n" ); fprintf( outfile, "\tleal -%d(%%esi), %%edi\n", size ); fprintf( outfile, "\tmovl $%d, %%ecx\n", sizeof(STACK16FRAME) ); fprintf( outfile, "\trep\n\tmovsb\n" ); fprintf( outfile, "\tpopf\n" ); fprintf( outfile, "\t.byte 0x64\n\tsubw $%d,(%d)\n", size, STACKOFFSET ); fprintf( outfile, "\tpushl %%edi\n" ); /* remember address */ /* Set up temporary area */ if ( !isEx ) { fprintf( outfile, "\tleal 4(%%edi), %%edi\n" ); fprintf( outfile, "\tleal -8(%%esp), %%eax\n" ); fprintf( outfile, "\tmovl %%eax, -8(%%edi)\n" ); /* 32-bit sp */ fprintf( outfile, "\tmovl %%ss, %%ax\n" ); fprintf( outfile, "\tandl $0x0000ffff, %%eax\n" ); fprintf( outfile, "\tmovl %%eax, -4(%%edi)\n" ); /* 32-bit ss */ fprintf( outfile, "\taddl $%d, %%ebx\n", sizeof(STACK16FRAME)-size+4 + 4 ); fprintf( outfile, "\tmovl %%ebx, 0(%%edi)\n" ); /* 16-bit ss:sp */ fprintf( outfile, "\tmovl " PREFIX "CALL32_%s_RetAddr, %%eax\n", name ); fprintf( outfile, "\tmovl %%eax, 4(%%edi)\n" ); /* overwrite return address */ } else { fprintf( outfile, "\taddl $%d, %%ebx\n", sizeof(STACK16FRAME)-size+4 ); fprintf( outfile, "\tmovl %%ebx, 0(%%edi)\n" ); fprintf( outfile, "\tmovl %%ds, %%ax\n" ); fprintf( outfile, "\tmovw %%ax, 4(%%edi)\n" ); fprintf( outfile, "\taddl $20, %%ebx\n" ); fprintf( outfile, "\tmovw %%bx, 10(%%edi)\n" ); fprintf( outfile, "\tleal -8(%%esp), %%eax\n" ); fprintf( outfile, "\tmovl %%eax, 12(%%edi)\n" ); fprintf( outfile, "\tmovl %%ss, %%ax\n" ); fprintf( outfile, "\tandl $0x0000ffff, %%eax\n" ); fprintf( outfile, "\tmovl %%eax, 16(%%edi)\n" ); fprintf( outfile, "\tmovl " PREFIX "CALL32_%s_RetAddr, %%eax\n", name ); fprintf( outfile, "\tmovl %%eax, 20(%%edi)\n" ); } /* Set up registers and call CBClient relay stub (simulating a far call) */ fprintf( outfile, "\tmovl 16(%%ebp), %%esi\n" ); fprintf( outfile, "\tmovl (%%esi), %%esi\n" ); fprintf( outfile, "\tmovl %%edi, %%ebx\n" ); fprintf( outfile, "\tmovl 8(%%ebp), %%eax\n" ); fprintf( outfile, "\tmovl 12(%%ebp), %%ebp\n" ); fprintf( outfile, "\tpushl %%cs\n" ); fprintf( outfile, "\tcall *%%eax\n" ); /* Return new esi value to caller */ fprintf( outfile, "\tmovl 32(%%esp), %%edi\n" ); fprintf( outfile, "\tmovl %%esi, (%%edi)\n" ); /* Cleanup temporary area (simulate STACK16_POP) */ fprintf( outfile, "\tpop %%esi\n" ); fprintf( outfile, "\tpushf\n" ); fprintf( outfile, "\tstd\n" ); fprintf( outfile, "\tdec %%esi\n" ); fprintf( outfile, "\tleal %d(%%esi), %%edi\n", size ); fprintf( outfile, "\tmovl $%d, %%ecx\n", sizeof(STACK16FRAME) ); fprintf( outfile, "\trep\n\tmovsb\n" ); fprintf( outfile, "\tpopf\n" ); fprintf( outfile, "\t.byte 0x64\n\taddw $%d,(%d)\n", size, STACKOFFSET ); /* Return argument size to caller */ if ( isEx ) { fprintf( outfile, "\tmovl 32(%%esp), %%ebx\n" ); fprintf( outfile, "\tmovl %%ebp, (%%ebx)\n" ); } /* Restore registers and return */ fprintf( outfile, "\tpopl %%ebx\n" ); fprintf( outfile, "\tpopl %%esi\n" ); fprintf( outfile, "\tpopl %%edi\n" ); fprintf( outfile, "\tpopl %%ebp\n" ); fprintf( outfile, "\tret\n" ); } static void BuildCallTo32CBClientRet( FILE *outfile, BOOL isEx ) { char *name = isEx? "CBClientEx" : "CBClient"; /* '16-bit' return stub */ fprintf( outfile, "\n\t.globl " PREFIX "CALL32_%s_Ret\n", name ); fprintf( outfile, PREFIX "CALL32_%s_Ret:\n", name ); if ( !isEx ) { fprintf( outfile, "\tmovzwl %%sp, %%ebx\n" ); fprintf( outfile, "\tlssl %%ss:-16(%%ebx), %%esp\n" ); } else { fprintf( outfile, "\tmovzwl %%bp, %%ebx\n" ); fprintf( outfile, "\tsubw %%bp, %%sp\n" ); fprintf( outfile, "\tmovzwl %%sp, %%ebp\n" ); fprintf( outfile, "\tlssl %%ss:-12(%%ebx), %%esp\n" ); } fprintf( outfile, "\tlret\n" ); /* Declare the return address variable */ fprintf( outfile, "\n\t.globl " PREFIX "CALL32_%s_RetAddr\n", name ); fprintf( outfile, PREFIX "CALL32_%s_RetAddr:\t.long 0\n", name ); } /******************************************************************* * BuildCallTo32LargeStack * * Build the function used to switch to the original 32-bit stack * before calling a 32-bit function from 32-bit code. This is used for * functions that need a large stack, like X bitmaps functions. * * The generated function has the following prototype: * int xxx( int (*func)(), void *arg ); * * The pointer to the function can be retrieved by calling CALL32_Init, * which also takes care of saving the current 32-bit stack pointer. * Furthermore, CALL32_Init switches to a new stack and jumps to the * specified target address. * * NOTE: The CALL32_LargeStack routine may be recursively entered by the * same thread, but not concurrently entered by several threads. * * Stack layout of CALL32_Init: * * (esp+12) new stack address * (esp+8) target address * (esp+4) pointer to variable to receive CALL32_LargeStack address * (esp) ret addr * * Stack layout of CALL32_LargeStack: * ... ... * (ebp+12) arg * (ebp+8) func * (ebp+4) ret addr * (ebp) ebp */ static void BuildCallTo32LargeStack( FILE *outfile ) { /* Initialization function */ fprintf( outfile, "\n\t.align 4\n" ); #ifdef USE_STABS fprintf( outfile, ".stabs \"CALL32_Init:F1\",36,0,0," PREFIX "CALL32_Init\n"); #endif fprintf( outfile, "\t.globl " PREFIX "CALL32_Init\n" ); fprintf( outfile, "\t.type " PREFIX "CALL32_Init,@function\n" ); fprintf( outfile, PREFIX "CALL32_Init:\n" ); fprintf( outfile, "\tmovl %%esp,CALL32_Original32_esp\n" ); fprintf( outfile, "\tpopl %%eax\n" ); fprintf( outfile, "\tpopl %%eax\n" ); fprintf( outfile, "\tmovl $CALL32_LargeStack,(%%eax)\n" ); fprintf( outfile, "\tpopl %%eax\n" ); fprintf( outfile, "\tpopl %%esp\n" ); fprintf( outfile, "\tpushl %%eax\n" ); fprintf( outfile, "\tret\n" ); /* Function header */ fprintf( outfile, "\n\t.align 4\n" ); #ifdef USE_STABS fprintf( outfile, ".stabs \"CALL32_LargeStack:F1\",36,0,0,CALL32_LargeStack\n"); #endif fprintf( outfile, "CALL32_LargeStack:\n" ); /* Entry code */ fprintf( outfile, "\tpushl %%ebp\n" ); fprintf( outfile, "\tmovl %%esp,%%ebp\n" ); /* Switch to the original 32-bit stack pointer */ fprintf( outfile, "\tcmpl $0, CALL32_RecursionCount\n" ); fprintf( outfile, "\tjne CALL32_skip\n" ); fprintf( outfile, "\tmovl CALL32_Original32_esp, %%esp\n" ); fprintf( outfile, "CALL32_skip:\n" ); fprintf( outfile, "\tincl CALL32_RecursionCount\n" ); /* Transfer the argument and call the function */ fprintf( outfile, "\tpushl 12(%%ebp)\n" ); fprintf( outfile, "\tcall *8(%%ebp)\n" ); /* Restore registers and return */ fprintf( outfile, "\tdecl CALL32_RecursionCount\n" ); fprintf( outfile, "\tmovl %%ebp,%%esp\n" ); fprintf( outfile, "\tpopl %%ebp\n" ); fprintf( outfile, "\tret\n" ); /* Data */ fprintf( outfile, "\t.data\n" ); fprintf( outfile, "CALL32_Original32_esp:\t.long 0\n" ); fprintf( outfile, "CALL32_RecursionCount:\t.long 0\n" ); fprintf( outfile, "\t.text\n" ); } /******************************************************************* * BuildCallFrom32Regs * * Build a 32-bit-to-Wine call-back function for a 'register' function. * 'args' is the number of dword arguments. * * Stack layout: * ... * (ebp+12) first arg * (ebp+8) ret addr to user code * (ebp+4) ret addr to relay code * (ebp+0) saved ebp * (ebp-128) buffer area to allow stack frame manipulation * (ebp-332) CONTEXT86 struct * (ebp-336) CONTEXT86 *argument * .... other arguments copied from (ebp+12) * * The entry point routine is called with a CONTEXT* extra argument, * following the normal args. In this context structure, EIP_reg * contains the return address to user code, and ESP_reg the stack * pointer on return (with the return address and arguments already * removed). */ static void BuildCallFrom32Regs( FILE *outfile ) { static const int STACK_SPACE = 128 + sizeof(CONTEXT86); /* Function header */ fprintf( outfile, "\n\t.align 4\n" ); #ifdef USE_STABS fprintf( outfile, ".stabs \"CALL32_Regs:F1\",36,0,0," PREFIX "CALL32_Regs\n" ); #endif fprintf( outfile, "\t.globl " PREFIX "CALL32_Regs\n" ); fprintf( outfile, PREFIX "CALL32_Regs:\n" ); /* Allocate some buffer space on the stack */ fprintf( outfile, "\tpushl %%ebp\n" ); fprintf( outfile, "\tmovl %%esp,%%ebp\n "); fprintf( outfile, "\tleal -%d(%%esp), %%esp\n", STACK_SPACE ); /* Build the context structure */ fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(Eax) - STACK_SPACE ); fprintf( outfile, "\tpushfl\n" ); fprintf( outfile, "\tpopl %%eax\n" ); fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(EFlags) - STACK_SPACE ); fprintf( outfile, "\tmovl 0(%%ebp),%%eax\n" ); fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(Ebp) - STACK_SPACE ); fprintf( outfile, "\tmovl %%ebx,%d(%%ebp)\n", CONTEXTOFFSET(Ebx) - STACK_SPACE ); fprintf( outfile, "\tmovl %%ecx,%d(%%ebp)\n", CONTEXTOFFSET(Ecx) - STACK_SPACE ); fprintf( outfile, "\tmovl %%edx,%d(%%ebp)\n", CONTEXTOFFSET(Edx) - STACK_SPACE ); fprintf( outfile, "\tmovl %%esi,%d(%%ebp)\n", CONTEXTOFFSET(Esi) - STACK_SPACE ); fprintf( outfile, "\tmovl %%edi,%d(%%ebp)\n", CONTEXTOFFSET(Edi) - STACK_SPACE ); fprintf( outfile, "\txorl %%eax,%%eax\n" ); fprintf( outfile, "\tmovw %%cs,%%ax\n" ); fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegCs) - STACK_SPACE ); fprintf( outfile, "\tmovw %%es,%%ax\n" ); fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegEs) - STACK_SPACE ); fprintf( outfile, "\tmovw %%fs,%%ax\n" ); fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegFs) - STACK_SPACE ); fprintf( outfile, "\tmovw %%gs,%%ax\n" ); fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegGs) - STACK_SPACE ); fprintf( outfile, "\tmovw %%ss,%%ax\n" ); fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegSs) - STACK_SPACE ); fprintf( outfile, "\tmovw %%ds,%%ax\n" ); fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(SegDs) - STACK_SPACE ); fprintf( outfile, "\tmovw %%ax,%%es\n" ); /* set %es equal to %ds just in case */ fprintf( outfile, "\tmovl $0x%x,%%eax\n", CONTEXT86_FULL ); fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(ContextFlags) - STACK_SPACE ); fprintf( outfile, "\tmovl 8(%%ebp),%%eax\n" ); /* Get %eip at time of call */ fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(Eip) - STACK_SPACE ); /* Transfer the arguments */ fprintf( outfile, "\tmovl 4(%%ebp),%%ebx\n" ); /* get relay code addr */ fprintf( outfile, "\tpushl %%esp\n" ); /* push ptr to context struct */ fprintf( outfile, "\tmovzbl 4(%%ebx),%%ecx\n" ); /* fetch number of args to copy */ fprintf( outfile, "\tjecxz 1f\n" ); fprintf( outfile, "\tsubl %%ecx,%%esp\n" ); fprintf( outfile, "\tleal 12(%%ebp),%%esi\n" ); /* get %esp at time of call */ fprintf( outfile, "\tmovl %%esp,%%edi\n" ); fprintf( outfile, "\tshrl $2,%%ecx\n" ); fprintf( outfile, "\tcld\n" ); fprintf( outfile, "\trep\n\tmovsl\n" ); /* copy args */ fprintf( outfile, "1:\tmovzbl 5(%%ebx),%%eax\n" ); /* fetch number of args to remove */ fprintf( outfile, "\tleal 12(%%ebp,%%eax),%%eax\n" ); fprintf( outfile, "\tmovl %%eax,%d(%%ebp)\n", CONTEXTOFFSET(Esp) - STACK_SPACE ); /* Call the entry point */ fprintf( outfile, "\tcall *0(%%ebx)\n" ); /* Store %eip and %ebp onto the new stack */ fprintf( outfile, "\tmovl %d(%%ebp),%%edx\n", CONTEXTOFFSET(Esp) - STACK_SPACE ); fprintf( outfile, "\tmovl %d(%%ebp),%%eax\n", CONTEXTOFFSET(Eip) - STACK_SPACE ); fprintf( outfile, "\tmovl %%eax,-4(%%edx)\n" ); fprintf( outfile, "\tmovl %d(%%ebp),%%eax\n", CONTEXTOFFSET(Ebp) - STACK_SPACE ); fprintf( outfile, "\tmovl %%eax,-8(%%edx)\n" ); /* Restore the context structure */ /* Note: we don't bother to restore %cs, %ds and %ss * changing them in 32-bit code is a recipe for disaster anyway */ fprintf( outfile, "\tmovl %d(%%ebp),%%eax\n", CONTEXTOFFSET(SegEs) - STACK_SPACE ); fprintf( outfile, "\tmovw %%ax,%%es\n" ); fprintf( outfile, "\tmovl %d(%%ebp),%%eax\n", CONTEXTOFFSET(SegFs) - STACK_SPACE ); fprintf( outfile, "\tmovw %%ax,%%fs\n" ); fprintf( outfile, "\tmovl %d(%%ebp),%%eax\n", CONTEXTOFFSET(SegGs) - STACK_SPACE ); fprintf( outfile, "\tmovw %%ax,%%gs\n" ); fprintf( outfile, "\tmovl %d(%%ebp),%%edi\n", CONTEXTOFFSET(Edi) - STACK_SPACE ); fprintf( outfile, "\tmovl %d(%%ebp),%%esi\n", CONTEXTOFFSET(Esi) - STACK_SPACE ); fprintf( outfile, "\tmovl %d(%%ebp),%%edx\n", CONTEXTOFFSET(Edx) - STACK_SPACE ); fprintf( outfile, "\tmovl %d(%%ebp),%%ecx\n", CONTEXTOFFSET(Ecx) - STACK_SPACE ); fprintf( outfile, "\tmovl %d(%%ebp),%%ebx\n", CONTEXTOFFSET(Ebx) - STACK_SPACE ); fprintf( outfile, "\tmovl %d(%%ebp),%%eax\n", CONTEXTOFFSET(EFlags) - STACK_SPACE ); fprintf( outfile, "\tpushl %%eax\n" ); fprintf( outfile, "\tpopfl\n" ); fprintf( outfile, "\tmovl %d(%%ebp),%%eax\n", CONTEXTOFFSET(Eax) - STACK_SPACE ); fprintf( outfile, "\tmovl %d(%%ebp),%%ebp\n", CONTEXTOFFSET(Esp) - STACK_SPACE ); fprintf( outfile, "\tleal -8(%%ebp),%%esp\n" ); fprintf( outfile, "\tpopl %%ebp\n" ); fprintf( outfile, "\tret\n" ); } /******************************************************************* * BuildSpec * * Build the spec files */ static int BuildSpec( FILE *outfile, int argc, char *argv[] ) { int i; for (i = 2; i < argc; i++) if (BuildSpecFile( outfile, argv[i] ) < 0) return -1; return 0; } /******************************************************************* * BuildGlue * * Build the 16-bit-to-Wine/Wine-to-16-bit callback glue code */ static int BuildGlue( FILE *outfile, char * outname, int argc, char *argv[] ) { char buffer[1024]; FILE *infile; if (argc > 2) { infile = fopen( argv[2], "r" ); if (!infile) { perror( argv[2] ); exit( 1 ); } } else infile = stdin; /* File header */ fprintf( outfile, "/* File generated automatically. Do not edit! */\n\n" ); fprintf( outfile, "\t.text\n" ); #ifdef __i386__ #ifdef USE_STABS fprintf( outfile, "\t.file\t\"%s\"\n", outname ); getcwd(buffer, sizeof(buffer)); /* * The stabs help the internal debugger as they are an indication that it * is sensible to step into a thunk/trampoline. */ fprintf( outfile, ".stabs \"%s/\",100,0,0,Code_Start\n", buffer); fprintf( outfile, ".stabs \"%s\",100,0,0,Code_Start\n", outname); fprintf( outfile, "\t.text\n" ); fprintf( outfile, "\t.align 4\n" ); fprintf( outfile, "Code_Start:\n\n" ); #endif /* Build the callback glue functions */ while (fgets( buffer, sizeof(buffer), infile )) { if (strstr( buffer, "### start build ###" )) break; } while (fgets( buffer, sizeof(buffer), infile )) { char *p; if ( (p = strstr( buffer, "CallFrom16_" )) != NULL ) { char *q, *profile = p + strlen( "CallFrom16_" ); for (q = profile; (*q == '_') || isalpha(*q); q++ ) ; *q = '\0'; for (q = p-1; q > buffer && ((*q == '_') || isalnum(*q)); q-- ) ; if ( ++q < p ) p[-1] = '\0'; else q = ""; BuildCallFrom16Func( outfile, profile, q ); } if ( (p = strstr( buffer, "CallTo16_" )) != NULL ) { char *q, *profile = p + strlen( "CallTo16_" ); for (q = profile; (*q == '_') || isalpha(*q); q++ ) ; *q = '\0'; for (q = p-1; q > buffer && ((*q == '_') || isalnum(*q)); q-- ) ; if ( ++q < p ) p[-1] = '\0'; else q = ""; BuildCallTo16Func( outfile, profile, q ); } if (strstr( buffer, "### stop build ###" )) break; } #ifdef USE_STABS fprintf( outfile, "\t.text\n"); fprintf( outfile, "\t.stabs \"\",100,0,0,.Letext\n"); fprintf( outfile, ".Letext:\n"); #endif #else /* __i386__ */ /* Just to avoid an empty file */ fprintf( outfile, "\t.long 0\n" ); #endif /* __i386__ */ fclose( infile ); return 0; } /******************************************************************* * BuildCall16 * * Build the 16-bit callbacks */ static int BuildCall16( FILE *outfile, char * outname ) { #ifdef USE_STABS char buffer[1024]; #endif /* File header */ fprintf( outfile, "/* File generated automatically. Do not edit! */\n\n" ); fprintf( outfile, "\t.text\n" ); #ifdef __i386__ #ifdef USE_STABS fprintf( outfile, "\t.file\t\"%s\"\n", outname ); getcwd(buffer, sizeof(buffer)); /* * The stabs help the internal debugger as they are an indication that it * is sensible to step into a thunk/trampoline. */ fprintf( outfile, ".stabs \"%s/\",100,0,0,Code_Start\n", buffer); fprintf( outfile, ".stabs \"%s\",100,0,0,Code_Start\n", outname); fprintf( outfile, "\t.text\n" ); fprintf( outfile, "\t.align 4\n" ); fprintf( outfile, "Code_Start:\n\n" ); #endif fprintf( outfile, PREFIX"Call16_Start:\n" ); fprintf( outfile, "\t.globl "PREFIX"Call16_Start\n" ); fprintf( outfile, "\t.byte 0\n\n" ); /* Standard CallFrom16 routine */ BuildCallFrom16Core( outfile, FALSE, FALSE ); /* Register CallFrom16 routine */ BuildCallFrom16Core( outfile, TRUE, FALSE ); /* C16ThkSL CallFrom16 routine */ BuildCallFrom16Core( outfile, FALSE, TRUE ); /* Standard CallTo16 routine (WORD return) */ BuildCallTo16Core( outfile, TRUE, FALSE ); /* Standard CallTo16 routine (DWORD return) */ BuildCallTo16Core( outfile, FALSE, FALSE ); /* Register CallTo16 routine (16:16 retf) */ BuildCallTo16Core( outfile, FALSE, 1 ); /* Register CallTo16 routine (16:32 retf) */ BuildCallTo16Core( outfile, FALSE, 2 ); /* CBClientThunkSL routine */ BuildCallTo32CBClient( outfile, FALSE ); /* CBClientThunkSLEx routine */ BuildCallTo32CBClient( outfile, TRUE ); fprintf( outfile, PREFIX"Call16_End:\n" ); fprintf( outfile, "\t.globl "PREFIX"Call16_End\n" ); #ifdef USE_STABS fprintf( outfile, "\t.stabs \"\",100,0,0,.Letext\n"); fprintf( outfile, ".Letext:\n"); #endif /* The whole Call16_Ret segment must lie within the .data section */ fprintf( outfile, "\n\t.data\n" ); fprintf( outfile, "\t.globl " PREFIX "Call16_Ret_Start\n" ); fprintf( outfile, PREFIX "Call16_Ret_Start:\n" ); /* Standard CallTo16 return stub */ BuildRet16Func( outfile ); /* CBClientThunkSL return stub */ BuildCallTo32CBClientRet( outfile, FALSE ); /* CBClientThunkSLEx return stub */ BuildCallTo32CBClientRet( outfile, TRUE ); /* End of Call16_Ret segment */ fprintf( outfile, "\n\t.globl " PREFIX "Call16_Ret_End\n" ); fprintf( outfile, PREFIX "Call16_Ret_End:\n" ); #else /* __i386__ */ fprintf( outfile, PREFIX"Call16_Start:\n" ); fprintf( outfile, "\t.globl "PREFIX"Call16_Start\n" ); fprintf( outfile, "\t.byte 0\n\n" ); fprintf( outfile, PREFIX"Call16_End:\n" ); fprintf( outfile, "\t.globl "PREFIX"Call16_End\n" ); fprintf( outfile, "\t.globl " PREFIX "Call16_Ret_Start\n" ); fprintf( outfile, PREFIX "Call16_Ret_Start:\n" ); fprintf( outfile, "\t.byte 0\n\n" ); fprintf( outfile, "\n\t.globl " PREFIX "Call16_Ret_End\n" ); fprintf( outfile, PREFIX "Call16_Ret_End:\n" ); #endif /* __i386__ */ return 0; } /******************************************************************* * BuildCall32 * * Build the 32-bit callbacks */ static int BuildCall32( FILE *outfile, char * outname ) { #ifdef USE_STABS char buffer[1024]; #endif /* File header */ fprintf( outfile, "/* File generated automatically. Do not edit! */\n\n" ); fprintf( outfile, "\t.text\n" ); #ifdef __i386__ #ifdef USE_STABS fprintf( outfile, "\t.file\t\"%s\"\n", outname ); getcwd(buffer, sizeof(buffer)); /* * The stabs help the internal debugger as they are an indication that it * is sensible to step into a thunk/trampoline. */ fprintf( outfile, ".stabs \"%s/\",100,0,0,Code_Start\n", buffer); fprintf( outfile, ".stabs \"%s\",100,0,0,Code_Start\n", outname); fprintf( outfile, "\t.text\n" ); fprintf( outfile, "\t.align 4\n" ); fprintf( outfile, "Code_Start:\n" ); #endif /* Build the 32-bit large stack callback */ BuildCallTo32LargeStack( outfile ); /* Build the register callback function */ BuildCallFrom32Regs( outfile ); #ifdef USE_STABS fprintf( outfile, "\t.text\n"); fprintf( outfile, "\t.stabs \"\",100,0,0,.Letext\n"); fprintf( outfile, ".Letext:\n"); #endif #else /* __i386__ */ /* Just to avoid an empty file */ fprintf( outfile, "\t.long 0\n" ); #endif /* __i386__ */ return 0; } /******************************************************************* * usage */ static void usage(void) { fprintf( stderr, "usage: build [-pic] [-o outfile] -spec SPECNAMES\n" " build [-pic] [-o outfile] -glue SOURCE_FILE\n" " build [-pic] [-o outfile] -call16\n" " build [-pic] [-o outfile] -call32\n" ); exit(1); } /******************************************************************* * main */ int main(int argc, char **argv) { char *outname = NULL; FILE *outfile = stdout; int res = -1; if (argc < 2) usage(); if (!strcmp( argv[1], "-pic" )) { UsePIC = 1; argv += 1; argc -= 1; if (argc < 2) usage(); } if (!strcmp( argv[1], "-o" )) { outname = argv[2]; argv += 2; argc -= 2; if (argc < 2) usage(); if (!(outfile = fopen( outname, "w" ))) { fprintf( stderr, "Unable to create output file '%s'\n", outname ); exit(1); } } /* Retrieve the selector values; this assumes that we are building * the asm files on the platform that will also run them. Probably * a safe assumption to make. */ GET_CS( Code_Selector ); GET_DS( Data_Selector ); if (!strcmp( argv[1], "-spec" )) res = BuildSpec( outfile, argc, argv ); else if (!strcmp( argv[1], "-glue" )) res = BuildGlue( outfile, outname, argc, argv ); else if (!strcmp( argv[1], "-call16" )) res = BuildCall16( outfile, outname ); else if (!strcmp( argv[1], "-call32" )) res = BuildCall32( outfile, outname ); else { fclose( outfile ); unlink( outname ); usage(); } fclose( outfile ); if (res < 0) { unlink( outname ); return 1; } return 0; }