/* * Copyright 2011 Jacek Caban for CodeWeavers * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include #include #include "jscript.h" #include "engine.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(jscript); struct _compiler_ctx_t { parser_ctx_t *parser; bytecode_t *code; unsigned code_off; unsigned code_size; BOOL no_fallback; }; static HRESULT compile_expression(compiler_ctx_t*,expression_t*); static HRESULT compile_statement(compiler_ctx_t*,statement_t*); static inline void *compiler_alloc(bytecode_t *code, size_t size) { return jsheap_alloc(&code->heap, size); } static WCHAR *compiler_alloc_string(bytecode_t *code, const WCHAR *str) { size_t size; WCHAR *ret; size = (strlenW(str)+1)*sizeof(WCHAR); ret = compiler_alloc(code, size); if(ret) memcpy(ret, str, size); return ret; } static BSTR compiler_alloc_bstr(compiler_ctx_t *ctx, const WCHAR *str) { if(!ctx->code->bstr_pool_size) { ctx->code->bstr_pool = heap_alloc(8 * sizeof(BSTR)); if(!ctx->code->bstr_pool) return NULL; ctx->code->bstr_pool_size = 8; }else if(ctx->code->bstr_pool_size == ctx->code->bstr_cnt) { BSTR *new_pool; new_pool = heap_realloc(ctx->code->bstr_pool, ctx->code->bstr_pool_size*2*sizeof(BSTR)); if(!new_pool) return NULL; ctx->code->bstr_pool = new_pool; ctx->code->bstr_pool_size *= 2; } ctx->code->bstr_pool[ctx->code->bstr_cnt] = SysAllocString(str); if(!ctx->code->bstr_pool[ctx->code->bstr_cnt]) return NULL; return ctx->code->bstr_pool[ctx->code->bstr_cnt++]; } static unsigned push_instr(compiler_ctx_t *ctx, jsop_t op) { assert(ctx->code_size >= ctx->code_off); if(!ctx->code_size) { ctx->code->instrs = heap_alloc(64 * sizeof(instr_t)); if(!ctx->code->instrs) return -1; ctx->code_size = 64; }else if(ctx->code_size == ctx->code_off) { instr_t *new_instrs; new_instrs = heap_realloc(ctx->code->instrs, ctx->code_size*2*sizeof(instr_t)); if(!new_instrs) return -1; ctx->code->instrs = new_instrs; ctx->code_size *= 2; } ctx->code->instrs[ctx->code_off].op = op; return ctx->code_off++; } static inline instr_t *instr_ptr(compiler_ctx_t *ctx, unsigned off) { assert(off < ctx->code_off); return ctx->code->instrs + off; } static HRESULT push_instr_int(compiler_ctx_t *ctx, jsop_t op, LONG arg) { unsigned instr; instr = push_instr(ctx, op); if(instr == -1) return E_OUTOFMEMORY; instr_ptr(ctx, instr)->arg1.lng = arg; return S_OK; } static HRESULT push_instr_str(compiler_ctx_t *ctx, jsop_t op, const WCHAR *arg) { unsigned instr; WCHAR *str; str = compiler_alloc_string(ctx->code, arg); if(!str) return E_OUTOFMEMORY; instr = push_instr(ctx, op); if(instr == -1) return E_OUTOFMEMORY; instr_ptr(ctx, instr)->arg1.str = str; return S_OK; } static HRESULT push_instr_bstr(compiler_ctx_t *ctx, jsop_t op, const WCHAR *arg) { unsigned instr; WCHAR *str; str = compiler_alloc_bstr(ctx, arg); if(!str) return E_OUTOFMEMORY; instr = push_instr(ctx, op); if(instr == -1) return E_OUTOFMEMORY; instr_ptr(ctx, instr)->arg1.bstr = str; return S_OK; } static HRESULT push_instr_bstr_uint(compiler_ctx_t *ctx, jsop_t op, const WCHAR *arg1, unsigned arg2) { unsigned instr; WCHAR *str; str = compiler_alloc_bstr(ctx, arg1); if(!str) return E_OUTOFMEMORY; instr = push_instr(ctx, op); if(instr == -1) return E_OUTOFMEMORY; instr_ptr(ctx, instr)->arg1.bstr = str; instr_ptr(ctx, instr)->arg2.uint = arg2; return S_OK; } static HRESULT push_instr_uint_str(compiler_ctx_t *ctx, jsop_t op, unsigned arg1, const WCHAR *arg2) { unsigned instr; WCHAR *str; str = compiler_alloc_string(ctx->code, arg2); if(!str) return E_OUTOFMEMORY; instr = push_instr(ctx, op); if(instr == -1) return E_OUTOFMEMORY; instr_ptr(ctx, instr)->arg1.uint = arg1; instr_ptr(ctx, instr)->arg2.str = str; return S_OK; } static HRESULT push_instr_double(compiler_ctx_t *ctx, jsop_t op, double arg) { unsigned instr; DOUBLE *dbl; dbl = compiler_alloc(ctx->code, sizeof(arg)); if(!dbl) return E_OUTOFMEMORY; *dbl = arg; instr = push_instr(ctx, op); if(instr == -1) return E_OUTOFMEMORY; instr_ptr(ctx, instr)->arg1.dbl = dbl; return S_OK; } static HRESULT push_instr_uint(compiler_ctx_t *ctx, jsop_t op, unsigned arg) { unsigned instr; instr = push_instr(ctx, op); if(instr == -1) return E_OUTOFMEMORY; instr_ptr(ctx, instr)->arg1.uint = arg; return S_OK; } static HRESULT compile_binary_expression(compiler_ctx_t *ctx, binary_expression_t *expr, jsop_t op) { HRESULT hres; hres = compile_expression(ctx, expr->expression1); if(FAILED(hres)) return hres; hres = compile_expression(ctx, expr->expression2); if(FAILED(hres)) return hres; return push_instr(ctx, op) == -1 ? E_OUTOFMEMORY : S_OK; } static HRESULT compile_unary_expression(compiler_ctx_t *ctx, unary_expression_t *expr, jsop_t op) { HRESULT hres; hres = compile_expression(ctx, expr->expression); if(FAILED(hres)) return hres; return push_instr(ctx, op) == -1 ? E_OUTOFMEMORY : S_OK; } /* ECMA-262 3rd Edition 11.2.1 */ static HRESULT compile_member_expression(compiler_ctx_t *ctx, member_expression_t *expr) { HRESULT hres; hres = compile_expression(ctx, expr->expression); if(FAILED(hres)) return hres; return push_instr_bstr(ctx, OP_member, expr->identifier); } static inline BOOL is_memberid_expr(expression_type_t type) { return type == EXPR_IDENT || type == EXPR_MEMBER || type == EXPR_ARRAY; } static HRESULT compile_memberid_expression(compiler_ctx_t *ctx, expression_t *expr, unsigned flags) { HRESULT hres = S_OK; switch(expr->type) { case EXPR_IDENT: { identifier_expression_t *ident_expr = (identifier_expression_t*)expr; hres = push_instr_bstr_uint(ctx, OP_identid, ident_expr->identifier, flags); break; } case EXPR_ARRAY: { binary_expression_t *array_expr = (binary_expression_t*)expr; hres = compile_expression(ctx, array_expr->expression1); if(FAILED(hres)) return hres; hres = compile_expression(ctx, array_expr->expression2); if(FAILED(hres)) return hres; hres = push_instr_uint(ctx, OP_memberid, flags); break; } case EXPR_MEMBER: { member_expression_t *member_expr = (member_expression_t*)expr; hres = compile_expression(ctx, member_expr->expression); if(FAILED(hres)) return hres; /* FIXME: Potential optimization */ hres = push_instr_str(ctx, OP_str, member_expr->identifier); if(FAILED(hres)) return hres; hres = push_instr_uint(ctx, OP_memberid, flags); break; } default: assert(0); } return hres; } static HRESULT compile_increment_expression(compiler_ctx_t *ctx, unary_expression_t *expr, jsop_t op, int n) { HRESULT hres; if(!is_memberid_expr(expr->expression->type)) { hres = compile_expression(ctx, expr->expression); if(FAILED(hres)) return hres; return push_instr_uint(ctx, OP_throw, JS_E_ILLEGAL_ASSIGN); } hres = compile_memberid_expression(ctx, expr->expression, fdexNameEnsure); if(FAILED(hres)) return hres; return push_instr_int(ctx, op, n); } /* ECMA-262 3rd Edition 11.14 */ static HRESULT compile_comma_expression(compiler_ctx_t *ctx, binary_expression_t *expr) { HRESULT hres; hres = compile_expression(ctx, expr->expression1); if(FAILED(hres)) return hres; if(push_instr(ctx, OP_pop) == -1) return E_OUTOFMEMORY; return compile_expression(ctx, expr->expression2); } /* ECMA-262 3rd Edition 11.11 */ static HRESULT compile_logical_expression(compiler_ctx_t *ctx, binary_expression_t *expr, jsop_t op) { unsigned instr; HRESULT hres; hres = compile_expression(ctx, expr->expression1); if(FAILED(hres)) return hres; instr = push_instr(ctx, op); if(instr == -1) return E_OUTOFMEMORY; hres = compile_expression(ctx, expr->expression2); if(FAILED(hres)) return hres; instr_ptr(ctx, instr)->arg1.uint = ctx->code_off; return S_OK; } /* ECMA-262 3rd Edition 11.12 */ static HRESULT compile_conditional_expression(compiler_ctx_t *ctx, conditional_expression_t *expr) { unsigned jmp_false, jmp_end; HRESULT hres; hres = compile_expression(ctx, expr->expression); if(FAILED(hres)) return hres; jmp_false = push_instr(ctx, OP_cnd_z); if(jmp_false == -1) return E_OUTOFMEMORY; hres = compile_expression(ctx, expr->true_expression); if(FAILED(hres)) return hres; jmp_end = push_instr(ctx, OP_jmp); if(jmp_end == -1) return E_OUTOFMEMORY; instr_ptr(ctx, jmp_false)->arg1.uint = ctx->code_off; if(push_instr(ctx, OP_pop) == -1) return E_OUTOFMEMORY; hres = compile_expression(ctx, expr->false_expression); if(FAILED(hres)) return hres; instr_ptr(ctx, jmp_end)->arg1.uint = ctx->code_off; return S_OK; } static HRESULT compile_new_expression(compiler_ctx_t *ctx, call_expression_t *expr) { unsigned arg_cnt = 0; argument_t *arg; HRESULT hres; hres = compile_expression(ctx, expr->expression); if(FAILED(hres)) return hres; for(arg = expr->argument_list; arg; arg = arg->next) { hres = compile_expression(ctx, arg->expr); if(FAILED(hres)) return hres; arg_cnt++; } return push_instr_int(ctx, OP_new, arg_cnt); } static HRESULT compile_interp_fallback(compiler_ctx_t *ctx, statement_t *stat) { unsigned instr; if(ctx->no_fallback) return E_NOTIMPL; instr = push_instr(ctx, OP_tree); if(instr == -1) return E_OUTOFMEMORY; instr_ptr(ctx, instr)->arg1.stat = stat; return S_OK; } static HRESULT compile_call_expression(compiler_ctx_t *ctx, call_expression_t *expr, BOOL *no_ret) { unsigned arg_cnt = 0; argument_t *arg; unsigned instr; jsop_t op; HRESULT hres; if(is_memberid_expr(expr->expression->type)) { op = OP_call_member; hres = compile_memberid_expression(ctx, expr->expression, 0); }else { op = OP_call; hres = compile_expression(ctx, expr->expression); } if(FAILED(hres)) return hres; for(arg = expr->argument_list; arg; arg = arg->next) { hres = compile_expression(ctx, arg->expr); if(FAILED(hres)) return hres; arg_cnt++; } instr = push_instr(ctx, op); if(instr == -1) return E_OUTOFMEMORY; instr_ptr(ctx, instr)->arg1.uint = arg_cnt; instr_ptr(ctx, instr)->arg2.lng = no_ret == NULL; if(no_ret) *no_ret = TRUE; return S_OK; } static HRESULT compile_delete_expression(compiler_ctx_t *ctx, unary_expression_t *expr) { HRESULT hres; switch(expr->expression->type) { case EXPR_ARRAY: { binary_expression_t *array_expr = (binary_expression_t*)expr->expression; hres = compile_expression(ctx, array_expr->expression1); if(FAILED(hres)) return hres; hres = compile_expression(ctx, array_expr->expression2); if(FAILED(hres)) return hres; if(push_instr(ctx, OP_delete) == -1) return E_OUTOFMEMORY; break; } case EXPR_MEMBER: { member_expression_t *member_expr = (member_expression_t*)expr->expression; hres = compile_expression(ctx, member_expr->expression); if(FAILED(hres)) return hres; /* FIXME: Potential optimization */ hres = push_instr_str(ctx, OP_str, member_expr->identifier); if(FAILED(hres)) return hres; if(push_instr(ctx, OP_delete) == -1) return E_OUTOFMEMORY; break; } case EXPR_IDENT: return push_instr_bstr(ctx, OP_delete_ident, ((identifier_expression_t*)expr->expression)->identifier); default: { const WCHAR fixmeW[] = {'F','I','X','M','E',0}; WARN("invalid delete, unimplemented exception message\n"); hres = compile_expression(ctx, expr->expression); if(FAILED(hres)) return hres; return push_instr_uint_str(ctx, OP_throw_type, JS_E_INVALID_DELETE, fixmeW); } } return S_OK; } static HRESULT compile_assign_expression(compiler_ctx_t *ctx, binary_expression_t *expr, jsop_t op) { HRESULT hres; if(!is_memberid_expr(expr->expression1->type)) { hres = compile_expression(ctx, expr->expression1); if(FAILED(hres)) return hres; hres = compile_expression(ctx, expr->expression2); if(FAILED(hres)) return hres; if(op != OP_LAST && push_instr(ctx, op) == -1) return E_OUTOFMEMORY; return push_instr_uint(ctx, OP_throw, JS_E_ILLEGAL_ASSIGN); } hres = compile_memberid_expression(ctx, expr->expression1, fdexNameEnsure); if(FAILED(hres)) return hres; if(op != OP_LAST && push_instr(ctx, OP_refval) == -1) return E_OUTOFMEMORY; hres = compile_expression(ctx, expr->expression2); if(FAILED(hres)) return hres; if(op != OP_LAST && push_instr(ctx, op) == -1) return E_OUTOFMEMORY; if(push_instr(ctx, OP_assign) == -1) return E_OUTOFMEMORY; return S_OK; } static HRESULT compile_typeof_expression(compiler_ctx_t *ctx, unary_expression_t *expr) { jsop_t op; HRESULT hres; if(is_memberid_expr(expr->expression->type)) { if(expr->expression->type == EXPR_IDENT) return push_instr_str(ctx, OP_typeofident, ((identifier_expression_t*)expr->expression)->identifier); op = OP_typeofid; hres = compile_memberid_expression(ctx, expr->expression, 0); }else { op = OP_typeof; hres = compile_expression(ctx, expr->expression); } if(FAILED(hres)) return hres; return push_instr(ctx, op) == -1 ? E_OUTOFMEMORY : S_OK; } static HRESULT compile_literal(compiler_ctx_t *ctx, literal_t *literal) { switch(literal->type) { case LT_BOOL: return push_instr_int(ctx, OP_bool, literal->u.bval); case LT_DOUBLE: return push_instr_double(ctx, OP_double, literal->u.dval); case LT_INT: return push_instr_int(ctx, OP_int, literal->u.lval); case LT_NULL: return push_instr(ctx, OP_null); case LT_STRING: return push_instr_str(ctx, OP_str, literal->u.wstr); case LT_REGEXP: { unsigned instr; WCHAR *str; str = compiler_alloc(ctx->code, (literal->u.regexp.str_len+1)*sizeof(WCHAR)); if(!str) return E_OUTOFMEMORY; memcpy(str, literal->u.regexp.str, literal->u.regexp.str_len*sizeof(WCHAR)); str[literal->u.regexp.str_len] = 0; instr = push_instr(ctx, OP_regexp); if(instr == -1) return E_OUTOFMEMORY; instr_ptr(ctx, instr)->arg1.str = str; instr_ptr(ctx, instr)->arg2.lng = literal->u.regexp.flags; return S_OK; } default: assert(0); } } static HRESULT literal_as_bstr(compiler_ctx_t *ctx, literal_t *literal, BSTR *str) { switch(literal->type) { case LT_STRING: *str = compiler_alloc_bstr(ctx, literal->u.wstr); break; case LT_INT: *str = int_to_bstr(literal->u.lval); break; case LT_DOUBLE: return double_to_bstr(literal->u.dval, str); default: assert(0); } return *str ? S_OK : E_OUTOFMEMORY; } static HRESULT compile_array_literal(compiler_ctx_t *ctx, array_literal_expression_t *expr) { unsigned i, elem_cnt = expr->length; array_element_t *iter; HRESULT hres; for(iter = expr->element_list; iter; iter = iter->next) { elem_cnt += iter->elision+1; for(i=0; i < iter->elision; i++) { if(push_instr(ctx, OP_undefined) == -1) return E_OUTOFMEMORY; } hres = compile_expression(ctx, iter->expr); if(FAILED(hres)) return hres; } for(i=0; i < expr->length; i++) { if(push_instr(ctx, OP_undefined) == -1) return E_OUTOFMEMORY; } return push_instr_uint(ctx, OP_carray, elem_cnt); } static HRESULT compile_object_literal(compiler_ctx_t *ctx, property_value_expression_t *expr) { prop_val_t *iter; unsigned instr; BSTR name; HRESULT hres; if(push_instr(ctx, OP_new_obj) == -1) return E_OUTOFMEMORY; for(iter = expr->property_list; iter; iter = iter->next) { hres = literal_as_bstr(ctx, iter->name, &name); if(FAILED(hres)) return hres; hres = compile_expression(ctx, iter->value); if(FAILED(hres)) return hres; instr = push_instr(ctx, OP_obj_prop); if(instr == -1) return E_OUTOFMEMORY; instr_ptr(ctx, instr)->arg1.bstr = name; } return S_OK; } static HRESULT compile_function_expression(compiler_ctx_t *ctx, function_expression_t *expr) { unsigned instr; /* FIXME: not exactly right */ if(expr->identifier) return push_instr_bstr(ctx, OP_ident, expr->identifier); instr = push_instr(ctx, OP_func); if(instr == -1) return E_OUTOFMEMORY; instr_ptr(ctx, instr)->arg1.func = expr; return S_OK; } static HRESULT compile_expression_noret(compiler_ctx_t *ctx, expression_t *expr, BOOL *no_ret) { switch(expr->type) { case EXPR_ADD: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_add); case EXPR_AND: return compile_logical_expression(ctx, (binary_expression_t*)expr, OP_cnd_z); case EXPR_ARRAY: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_array); case EXPR_ARRAYLIT: return compile_array_literal(ctx, (array_literal_expression_t*)expr); case EXPR_ASSIGN: return compile_assign_expression(ctx, (binary_expression_t*)expr, OP_LAST); case EXPR_ASSIGNADD: return compile_assign_expression(ctx, (binary_expression_t*)expr, OP_add); case EXPR_ASSIGNAND: return compile_assign_expression(ctx, (binary_expression_t*)expr, OP_and); case EXPR_ASSIGNSUB: return compile_assign_expression(ctx, (binary_expression_t*)expr, OP_sub); case EXPR_ASSIGNMUL: return compile_assign_expression(ctx, (binary_expression_t*)expr, OP_mul); case EXPR_ASSIGNDIV: return compile_assign_expression(ctx, (binary_expression_t*)expr, OP_div); case EXPR_ASSIGNMOD: return compile_assign_expression(ctx, (binary_expression_t*)expr, OP_mod); case EXPR_ASSIGNOR: return compile_assign_expression(ctx, (binary_expression_t*)expr, OP_or); case EXPR_ASSIGNLSHIFT: return compile_assign_expression(ctx, (binary_expression_t*)expr, OP_lshift); case EXPR_ASSIGNRSHIFT: return compile_assign_expression(ctx, (binary_expression_t*)expr, OP_rshift); case EXPR_ASSIGNRRSHIFT: return compile_assign_expression(ctx, (binary_expression_t*)expr, OP_rshift2); case EXPR_ASSIGNXOR: return compile_assign_expression(ctx, (binary_expression_t*)expr, OP_xor); case EXPR_BAND: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_and); case EXPR_BITNEG: return compile_unary_expression(ctx, (unary_expression_t*)expr, OP_bneg); case EXPR_BOR: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_or); case EXPR_CALL: return compile_call_expression(ctx, (call_expression_t*)expr, no_ret); case EXPR_COMMA: return compile_comma_expression(ctx, (binary_expression_t*)expr); case EXPR_COND: return compile_conditional_expression(ctx, (conditional_expression_t*)expr); case EXPR_DELETE: return compile_delete_expression(ctx, (unary_expression_t*)expr); case EXPR_DIV: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_div); case EXPR_EQ: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_eq); case EXPR_EQEQ: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_eq2); case EXPR_FUNC: return compile_function_expression(ctx, (function_expression_t*)expr); case EXPR_GREATER: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_gt); case EXPR_GREATEREQ: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_gteq); case EXPR_IDENT: return push_instr_bstr(ctx, OP_ident, ((identifier_expression_t*)expr)->identifier); case EXPR_IN: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_in); case EXPR_INSTANCEOF: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_instanceof); case EXPR_LESS: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_lt); case EXPR_LESSEQ: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_lteq); case EXPR_LITERAL: return compile_literal(ctx, ((literal_expression_t*)expr)->literal); case EXPR_LOGNEG: return compile_unary_expression(ctx, (unary_expression_t*)expr, OP_neg); case EXPR_LSHIFT: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_lshift); case EXPR_MEMBER: return compile_member_expression(ctx, (member_expression_t*)expr); case EXPR_MINUS: return compile_unary_expression(ctx, (unary_expression_t*)expr, OP_minus); case EXPR_MOD: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_mod); case EXPR_MUL: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_mul); case EXPR_NEW: return compile_new_expression(ctx, (call_expression_t*)expr); case EXPR_NOTEQ: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_neq); case EXPR_NOTEQEQ: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_neq2); case EXPR_OR: return compile_logical_expression(ctx, (binary_expression_t*)expr, OP_cnd_nz); case EXPR_PLUS: return compile_unary_expression(ctx, (unary_expression_t*)expr, OP_tonum); case EXPR_POSTDEC: return compile_increment_expression(ctx, (unary_expression_t*)expr, OP_postinc, -1); case EXPR_POSTINC: return compile_increment_expression(ctx, (unary_expression_t*)expr, OP_postinc, 1); case EXPR_PREDEC: return compile_increment_expression(ctx, (unary_expression_t*)expr, OP_preinc, -1); case EXPR_PREINC: return compile_increment_expression(ctx, (unary_expression_t*)expr, OP_preinc, 1); case EXPR_PROPVAL: return compile_object_literal(ctx, (property_value_expression_t*)expr); case EXPR_RSHIFT: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_rshift); case EXPR_RRSHIFT: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_rshift2); case EXPR_SUB: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_sub); case EXPR_THIS: return push_instr(ctx, OP_this) == -1 ? E_OUTOFMEMORY : S_OK; case EXPR_TYPEOF: return compile_typeof_expression(ctx, (unary_expression_t*)expr); case EXPR_VOID: return compile_unary_expression(ctx, (unary_expression_t*)expr, OP_void); case EXPR_BXOR: return compile_binary_expression(ctx, (binary_expression_t*)expr, OP_xor); default: assert(0); } return S_OK; } static HRESULT compile_expression(compiler_ctx_t *ctx, expression_t *expr) { return compile_expression_noret(ctx, expr, NULL); } /* ECMA-262 3rd Edition 12.1 */ static HRESULT compile_block_statement(compiler_ctx_t *ctx, statement_t *iter) { HRESULT hres; /* FIXME: do it only if needed */ if(!iter) return push_instr(ctx, OP_undefined) == -1 ? E_OUTOFMEMORY : S_OK; while(1) { hres = compile_statement(ctx, iter); if(FAILED(hres)) return hres; iter = iter->next; if(!iter) break; if(push_instr(ctx, OP_pop) == -1) return E_OUTOFMEMORY; } return S_OK; } /* ECMA-262 3rd Edition 12.2 */ static HRESULT compile_variable_list(compiler_ctx_t *ctx, variable_declaration_t *list) { variable_declaration_t *iter; HRESULT hres; for(iter = list; iter; iter = iter->next) { if(!iter->expr) continue; hres = compile_expression(ctx, iter->expr); if(FAILED(hres)) return hres; hres = push_instr_bstr(ctx, OP_var_set, iter->identifier); if(FAILED(hres)) return hres; } return S_OK; } /* ECMA-262 3rd Edition 12.2 */ static HRESULT compile_var_statement(compiler_ctx_t *ctx, var_statement_t *stat) { HRESULT hres; hres = compile_variable_list(ctx, stat->variable_list); if(FAILED(hres)) return hres; return push_instr(ctx, OP_undefined) == -1 ? E_OUTOFMEMORY : S_OK; } /* ECMA-262 3rd Edition 12.4 */ static HRESULT compile_expression_statement(compiler_ctx_t *ctx, expression_statement_t *stat) { BOOL no_ret = FALSE; HRESULT hres; hres = compile_expression_noret(ctx, stat->expr, &no_ret); if(FAILED(hres)) return hres; /* FIXME: that's a big potential optimization */ if(no_ret && !push_instr(ctx, OP_undefined) == -1) return E_OUTOFMEMORY; return S_OK; } /* ECMA-262 3rd Edition 12.5 */ static HRESULT compile_if_statement(compiler_ctx_t *ctx, if_statement_t *stat) { unsigned jmp_else, jmp_end; HRESULT hres; hres = compile_expression(ctx, stat->expr); if(FAILED(hres)) return hres; jmp_else = push_instr(ctx, OP_jmp_z); if(jmp_else == -1) return E_OUTOFMEMORY; hres = compile_statement(ctx, stat->if_stat); if(FAILED(hres)) return hres; jmp_end = push_instr(ctx, OP_jmp); if(jmp_end == -1) return E_OUTOFMEMORY; instr_ptr(ctx, jmp_else)->arg1.uint = ctx->code_off; if(stat->else_stat) { hres = compile_statement(ctx, stat->else_stat); if(FAILED(hres)) return hres; }else { /* FIXME: We could sometimes avoid it */ if(push_instr(ctx, OP_undefined) == -1) return E_OUTOFMEMORY; } instr_ptr(ctx, jmp_end)->arg1.uint = ctx->code_off; return S_OK; } /* ECMA-262 3rd Edition 12.6.2 */ static HRESULT compile_while_statement(compiler_ctx_t *ctx, while_statement_t *stat) { unsigned off_backup, jmp_off, jmp = -1; BOOL prev_no_fallback; HRESULT hres; off_backup = ctx->code_off; if(!stat->do_while) { /* FIXME: avoid */ if(push_instr(ctx, OP_undefined) == -1) return E_OUTOFMEMORY; jmp_off = ctx->code_off; hres = compile_expression(ctx, stat->expr); if(FAILED(hres)) return hres; jmp = push_instr(ctx, OP_jmp_z); if(jmp == -1) return E_OUTOFMEMORY; if(push_instr(ctx, OP_pop) == -1) return E_OUTOFMEMORY; }else { jmp_off = ctx->code_off; } prev_no_fallback = ctx->no_fallback; ctx->no_fallback = TRUE; hres = compile_statement(ctx, stat->statement); ctx->no_fallback = prev_no_fallback; if(hres == E_NOTIMPL) { ctx->code_off = off_backup; stat->stat.eval = while_statement_eval; return compile_interp_fallback(ctx, &stat->stat); } if(FAILED(hres)) return hres; if(stat->do_while) { hres = compile_expression(ctx, stat->expr); if(FAILED(hres)) return hres; jmp = push_instr(ctx, OP_jmp_z); if(jmp == -1) return E_OUTOFMEMORY; if(push_instr(ctx, OP_pop) == -1) return E_OUTOFMEMORY; } hres = push_instr_uint(ctx, OP_jmp, jmp_off); if(FAILED(hres)) return hres; instr_ptr(ctx, jmp)->arg1.uint = ctx->code_off; return S_OK; } /* ECMA-262 3rd Edition 12.6.3 */ static HRESULT compile_for_statement(compiler_ctx_t *ctx, for_statement_t *stat) { unsigned off_backup, jmp, expr_off; BOOL prev_no_fallback; HRESULT hres; off_backup = ctx->code_off; if(stat->variable_list) { hres = compile_variable_list(ctx, stat->variable_list); if(FAILED(hres)) return hres; }else if(stat->begin_expr) { BOOL no_ret = FALSE; hres = compile_expression_noret(ctx, stat->begin_expr, &no_ret); if(FAILED(hres)) return hres; if(!no_ret && push_instr(ctx, OP_pop) == -1) return E_OUTOFMEMORY; } /* FIXME: avoid */ if(push_instr(ctx, OP_undefined) == -1) return E_OUTOFMEMORY; expr_off = ctx->code_off; if(stat->expr) { hres = compile_expression(ctx, stat->expr); if(FAILED(hres)) return hres; jmp = push_instr(ctx, OP_jmp_z); if(jmp == -1) return E_OUTOFMEMORY; }else { jmp = -1; } if(push_instr(ctx, OP_pop) == -1) return E_OUTOFMEMORY; prev_no_fallback = ctx->no_fallback; ctx->no_fallback = TRUE; hres = compile_statement(ctx, stat->statement); ctx->no_fallback = prev_no_fallback; if(hres == E_NOTIMPL) { ctx->code_off = off_backup; stat->stat.eval = for_statement_eval; return compile_interp_fallback(ctx, &stat->stat); } if(FAILED(hres)) return hres; if(stat->end_expr) { BOOL no_ret = FALSE; hres = compile_expression_noret(ctx, stat->end_expr, &no_ret); if(FAILED(hres)) return hres; if(!no_ret && push_instr(ctx, OP_pop) == -1) return E_OUTOFMEMORY; } hres = push_instr_uint(ctx, OP_jmp, expr_off); if(FAILED(hres)) return hres; if(jmp != -1) instr_ptr(ctx, jmp)->arg1.uint = ctx->code_off; return S_OK; } /* ECMA-262 3rd Edition 12.10 */ static HRESULT compile_with_statement(compiler_ctx_t *ctx, with_statement_t *stat) { unsigned off_backup; BOOL prev_no_fallback; HRESULT hres; off_backup = ctx->code_off; hres = compile_expression(ctx, stat->expr); if(FAILED(hres)) return hres; if(push_instr(ctx, OP_push_scope) == -1) return E_OUTOFMEMORY; prev_no_fallback = ctx->no_fallback; ctx->no_fallback = TRUE; hres = compile_statement(ctx, stat->statement); ctx->no_fallback = prev_no_fallback; if(hres == E_NOTIMPL) { ctx->code_off = off_backup; stat->stat.eval = with_statement_eval; return compile_interp_fallback(ctx, &stat->stat); } if(FAILED(hres)) return hres; if(push_instr(ctx, OP_pop_scope) == -1) return E_OUTOFMEMORY; return S_OK; } /* ECMA-262 3rd Edition 12.13 */ static HRESULT compile_switch_statement(compiler_ctx_t *ctx, switch_statement_t *stat) { unsigned case_cnt = 0, *case_jmps, i, default_jmp; BOOL have_default = FALSE; statement_t *stat_iter; case_clausule_t *iter; unsigned off_backup; BOOL prev_no_fallback; HRESULT hres; off_backup = ctx->code_off; hres = compile_expression(ctx, stat->expr); if(FAILED(hres)) return hres; for(iter = stat->case_list; iter; iter = iter->next) { if(iter->expr) case_cnt++; } case_jmps = heap_alloc(case_cnt * sizeof(*case_jmps)); if(!case_jmps) return E_OUTOFMEMORY; i = 0; for(iter = stat->case_list; iter; iter = iter->next) { if(!iter->expr) { have_default = TRUE; continue; } hres = compile_expression(ctx, iter->expr); if(FAILED(hres)) break; case_jmps[i] = push_instr(ctx, OP_case); if(case_jmps[i] == -1) { hres = E_OUTOFMEMORY; break; } i++; } if(SUCCEEDED(hres)) { if(push_instr(ctx, OP_pop) != -1) { default_jmp = push_instr(ctx, OP_jmp); if(default_jmp == -1) hres = E_OUTOFMEMORY; }else { hres = E_OUTOFMEMORY; } } if(FAILED(hres)) { heap_free(case_jmps); return hres; } i = 0; for(iter = stat->case_list; iter; iter = iter->next) { while(iter->next && iter->next->stat == iter->stat) { instr_ptr(ctx, iter->expr ? case_jmps[i++] : default_jmp)->arg1.uint = ctx->code_off; iter = iter->next; } instr_ptr(ctx, iter->expr ? case_jmps[i++] : default_jmp)->arg1.uint = ctx->code_off; for(stat_iter = iter->stat; stat_iter && (!iter->next || iter->next->stat != stat_iter); stat_iter = stat_iter->next) { prev_no_fallback = ctx->no_fallback; ctx->no_fallback = TRUE; hres = compile_statement(ctx, stat_iter); ctx->no_fallback = prev_no_fallback; if(hres == E_NOTIMPL) { ctx->code_off = off_backup; stat->stat.eval = switch_statement_eval; return compile_interp_fallback(ctx, &stat->stat); } if(FAILED(hres)) break; if(stat_iter->next && push_instr(ctx, OP_pop) == -1) { hres = E_OUTOFMEMORY; break; } } if(FAILED(hres)) break; } heap_free(case_jmps); if(FAILED(hres)) return hres; assert(i == case_cnt); if(!have_default) instr_ptr(ctx, default_jmp)->arg1.uint = ctx->code_off; return S_OK; } static HRESULT compile_statement(compiler_ctx_t *ctx, statement_t *stat) { switch(stat->type) { case STAT_BLOCK: return compile_block_statement(ctx, ((block_statement_t*)stat)->stat_list); case STAT_EMPTY: return push_instr(ctx, OP_undefined) == -1 ? E_OUTOFMEMORY : S_OK; /* FIXME */ case STAT_EXPR: return compile_expression_statement(ctx, (expression_statement_t*)stat); case STAT_FOR: return compile_for_statement(ctx, (for_statement_t*)stat); case STAT_IF: return compile_if_statement(ctx, (if_statement_t*)stat); case STAT_LABEL: return push_instr(ctx, OP_label) == -1 ? E_OUTOFMEMORY : S_OK; /* FIXME */ case STAT_SWITCH: return compile_switch_statement(ctx, (switch_statement_t*)stat); case STAT_VAR: return compile_var_statement(ctx, (var_statement_t*)stat); case STAT_WHILE: return compile_while_statement(ctx, (while_statement_t*)stat); case STAT_WITH: return compile_with_statement(ctx, (with_statement_t*)stat); default: return compile_interp_fallback(ctx, stat); } } void release_bytecode(bytecode_t *code) { unsigned i; for(i=0; i < code->bstr_cnt; i++) SysFreeString(code->bstr_pool[i]); jsheap_free(&code->heap); heap_free(code->bstr_pool); heap_free(code->instrs); heap_free(code); } void release_compiler(compiler_ctx_t *ctx) { heap_free(ctx); } static HRESULT init_compiler(parser_ctx_t *parser) { if(!parser->code) { parser->code = heap_alloc_zero(sizeof(bytecode_t)); if(!parser->code) return E_OUTOFMEMORY; jsheap_init(&parser->code->heap); } if(!parser->compiler) { parser->compiler = heap_alloc_zero(sizeof(compiler_ctx_t)); if(!parser->compiler) return E_OUTOFMEMORY; parser->compiler->parser = parser; parser->compiler->code = parser->code; } return S_OK; } HRESULT compile_subscript(parser_ctx_t *parser, expression_t *expr, unsigned *ret_off) { HRESULT hres; hres = init_compiler(parser); if(FAILED(hres)) return hres; *ret_off = parser->compiler->code_off; hres = compile_expression(parser->compiler, expr); if(FAILED(hres)) return hres; return push_instr(parser->compiler, OP_ret) == -1 ? E_OUTOFMEMORY : S_OK; } HRESULT compile_subscript_stat(parser_ctx_t *parser, statement_t *stat, BOOL compile_block, unsigned *ret_off) { HRESULT hres; TRACE("\n"); hres = init_compiler(parser); if(FAILED(hres)) return hres; *ret_off = parser->compiler->code_off; if(compile_block && stat->next) hres = compile_block_statement(parser->compiler, stat); else hres = compile_statement(parser->compiler, stat); if(FAILED(hres)) return hres; return push_instr(parser->compiler, OP_ret) == -1 ? E_OUTOFMEMORY : S_OK; }