/* * File elf.c - processing of ELF files * * Copyright (C) 1996, Eric Youngdale. * 1999-2004 Eric Pouech * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include #include #include #include #include #ifdef HAVE_SYS_MMAN_H #include #endif #ifdef HAVE_UNISTD_H # include #endif #ifndef PATH_MAX #define PATH_MAX MAX_PATH #endif #include "dbghelp_private.h" #if defined(__svr4__) || defined(__sun) #define __ELF__ #endif #ifdef HAVE_ELF_H # include #endif #ifdef HAVE_SYS_ELF32_H # include #endif #ifdef HAVE_SYS_EXEC_ELF_H # include #endif #if !defined(DT_NUM) # if defined(DT_COUNT) # define DT_NUM DT_COUNT # else /* this seems to be a satisfactory value on Solaris, which doesn't support this AFAICT */ # define DT_NUM 24 # endif #endif #ifdef HAVE_LINK_H # include #endif #ifdef HAVE_SYS_LINK_H # include #endif #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(dbghelp); struct elf_module_info { unsigned long elf_addr; unsigned short elf_mark : 1, elf_loader : 1; }; #ifdef __ELF__ #define ELF_INFO_DEBUG_HEADER 0x0001 #define ELF_INFO_MODULE 0x0002 #define ELF_INFO_NAME 0x0004 struct elf_info { unsigned flags; /* IN one (or several) of the ELF_INFO constants */ unsigned long dbg_hdr_addr; /* OUT address of debug header (if ELF_INFO_DEBUG_HEADER is set) */ struct module* module; /* OUT loaded module (if ELF_INFO_MODULE is set) */ const char* module_name; /* OUT found module name (if ELF_INFO_NAME is set) */ }; #define NO_MAP ((const void*)0xffffffff) /* structure holding information while handling an ELF image * allows one by one section mapping for memory savings */ struct elf_file_map { Elf32_Ehdr elfhdr; size_t elf_size; size_t elf_start; struct { Elf32_Shdr shdr; const char* mapped; }* sect; int fd; unsigned with_crc; unsigned long crc; }; struct symtab_elt { struct hash_table_elt ht_elt; const Elf32_Sym* symp; const char* filename; unsigned used; }; struct thunk_area { const char* symname; THUNK_ORDINAL ordinal; unsigned long rva_start; unsigned long rva_end; }; /****************************************************************** * elf_map_section * * Maps a single section into memory from an ELF file */ static const char* elf_map_section(struct elf_file_map* fmap, int sidx) { unsigned pgsz = getpagesize(); unsigned ofst, size; if (sidx >= fmap->elfhdr.e_shnum || fmap->sect[sidx].shdr.sh_type == SHT_NOBITS) return NO_MAP; /* align required information on page size (we assume pagesize is a power of 2) */ ofst = fmap->sect[sidx].shdr.sh_offset & ~(pgsz - 1); size = (fmap->sect[sidx].shdr.sh_offset + fmap->sect[sidx].shdr.sh_size + pgsz - 1) & ~(pgsz - 1); fmap->sect[sidx].mapped = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fmap->fd, ofst); if (fmap->sect[sidx].mapped == NO_MAP) return NO_MAP; return fmap->sect[sidx].mapped + (fmap->sect[sidx].shdr.sh_offset & (pgsz - 1)); } /****************************************************************** * elf_unmap_section * * Unmaps a single section from memory */ static void elf_unmap_section(struct elf_file_map* fmap, int sidx) { if (sidx < fmap->elfhdr.e_shnum && fmap->sect[sidx].mapped != NO_MAP) { munmap((char*)fmap->sect[sidx].mapped, fmap->sect[sidx].shdr.sh_size); fmap->sect[sidx].mapped = NO_MAP; } } /****************************************************************** * elf_map_file * * Maps an ELF file into memory (and checks it's a real ELF file) */ static BOOL elf_map_file(const char* filename, struct elf_file_map* fmap) { static const BYTE elf_signature[4] = { ELFMAG0, ELFMAG1, ELFMAG2, ELFMAG3 }; struct stat statbuf; int i; Elf32_Phdr phdr; unsigned tmp, page_mask = getpagesize() - 1; fmap->fd = -1; fmap->with_crc = 0; /* check that the file exists, and that the module hasn't been loaded yet */ if (stat(filename, &statbuf) == -1 || S_ISDIR(statbuf.st_mode)) return FALSE; /* Now open the file, so that we can mmap() it. */ if ((fmap->fd = open(filename, O_RDONLY)) == -1) return FALSE; if (read(fmap->fd, &fmap->elfhdr, sizeof(fmap->elfhdr)) != sizeof(fmap->elfhdr)) return FALSE; /* and check for an ELF header */ if (memcmp(fmap->elfhdr.e_ident, elf_signature, sizeof(elf_signature))) return FALSE; fmap->sect = HeapAlloc(GetProcessHeap(), 0, fmap->elfhdr.e_shnum * sizeof(fmap->sect[0])); if (!fmap->sect) return FALSE; lseek(fmap->fd, fmap->elfhdr.e_shoff, SEEK_SET); for (i = 0; i < fmap->elfhdr.e_shnum; i++) { read(fmap->fd, &fmap->sect[i].shdr, sizeof(fmap->sect[i].shdr)); fmap->sect[i].mapped = NO_MAP; } /* grab size of module once loaded in memory */ lseek(fmap->fd, fmap->elfhdr.e_phoff, SEEK_SET); fmap->elf_size = 0; fmap->elf_start = ~0L; for (i = 0; i < fmap->elfhdr.e_phnum; i++) { if (read(fmap->fd, &phdr, sizeof(phdr)) == sizeof(phdr) && phdr.p_type == PT_LOAD) { tmp = (phdr.p_vaddr + phdr.p_memsz + page_mask) & ~page_mask; if (fmap->elf_size < tmp) fmap->elf_size = tmp; if (phdr.p_vaddr < fmap->elf_start) fmap->elf_start = phdr.p_vaddr; } } /* if non relocatable ELF, then remove fixed address from computation * otherwise, all addresses are zero based and start has no effect */ fmap->elf_size -= fmap->elf_start; return TRUE; } /****************************************************************** * elf_unmap_file * * Unmaps an ELF file from memory (previously mapped with elf_map_file) */ static void elf_unmap_file(struct elf_file_map* fmap) { if (fmap->fd != -1) { int i; for (i = 0; i < fmap->elfhdr.e_shnum; i++) { elf_unmap_section(fmap, i); } HeapFree(GetProcessHeap(), 0, fmap->sect); close(fmap->fd); } } /****************************************************************** * elf_hash_symtab * * creating an internal hash table to ease use ELF symtab information lookup */ static void elf_hash_symtab(const struct module* module, struct pool* pool, struct hash_table* ht_symtab, struct elf_file_map* fmap, int symtab_idx, struct thunk_area* thunks) { int i, j, nsym; const char* strp; const char* symname; const char* filename = NULL; const char* ptr; const Elf32_Sym* symp; struct symtab_elt* ste; symp = (const Elf32_Sym*)elf_map_section(fmap, symtab_idx); strp = elf_map_section(fmap, fmap->sect[symtab_idx].shdr.sh_link); if (symp == NO_MAP || strp == NO_MAP) return; nsym = fmap->sect[symtab_idx].shdr.sh_size / sizeof(*symp); for (j = 0; thunks[j].symname; j++) thunks[j].rva_start = thunks[j].rva_end = 0; for (i = 0; i < nsym; i++, symp++) { /* Ignore certain types of entries which really aren't of that much * interest. */ if ((ELF32_ST_TYPE(symp->st_info) != STT_FILE && ELF32_ST_TYPE(symp->st_info) != STT_OBJECT && ELF32_ST_TYPE(symp->st_info) != STT_FUNC) || symp->st_shndx == SHN_UNDEF) { continue; } symname = strp + symp->st_name; if (ELF32_ST_TYPE(symp->st_info) == STT_FILE) { filename = symname; continue; } for (j = 0; thunks[j].symname; j++) { if (!strcmp(symname, thunks[j].symname)) { thunks[j].rva_start = symp->st_value; thunks[j].rva_end = symp->st_value + symp->st_size; break; } } if (thunks[j].symname) continue; /* FIXME: we don't need to handle them (GCC internals) * Moreover, they screw up our symbol lookup :-/ */ if (symname[0] == '.' && symname[1] == 'L' && isdigit(symname[2])) continue; ste = pool_alloc(pool, sizeof(*ste)); ste->ht_elt.name = symname; /* GCC emits, in some cases, a .+ suffix. * This is used for static variable inside functions, so * that we can have several such variables with same name in * the same compilation unit * We simply ignore that suffix when present (we also get rid * of it in stabs parsing) */ ptr = symname + strlen(symname) - 1; if (isdigit(*ptr)) { while (isdigit(*ptr) && ptr >= symname) ptr--; if (ptr > symname && *ptr == '.') { char* n = pool_alloc(pool, ptr - symname + 1); memcpy(n, symname, ptr - symname + 1); n[ptr - symname] = '\0'; ste->ht_elt.name = n; } } ste->symp = symp; ste->filename = filename; ste->used = 0; hash_table_add(ht_symtab, &ste->ht_elt); } /* as we added in the ht_symtab pointers to the symbols themselves, * we cannot unmap yet the sections, it will be done when we're over * with this ELF file */ } /****************************************************************** * elf_lookup_symtab * * lookup a symbol by name in our internal hash table for the symtab */ static const Elf32_Sym* elf_lookup_symtab(const struct module* module, const struct hash_table* ht_symtab, const char* name, struct symt* compiland) { struct symtab_elt* weak_result = NULL; /* without compiland name */ struct symtab_elt* result = NULL; struct hash_table_iter hti; struct symtab_elt* ste; const char* compiland_name; const char* compiland_basename; const char* base; /* we need weak match up (at least) when symbols of same name, * defined several times in different compilation units, * are merged in a single one (hence a different filename for c.u.) */ if (compiland) { compiland_name = source_get(module, ((struct symt_compiland*)compiland)->source); compiland_basename = strrchr(compiland_name, '/'); if (!compiland_basename++) compiland_basename = compiland_name; } else compiland_name = compiland_basename = NULL; hash_table_iter_init(ht_symtab, &hti, name); while ((ste = hash_table_iter_up(&hti))) { if (ste->used || strcmp(ste->ht_elt.name, name)) continue; weak_result = ste; if ((ste->filename && !compiland_name) || (!ste->filename && compiland_name)) continue; if (ste->filename && compiland_name) { if (strcmp(ste->filename, compiland_name)) { base = strrchr(ste->filename, '/'); if (!base++) base = ste->filename; if (strcmp(base, compiland_basename)) continue; } } if (result) { FIXME("Already found symbol %s (%s) in symtab %s @%08x and %s @%08x\n", name, compiland_name, result->filename, result->symp->st_value, ste->filename, ste->symp->st_value); } else { result = ste; ste->used = 1; } } if (!result && !(result = weak_result)) { FIXME("Couldn't find symbol %s!%s in symtab\n", module->module.ModuleName, name); return NULL; } return result->symp; } /****************************************************************** * elf_finish_stabs_info * * - get any relevant information (address & size) from the bits we got from the * stabs debugging information */ static void elf_finish_stabs_info(struct module* module, struct hash_table* symtab) { struct hash_table_iter hti; void* ptr; struct symt_ht* sym; const Elf32_Sym* symp; hash_table_iter_init(&module->ht_symbols, &hti, NULL); while ((ptr = hash_table_iter_up(&hti))) { sym = GET_ENTRY(ptr, struct symt_ht, hash_elt); switch (sym->symt.tag) { case SymTagFunction: if (((struct symt_function*)sym)->address != module->elf_info->elf_addr && ((struct symt_function*)sym)->size) { break; } symp = elf_lookup_symtab(module, symtab, sym->hash_elt.name, ((struct symt_function*)sym)->container); if (symp) { if (((struct symt_function*)sym)->address != module->elf_info->elf_addr && ((struct symt_function*)sym)->address != module->elf_info->elf_addr + symp->st_value) FIXME("Changing address for %p/%s!%s from %08lx to %08lx\n", sym, module->module.ModuleName, sym->hash_elt.name, ((struct symt_function*)sym)->address, module->elf_info->elf_addr + symp->st_value); if (((struct symt_function*)sym)->size && ((struct symt_function*)sym)->size != symp->st_size) FIXME("Changing size for %p/%s!%s from %08lx to %08x\n", sym, module->module.ModuleName, sym->hash_elt.name, ((struct symt_function*)sym)->size, symp->st_size); ((struct symt_function*)sym)->address = module->elf_info->elf_addr + symp->st_value; ((struct symt_function*)sym)->size = symp->st_size; } else FIXME("Couldn't find %s!%s\n", module->module.ModuleName, sym->hash_elt.name); break; case SymTagData: switch (((struct symt_data*)sym)->kind) { case DataIsGlobal: case DataIsFileStatic: if (((struct symt_data*)sym)->u.address != module->elf_info->elf_addr) break; symp = elf_lookup_symtab(module, symtab, sym->hash_elt.name, ((struct symt_data*)sym)->container); if (symp) { if (((struct symt_data*)sym)->u.address != module->elf_info->elf_addr && ((struct symt_data*)sym)->u.address != module->elf_info->elf_addr + symp->st_value) FIXME("Changing address for %p/%s!%s from %08lx to %08lx\n", sym, module->module.ModuleName, sym->hash_elt.name, ((struct symt_function*)sym)->address, module->elf_info->elf_addr + symp->st_value); ((struct symt_data*)sym)->u.address = module->elf_info->elf_addr + symp->st_value; ((struct symt_data*)sym)->kind = (ELF32_ST_BIND(symp->st_info) == STB_LOCAL) ? DataIsFileStatic : DataIsGlobal; } else FIXME("Couldn't find %s!%s\n", module->module.ModuleName, sym->hash_elt.name); break; default:; } break; default: FIXME("Unsupported tag %u\n", sym->symt.tag); break; } } /* since we may have changed some addresses & sizes, mark the module to be resorted */ module->sortlist_valid = FALSE; } /****************************************************************** * elf_load_wine_thunks * * creating the thunk objects for a wine native DLL */ static int elf_new_wine_thunks(struct module* module, struct hash_table* ht_symtab, unsigned num_areas, struct thunk_area* thunks) { int j; struct symt_compiland* compiland = NULL; const char* compiland_name = NULL; struct hash_table_iter hti; struct symtab_elt* ste; DWORD addr; int idx; hash_table_iter_init(ht_symtab, &hti, NULL); while ((ste = hash_table_iter_up(&hti))) { if (ste->used) continue; /* FIXME: this is not a good idea anyway... we are creating several * compiland objects for a same compilation unit * We try to cache the last compiland used, but it's not enough * (we should here only create compilands if they are not yet * defined) */ if (!compiland_name || compiland_name != ste->filename) compiland = symt_new_compiland(module, compiland_name = ste->filename); addr = module->elf_info->elf_addr + ste->symp->st_value; for (j = 0; j < num_areas; j++) { if (ste->symp->st_value >= thunks[j].rva_start && ste->symp->st_value < thunks[j].rva_end) break; } if (j < num_areas) /* thunk found */ { symt_new_thunk(module, compiland, ste->ht_elt.name, thunks[j].ordinal, addr, ste->symp->st_size); } else { ULONG64 ref_addr; idx = symt_find_nearest(module, addr); if (idx != -1) symt_get_info(&module->addr_sorttab[idx]->symt, TI_GET_ADDRESS, &ref_addr); if (idx == -1 || addr != ref_addr) { /* creating public symbols for all the ELF symbols which haven't been * used yet (ie we have no debug information on them) * That's the case, for example, of the .spec.c files */ switch (ELF32_ST_TYPE(ste->symp->st_info)) { case STT_FUNC: symt_new_function(module, compiland, ste->ht_elt.name, addr, ste->symp->st_size, NULL); break; case STT_OBJECT: symt_new_global_variable(module, compiland, ste->ht_elt.name, ELF32_ST_BIND(ste->symp->st_info) == STB_LOCAL, addr, ste->symp->st_size, NULL); break; default: FIXME("Shouldn't happen\n"); break; } /* FIXME: this is a hack !!! * we are adding new symbols, but as we're parsing a symbol table * (hopefully without duplicate symbols) we delay rebuilding the sorted * module table until we're done with the symbol table * Otherwise, as we intertwine symbols's add and lookup, performance * is rather bad */ module->sortlist_valid = TRUE; } else if (strcmp(ste->ht_elt.name, module->addr_sorttab[idx]->hash_elt.name)) { ULONG64 xaddr = 0; DWORD xsize = 0, kind = -1; symt_get_info(&module->addr_sorttab[idx]->symt, TI_GET_ADDRESS, &xaddr); symt_get_info(&module->addr_sorttab[idx]->symt, TI_GET_LENGTH, &xsize); symt_get_info(&module->addr_sorttab[idx]->symt, TI_GET_DATAKIND, &kind); /* If none of symbols has a correct size, we consider they are both markers * Hence, we can silence this warning * Also, we check that we don't have two symbols, one local, the other * global which is legal */ if ((xsize || ste->symp->st_size) && (kind == (ELF32_ST_BIND(ste->symp->st_info) == STB_LOCAL) ? DataIsFileStatic : DataIsGlobal)) FIXME("Duplicate in %s: %s<%08lx-%08x> %s<%s-%08lx>\n", module->module.ModuleName, ste->ht_elt.name, addr, ste->symp->st_size, module->addr_sorttab[idx]->hash_elt.name, wine_dbgstr_longlong(xaddr), xsize); } } } /* see comment above */ module->sortlist_valid = FALSE; return TRUE; } /****************************************************************** * elf_new_public_symbols * * Creates a set of public symbols from an ELF symtab */ static int elf_new_public_symbols(struct module* module, struct hash_table* symtab) { struct symt_compiland* compiland = NULL; const char* compiland_name = NULL; struct hash_table_iter hti; struct symtab_elt* ste; if (dbghelp_options & SYMOPT_NO_PUBLICS) return TRUE; /* FIXME: we're missing the ELF entry point here */ hash_table_iter_init(symtab, &hti, NULL); while ((ste = hash_table_iter_up(&hti))) { /* FIXME: this is not a good idea anyway... we are creating several * compiland objects for a same compilation unit * We try to cache the last compiland used, but it's not enough * (we should here only create compilands if they are not yet * defined) */ if (!compiland_name || compiland_name != ste->filename) compiland = symt_new_compiland(module, compiland_name = ste->filename); symt_new_public(module, compiland, ste->ht_elt.name, module->elf_info->elf_addr + ste->symp->st_value, ste->symp->st_size, TRUE /* FIXME */, ELF32_ST_TYPE(ste->symp->st_info) == STT_FUNC); } return TRUE; } /* Copyright (C) 1986 Gary S. Brown. Modified by Robert Shearman. You may use the following calc_crc32 code or tables extracted from it, as desired without restriction. */ /**********************************************************************\ |* Demonstration program to compute the 32-bit CRC used as the frame *| |* check sequence in ADCCP (ANSI X3.66, also known as FIPS PUB 71 *| |* and FED-STD-1003, the U.S. versions of CCITT's X.25 link-level *| |* protocol). The 32-bit FCS was added via the Federal Register, *| |* 1 June 1982, p.23798. I presume but don't know for certain that *| |* this polynomial is or will be included in CCITT V.41, which *| |* defines the 16-bit CRC (often called CRC-CCITT) polynomial. FIPS *| |* PUB 78 says that the 32-bit FCS reduces otherwise undetected *| |* errors by a factor of 10^-5 over 16-bit FCS. *| \**********************************************************************/ /* First, the polynomial itself and its table of feedback terms. The */ /* polynomial is */ /* X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0 */ /* Note that we take it "backwards" and put the highest-order term in */ /* the lowest-order bit. The X^32 term is "implied"; the LSB is the */ /* X^31 term, etc. The X^0 term (usually shown as "+1") results in */ /* the MSB being 1. */ /* Note that the usual hardware shift register implementation, which */ /* is what we're using (we're merely optimizing it by doing eight-bit */ /* chunks at a time) shifts bits into the lowest-order term. In our */ /* implementation, that means shifting towards the right. Why do we */ /* do it this way? Because the calculated CRC must be transmitted in */ /* order from highest-order term to lowest-order term. UARTs transmit */ /* characters in order from LSB to MSB. By storing the CRC this way, */ /* we hand it to the UART in the order low-byte to high-byte; the UART */ /* sends each low-bit to hight-bit; and the result is transmission bit */ /* by bit from highest- to lowest-order term without requiring any bit */ /* shuffling on our part. Reception works similarly. */ /* The feedback terms table consists of 256, 32-bit entries. Notes: */ /* */ /* 1. The table can be generated at runtime if desired; code to do so */ /* is shown later. It might not be obvious, but the feedback */ /* terms simply represent the results of eight shift/xor opera- */ /* tions for all combinations of data and CRC register values. */ /* */ /* 2. The CRC accumulation logic is the same for all CRC polynomials, */ /* be they sixteen or thirty-two bits wide. You simply choose the */ /* appropriate table. Alternatively, because the table can be */ /* generated at runtime, you can start by generating the table for */ /* the polynomial in question and use exactly the same "updcrc", */ /* if your application needn't simultaneously handle two CRC */ /* polynomials. (Note, however, that XMODEM is strange.) */ /* */ /* 3. For 16-bit CRCs, the table entries need be only 16 bits wide; */ /* of course, 32-bit entries work OK if the high 16 bits are zero. */ /* */ /* 4. The values must be right-shifted by eight bits by the "updcrc" */ /* logic; the shift must be unsigned (bring in zeroes). On some */ /* hardware you could probably optimize the shift in assembler by */ /* using byte-swap instructions. */ static DWORD calc_crc32(struct elf_file_map* fmap) { #define UPDC32(octet,crc) (crc_32_tab[((crc) ^ (octet)) & 0xff] ^ ((crc) >> 8)) static const DWORD crc_32_tab[] = { /* CRC polynomial 0xedb88320 */ 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d }; int i, r; unsigned char buffer[256]; DWORD crc = ~0; lseek(fmap->fd, 0, SEEK_SET); while ((r = read(fmap->fd, buffer, sizeof(buffer))) > 0) { for (i = 0; i < r; i++) crc = UPDC32(buffer[i], crc); } return ~crc; #undef UPDC32 } /****************************************************************** * elf_load_debug_info_from_map * * Loads the symbolic information from ELF module which mapping is described * in fmap * the module has been loaded at 'load_offset' address, so symbols' address * relocation is performed. * CRC is checked if fmap->with_crc is TRUE * returns * 0 if the file doesn't contain symbolic info (or this info cannot be * read or parsed) * 1 on success */ static BOOL elf_load_debug_info_from_map(struct module* module, struct elf_file_map* fmap, struct pool* pool, struct hash_table* ht_symtab) { BOOL ret = FALSE; const char* shstrtab; int i; int symtab_sect, dynsym_sect, stab_sect, stabstr_sect, debug_sect, debuglink_sect; struct thunk_area thunks[] = { {"__wine_spec_import_thunks", THUNK_ORDINAL_NOTYPE, 0, 0}, /* inter DLL calls */ {"__wine_spec_delayed_import_loaders", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */ {"__wine_spec_delayed_import_thunks", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */ {"__wine_delay_load", THUNK_ORDINAL_LOAD, 0, 0}, /* delayed inter DLL calls */ {"__wine_spec_thunk_text_16", -16, 0, 0}, /* 16 => 32 thunks */ {"__wine_spec_thunk_data_16", -16, 0, 0}, /* 16 => 32 thunks */ {"__wine_spec_thunk_text_32", -32, 0, 0}, /* 32 => 16 thunks */ {"__wine_spec_thunk_data_32", -32, 0, 0}, /* 32 => 16 thunks */ {NULL, 0, 0, 0} }; if (fmap->with_crc && (fmap->crc != calc_crc32(fmap))) { ERR("Bad CRC for module %s (got %08lx while expecting %08lx)\n", module->module.ImageName, calc_crc32(fmap), fmap->crc); /* we don't tolerate mis-matched files */ return FALSE; } /* * Next, we need to find a few of the internal ELF headers within * this thing. We need the main executable header, and the section * table. */ shstrtab = elf_map_section(fmap, fmap->elfhdr.e_shstrndx); if (shstrtab == NO_MAP) return FALSE; symtab_sect = dynsym_sect = stab_sect = stabstr_sect = debug_sect = debuglink_sect = -1; for (i = 0; i < fmap->elfhdr.e_shnum; i++) { if (strcmp(shstrtab + fmap->sect[i].shdr.sh_name, ".stab") == 0) stab_sect = i; if (strcmp(shstrtab + fmap->sect[i].shdr.sh_name, ".stabstr") == 0) stabstr_sect = i; if (strcmp(shstrtab + fmap->sect[i].shdr.sh_name, ".debug_info") == 0) debug_sect = i; if (strcmp(shstrtab + fmap->sect[i].shdr.sh_name, ".gnu_debuglink") == 0) debuglink_sect = i; if ((strcmp(shstrtab + fmap->sect[i].shdr.sh_name, ".symtab") == 0) && (fmap->sect[i].shdr.sh_type == SHT_SYMTAB)) symtab_sect = i; if ((strcmp(shstrtab + fmap->sect[i].shdr.sh_name, ".dynsym") == 0) && (fmap->sect[i].shdr.sh_type == SHT_DYNSYM)) dynsym_sect = i; } elf_unmap_section(fmap, fmap->elfhdr.e_shstrndx); shstrtab = NULL; if (symtab_sect == -1) { /* if we don't have a symtab but a dynsym, process the dynsym * section instead. It'll contain less (relevant) information, * but it'll be better than nothing */ if (dynsym_sect == -1) return FALSE; symtab_sect = dynsym_sect; } module->module.SymType = SymExport; /* create a hash table for the symtab */ elf_hash_symtab(module, pool, ht_symtab, fmap, symtab_sect, thunks); if (!(dbghelp_options & SYMOPT_PUBLICS_ONLY)) { if (stab_sect != -1 && stabstr_sect != -1) { const char* stab; const char* stabstr; stab = elf_map_section(fmap, stab_sect); stabstr = elf_map_section(fmap, stabstr_sect); if (stab != NO_MAP && stabstr != NO_MAP) { /* OK, now just parse all of the stabs. */ ret = stabs_parse(module, module->elf_info->elf_addr, stab, fmap->sect[stab_sect].shdr.sh_size, stabstr, fmap->sect[stabstr_sect].shdr.sh_size); } elf_unmap_section(fmap, stab_sect); elf_unmap_section(fmap, stabstr_sect); if (!ret) { WARN("Couldn't correctly read stabs\n"); return FALSE; } /* and fill in the missing information for stabs */ elf_finish_stabs_info(module, ht_symtab); } else if (debug_sect != -1) { /* Dwarf 2 debug information */ FIXME("Unsupported Dwarf2 information for %s\n", module->module.ModuleName); } else if (debuglink_sect != -1) { const char* dbg_link; struct elf_file_map fmap_link; dbg_link = elf_map_section(fmap, debuglink_sect); /* The content of a debug link section is: * 1/ a NULL terminated string, containing the file name for the * debug info * 2/ padding on 4 byte boundary * 3/ CRC of the linked ELF file */ if (dbg_link != NO_MAP && elf_map_file(dbg_link, &fmap_link)) { fmap_link.crc = *(const DWORD*)(dbg_link + ((DWORD_PTR)(strlen(dbg_link) + 4) & ~3)); fmap_link.with_crc = 1; ret = elf_load_debug_info_from_map(module, &fmap_link, pool, ht_symtab); if (!ret) WARN("Couldn't load debug information from %s\n", dbg_link); } else WARN("Couldn't load linked debug file for %s\n", module->module.ModuleName); elf_unmap_file(&fmap_link); } } if (strstr(module->module.ModuleName, "") || !strcmp(module->module.ModuleName, "")) { /* add the thunks for native libraries */ if (!(dbghelp_options & SYMOPT_PUBLICS_ONLY)) elf_new_wine_thunks(module, ht_symtab, sizeof(thunks) / sizeof(thunks[0]), thunks); } /* add all the public symbols from symtab */ if (elf_new_public_symbols(module, ht_symtab) && !ret) ret = TRUE; return ret; } /****************************************************************** * elf_load_debug_info * * Loads ELF debugging information from the module image file. */ BOOL elf_load_debug_info(struct module* module, struct elf_file_map* fmap) { BOOL ret = TRUE; struct pool pool; struct hash_table ht_symtab; struct elf_file_map my_fmap; if (module->type != DMT_ELF || !module->elf_info) { ERR("Bad elf module '%s'\n", module->module.LoadedImageName); return FALSE; } pool_init(&pool, 65536); hash_table_init(&pool, &ht_symtab, 256); if (!fmap) { fmap = &my_fmap; ret = elf_map_file(module->module.LoadedImageName, fmap); } if (ret) ret = elf_load_debug_info_from_map(module, fmap, &pool, &ht_symtab); pool_destroy(&pool); if (fmap == &my_fmap) elf_unmap_file(fmap); return ret; } /****************************************************************** * elf_fetch_file_info * * Gathers some more information for an ELF module from a given file */ BOOL elf_fetch_file_info(const char* name, DWORD* base, DWORD* size, DWORD* checksum) { struct elf_file_map fmap; if (!elf_map_file(name, &fmap)) return FALSE; if (base) *base = fmap.elf_start; *size = fmap.elf_size; *checksum = calc_crc32(&fmap); elf_unmap_file(&fmap); return TRUE; } /****************************************************************** * is_dt_flag_valid * returns true iff the section tag is valid */ static unsigned is_dt_flag_valid(unsigned d_tag) { #ifndef DT_PROCNUM #define DT_PROCNUM 0 #endif #ifndef DT_EXTRANUM #define DT_EXTRANUM 0 #endif return (d_tag >= 0 && d_tag < DT_NUM + DT_PROCNUM + DT_EXTRANUM) #if defined(DT_LOOS) && defined(DT_HIOS) || (d_tag >= DT_LOOS && d_tag < DT_HIOS) #endif #if defined(DT_LOPROC) && defined(DT_HIPROC) || (d_tag >= DT_LOPROC && d_tag < DT_HIPROC) #endif ; } /****************************************************************** * elf_load_file * * Loads the information for ELF module stored in 'filename' * the module has been loaded at 'load_offset' address * returns * -1 if the file cannot be found/opened * 0 if the file doesn't contain symbolic info (or this info cannot be * read or parsed) * 1 on success */ static BOOL elf_load_file(struct process* pcs, const char* filename, unsigned long load_offset, struct elf_info* elf_info) { BOOL ret = FALSE; struct elf_file_map fmap; int i; TRACE("Processing elf file '%s' at %08lx\n", filename, load_offset); if (!elf_map_file(filename, &fmap)) goto leave; /* Next, we need to find a few of the internal ELF headers within * this thing. We need the main executable header, and the section * table. */ if (!fmap.elf_start && !load_offset) ERR("Relocatable ELF %s, but no load address. Loading at 0x0000000\n", filename); if (fmap.elf_start && load_offset) { WARN("Non-relocatable ELF %s, but load address of 0x%08lx supplied. " "Assuming load address is corrupt\n", filename, load_offset); load_offset = 0; } if (elf_info->flags & ELF_INFO_DEBUG_HEADER) { const char* shstrtab = elf_map_section(&fmap, fmap.elfhdr.e_shstrndx); if (shstrtab == NO_MAP) goto leave; for (i = 0; i < fmap.elfhdr.e_shnum; i++) { if (strcmp(shstrtab + fmap.sect[i].shdr.sh_name, ".dynamic") == 0 && fmap.sect[i].shdr.sh_type == SHT_DYNAMIC) { Elf32_Dyn dyn; char* ptr = (char*)fmap.sect[i].shdr.sh_addr; unsigned long len; do { if (!ReadProcessMemory(pcs->handle, ptr, &dyn, sizeof(dyn), &len) || len != sizeof(dyn) || !is_dt_flag_valid(dyn.d_tag)) dyn.d_tag = DT_NULL; ptr += sizeof(dyn); } while (dyn.d_tag != DT_DEBUG && dyn.d_tag != DT_NULL); if (dyn.d_tag == DT_NULL) goto leave; elf_info->dbg_hdr_addr = dyn.d_un.d_ptr; } } elf_unmap_section(&fmap, fmap.elfhdr.e_shstrndx); } if (elf_info->flags & ELF_INFO_MODULE) { struct elf_module_info *elf_module_info = HeapAlloc(GetProcessHeap(), 0, sizeof(struct elf_module_info)); if (!elf_module_info) goto leave; elf_info->module = module_new(pcs, filename, DMT_ELF, (load_offset) ? load_offset : fmap.elf_start, fmap.elf_size, 0, calc_crc32(&fmap)); if (!elf_info->module) { HeapFree(GetProcessHeap(), 0, elf_module_info); goto leave; } elf_info->module->elf_info = elf_module_info; elf_info->module->elf_info->elf_addr = load_offset; if (dbghelp_options & SYMOPT_DEFERRED_LOADS) { elf_info->module->module.SymType = SymDeferred; ret = TRUE; } else ret = elf_load_debug_info(elf_info->module, &fmap); elf_info->module->elf_info->elf_mark = 1; elf_info->module->elf_info->elf_loader = 0; } else ret = TRUE; if (elf_info->flags & ELF_INFO_NAME) { elf_info->module_name = strcpy(HeapAlloc(GetProcessHeap(), 0, strlen(filename) + 1), filename); } leave: elf_unmap_file(&fmap); return ret; } /****************************************************************** * elf_load_file_from_path * tries to load an ELF file from a set of paths (separated by ':') */ static BOOL elf_load_file_from_path(HANDLE hProcess, const char* filename, unsigned long load_offset, const char* path, struct elf_info* elf_info) { BOOL ret = FALSE; char *s, *t, *fn; char* paths = NULL; if (!path) return FALSE; paths = strcpy(HeapAlloc(GetProcessHeap(), 0, strlen(path) + 1), path); for (s = paths; s && *s; s = (t) ? (t+1) : NULL) { t = strchr(s, ':'); if (t) *t = '\0'; fn = HeapAlloc(GetProcessHeap(), 0, strlen(filename) + 1 + strlen(s) + 1); if (!fn) break; strcpy(fn, s); strcat(fn, "/"); strcat(fn, filename); ret = elf_load_file(hProcess, fn, load_offset, elf_info); HeapFree(GetProcessHeap(), 0, fn); if (ret) break; s = (t) ? (t+1) : NULL; } HeapFree(GetProcessHeap(), 0, paths); return ret; } /****************************************************************** * elf_search_and_load_file * * lookup a file in standard ELF locations, and if found, load it */ static BOOL elf_search_and_load_file(struct process* pcs, const char* filename, unsigned long load_offset, struct elf_info* elf_info) { BOOL ret = FALSE; struct module* module; if (filename == NULL || *filename == '\0') return FALSE; if ((module = module_find_by_name(pcs, filename, DMT_ELF))) { elf_info->module = module; module->elf_info->elf_mark = 1; return module->module.SymType; } if (strstr(filename, "libstdc++")) return FALSE; /* We know we can't do it */ ret = elf_load_file(pcs, filename, load_offset, elf_info); /* if relative pathname, try some absolute base dirs */ if (!ret && !strchr(filename, '/')) { ret = elf_load_file_from_path(pcs, filename, load_offset, getenv("PATH"), elf_info) || elf_load_file_from_path(pcs, filename, load_offset, getenv("LD_LIBRARY_PATH"), elf_info) || elf_load_file_from_path(pcs, filename, load_offset, getenv("WINEDLLPATH"), elf_info); } return ret; } /****************************************************************** * elf_enum_modules_internal * * Enumerate ELF modules from a running process */ static BOOL elf_enum_modules_internal(const struct process* pcs, const char* main_name, elf_enum_modules_cb cb, void* user) { struct r_debug dbg_hdr; void* lm_addr; struct link_map lm; char bufstr[256]; if (!pcs->dbg_hdr_addr || !ReadProcessMemory(pcs->handle, (void*)pcs->dbg_hdr_addr, &dbg_hdr, sizeof(dbg_hdr), NULL)) return FALSE; /* Now walk the linked list. In all known ELF implementations, * the dynamic loader maintains this linked list for us. In some * cases the first entry doesn't appear with a name, in other cases it * does. */ for (lm_addr = (void*)dbg_hdr.r_map; lm_addr; lm_addr = (void*)lm.l_next) { if (!ReadProcessMemory(pcs->handle, lm_addr, &lm, sizeof(lm), NULL)) return FALSE; if (lm.l_prev != NULL && /* skip first entry, normally debuggee itself */ lm.l_name != NULL && ReadProcessMemory(pcs->handle, lm.l_name, bufstr, sizeof(bufstr), NULL)) { bufstr[sizeof(bufstr) - 1] = '\0'; if (main_name && !bufstr[0]) strcpy(bufstr, main_name); if (!cb(bufstr, (unsigned long)lm.l_addr, user)) break; } } return TRUE; } struct elf_sync { struct process* pcs; struct elf_info elf_info; }; static BOOL elf_enum_sync_cb(const char* name, unsigned long addr, void* user) { struct elf_sync* es = user; elf_search_and_load_file(es->pcs, name, addr, &es->elf_info); return TRUE; } /****************************************************************** * elf_synchronize_module_list * * this functions rescans the debuggee module's list and synchronizes it with * the one from 'pcs', ie: * - if a module is in debuggee and not in pcs, it's loaded into pcs * - if a module is in pcs and not in debuggee, it's unloaded from pcs */ BOOL elf_synchronize_module_list(struct process* pcs) { struct module* module; struct elf_sync es; for (module = pcs->lmodules; module; module = module->next) { if (module->type == DMT_ELF) module->elf_info->elf_mark = 0; } es.pcs = pcs; es.elf_info.flags = ELF_INFO_MODULE; if (!elf_enum_modules_internal(pcs, NULL, elf_enum_sync_cb, &es)) return FALSE; module = pcs->lmodules; while (module) { if (module->type == DMT_ELF && !module->elf_info->elf_mark && !module->elf_info->elf_loader) { module_remove(pcs, module); /* restart all over */ module = pcs->lmodules; } else module = module->next; } return TRUE; } /****************************************************************** * elf_search_loader * * Lookup in a running ELF process the loader, and sets its ELF link * address (for accessing the list of loaded .so libs) in pcs. * If flags is ELF_INFO_MODULE, the module for the loader is also * added as a module into pcs. */ static BOOL elf_search_loader(struct process* pcs, struct elf_info* elf_info) { BOOL ret; const char* ptr; /* All binaries are loaded with WINELOADER (if run from tree) or by the * main executable (either wine-kthread or wine-pthread) * FIXME: the heuristic used to know whether we need to load wine-pthread * or wine-kthread is not 100% safe */ if ((ptr = getenv("WINELOADER"))) ret = elf_search_and_load_file(pcs, ptr, 0, elf_info); else { ret = elf_search_and_load_file(pcs, "wine-kthread", 0, elf_info) || elf_search_and_load_file(pcs, "wine-pthread", 0, elf_info); } return ret; } /****************************************************************** * elf_read_wine_loader_dbg_info * * Try to find a decent wine executable which could have loaded the debuggee */ BOOL elf_read_wine_loader_dbg_info(struct process* pcs) { struct elf_info elf_info; elf_info.flags = ELF_INFO_DEBUG_HEADER | ELF_INFO_MODULE; if (!elf_search_loader(pcs, &elf_info)) return FALSE; elf_info.module->elf_info->elf_loader = 1; strcpy(elf_info.module->module.ModuleName, ""); return (pcs->dbg_hdr_addr = elf_info.dbg_hdr_addr) != 0; } /****************************************************************** * elf_enum_modules * * Enumerates the ELF loaded modules from a running target (hProc) * This function doesn't require that someone has called SymInitialize * on this very process. */ BOOL elf_enum_modules(HANDLE hProc, elf_enum_modules_cb cb, void* user) { struct process pcs; struct elf_info elf_info; BOOL ret; memset(&pcs, 0, sizeof(pcs)); pcs.handle = hProc; elf_info.flags = ELF_INFO_DEBUG_HEADER | ELF_INFO_NAME; if (!elf_search_loader(&pcs, &elf_info)) return FALSE; pcs.dbg_hdr_addr = elf_info.dbg_hdr_addr; ret = elf_enum_modules_internal(&pcs, elf_info.module_name, cb, user); HeapFree(GetProcessHeap(), 0, (char*)elf_info.module_name); return ret; } struct elf_load { struct process* pcs; struct elf_info elf_info; const char* name; BOOL ret; }; /****************************************************************** * elf_load_cb * * Callback for elf_load_module, used to walk the list of loaded * modules. */ static BOOL elf_load_cb(const char* name, unsigned long addr, void* user) { struct elf_load* el = user; const char* p; /* memcmp is needed for matches when bufstr contains also version information * el->name: libc.so, name: libc.so.6.0 */ p = strrchr(name, '/'); if (!p++) p = name; if (!memcmp(p, el->name, strlen(el->name))) { elf_search_and_load_file(el->pcs, name, addr, &el->elf_info); return FALSE; } return TRUE; } /****************************************************************** * elf_load_module * * loads an ELF module and stores it in process' module list * Also, find module real name and load address from * the real loaded modules list in pcs address space */ struct module* elf_load_module(struct process* pcs, const char* name, DWORD addr) { struct elf_load el; TRACE("(%p %s %08lx)\n", pcs, name, addr); el.elf_info.flags = ELF_INFO_MODULE; el.ret = FALSE; if (pcs->dbg_hdr_addr) /* we're debugging a life target */ { el.pcs = pcs; /* do only the lookup from the filename, not the path (as we lookup module * name in the process' loaded module list) */ el.name = strrchr(name, '/'); if (!el.name++) el.name = name; el.ret = FALSE; if (!elf_enum_modules_internal(pcs, NULL, elf_load_cb, &el)) return NULL; } else if (addr) { el.ret = elf_search_and_load_file(pcs, name, addr, &el.elf_info); } if (!el.ret) return NULL; assert(el.elf_info.module); return el.elf_info.module; } #else /* !__ELF__ */ BOOL elf_synchronize_module_list(struct process* pcs) { return FALSE; } BOOL elf_read_wine_loader_dbg_info(struct process* pcs) { return FALSE; } struct module* elf_load_module(struct process* pcs, const char* name, DWORD addr) { return NULL; } BOOL elf_load_debug_info(struct module* module) { return FALSE; } #endif /* __ELF__ */