/* * Relay calls helper routines * * Copyright 1993 Robert J. Amstadt * Copyright 1995 Martin von Loewis * Copyright 1995, 1996, 1997 Alexandre Julliard * Copyright 1997 Eric Youngdale * Copyright 1999 Ulrich Weigand * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "config.h" #include "wine/port.h" #include #include #include "build.h" /* offset of the stack pointer relative to %fs:(0) */ #define STACKOFFSET 0xc0 /* FIELD_OFFSET(TEB,WOW32Reserved) */ /* fix this if the x86_thread_data structure is changed */ #define GS_OFFSET 0x1d8 /* FIELD_OFFSET(TEB,SystemReserved2) + FIELD_OFFSET(struct x86_thread_data,gs) */ #define DPMI_VIF_OFFSET (0x1fc + 0) /* FIELD_OFFSET(TEB,GdiTebBatch) + FIELD_OFFSET(WINE_VM86_TEB_INFO,dpmi_vif) */ #define VM86_PENDING_OFFSET (0x1fc + 4) /* FIELD_OFFSET(TEB,GdiTebBatch) + FIELD_OFFSET(WINE_VM86_TEB_INFO,vm86_pending) */ static void function_header( const char *name ) { output( "\n\t.align %d\n", get_alignment(4) ); output( "\t%s\n", func_declaration(name) ); output( "%s\n", asm_globl(name) ); } /******************************************************************* * BuildCallFrom16Core * * This routine builds the core routines used in 16->32 thunks: * CallFrom16Word, CallFrom16Long, CallFrom16Register, and CallFrom16Thunk. * * These routines are intended to be called via a far call (with 32-bit * operand size) from 16-bit code. The 16-bit code stub must push %bp, * the 32-bit entry point to be called, and the argument conversion * routine to be used (see stack layout below). * * The core routine completes the STACK16FRAME on the 16-bit stack and * switches to the 32-bit stack. Then, the argument conversion routine * is called; it gets passed the 32-bit entry point and a pointer to the * 16-bit arguments (on the 16-bit stack) as parameters. (You can either * use conversion routines automatically generated by BuildCallFrom16, * or write your own for special purposes.) * * The conversion routine must call the 32-bit entry point, passing it * the converted arguments, and return its return value to the core. * After the conversion routine has returned, the core switches back * to the 16-bit stack, converts the return value to the DX:AX format * (CallFrom16Long), and returns to the 16-bit call stub. All parameters, * including %bp, are popped off the stack. * * The 16-bit call stub now returns to the caller, popping the 16-bit * arguments if necessary (pascal calling convention). * * In the case of a 'register' function, CallFrom16Register fills a * CONTEXT86 structure with the values all registers had at the point * the first instruction of the 16-bit call stub was about to be * executed. A pointer to this CONTEXT86 is passed as third parameter * to the argument conversion routine, which typically passes it on * to the called 32-bit entry point. * * CallFrom16Thunk is a special variant used by the implementation of * the Win95 16->32 thunk functions C16ThkSL and C16ThkSL01 and is * implemented as follows: * On entry, the EBX register is set up to contain a flat pointer to the * 16-bit stack such that EBX+22 points to the first argument. * Then, the entry point is called, while EBP is set up to point * to the return address (on the 32-bit stack). * The called function returns with CX set to the number of bytes * to be popped of the caller's stack. * * Stack layout upon entry to the core routine (STACK16FRAME): * ... ... * (sp+24) word first 16-bit arg * (sp+22) word cs * (sp+20) word ip * (sp+18) word bp * (sp+14) long 32-bit entry point (reused for Win16 mutex recursion count) * (sp+12) word ip of actual entry point (necessary for relay debugging) * (sp+8) long relay (argument conversion) function entry point * (sp+4) long cs of 16-bit entry point * (sp) long ip of 16-bit entry point * * Added on the stack: * (sp-2) word saved gs * (sp-4) word saved fs * (sp-6) word saved es * (sp-8) word saved ds * (sp-12) long saved ebp * (sp-16) long saved ecx * (sp-20) long saved edx * (sp-24) long saved previous stack */ static void BuildCallFrom16Core( int reg_func, int thunk ) { /* Function header */ if (thunk) function_header( "__wine_call_from_16_thunk" ); else if (reg_func) function_header( "__wine_call_from_16_regs" ); else function_header( "__wine_call_from_16" ); /* Create STACK16FRAME (except STACK32FRAME link) */ output( "\tpushw %%gs\n" ); output( "\tpushw %%fs\n" ); output( "\tpushw %%es\n" ); output( "\tpushw %%ds\n" ); output( "\tpushl %%ebp\n" ); output( "\tpushl %%ecx\n" ); output( "\tpushl %%edx\n" ); /* Save original EFlags register */ if (reg_func) output( "\tpushfl\n" ); if ( UsePIC ) { output( "\tcall 1f\n" ); output( "1:\tpopl %%ecx\n" ); output( "\t.byte 0x2e\n\tmovl %s-1b(%%ecx),%%edx\n", asm_name("CallTo16_DataSelector") ); } else output( "\t.byte 0x2e\n\tmovl %s,%%edx\n", asm_name("CallTo16_DataSelector") ); /* Load 32-bit segment registers */ output( "\tmovw %%dx, %%ds\n" ); output( "\tmovw %%dx, %%es\n" ); if ( UsePIC ) output( "\tmovw %s-1b(%%ecx), %%fs\n", asm_name("CallTo16_TebSelector") ); else output( "\tmovw %s, %%fs\n", asm_name("CallTo16_TebSelector") ); output( "\t.byte 0x64\n\tmov (%d),%%gs\n", GS_OFFSET ); /* Translate STACK16FRAME base to flat offset in %edx */ output( "\tmovw %%ss, %%dx\n" ); output( "\tandl $0xfff8, %%edx\n" ); output( "\tshrl $1, %%edx\n" ); if (UsePIC) { output( "\taddl wine_ldt_copy_ptr-1b(%%ecx),%%edx\n" ); output( "\tmovl (%%edx), %%edx\n" ); } else output( "\tmovl %s(%%edx), %%edx\n", asm_name("wine_ldt_copy") ); output( "\tmovzwl %%sp, %%ebp\n" ); output( "\tleal %d(%%ebp,%%edx), %%edx\n", reg_func ? 0 : -4 ); /* Get saved flags into %ecx */ if (reg_func) output( "\tpopl %%ecx\n" ); /* Get the 32-bit stack pointer from the TEB and complete STACK16FRAME */ output( "\t.byte 0x64\n\tmovl (%d), %%ebp\n", STACKOFFSET ); output( "\tpushl %%ebp\n" ); /* Switch stacks */ output( "\t.byte 0x64\n\tmovw %%ss, (%d)\n", STACKOFFSET + 2 ); output( "\t.byte 0x64\n\tmovw %%sp, (%d)\n", STACKOFFSET ); output( "\tpushl %%ds\n" ); output( "\tpopl %%ss\n" ); output( "\tmovl %%ebp, %%esp\n" ); output( "\taddl $0x20,%%ebp\n"); /* FIELD_OFFSET(STACK32FRAME,ebp) */ /* At this point: STACK16FRAME is completely set up DS, ES, SS: flat data segment FS: current TEB ESP: points to last STACK32FRAME EBP: points to ebp member of last STACK32FRAME EDX: points to current STACK16FRAME ECX: contains saved flags all other registers: unchanged */ /* Special case: C16ThkSL stub */ if ( thunk ) { /* Set up registers as expected and call thunk */ output( "\tleal 0x1a(%%edx),%%ebx\n" ); /* sizeof(STACK16FRAME)-22 */ output( "\tleal -4(%%esp), %%ebp\n" ); output( "\tcall *0x26(%%edx)\n"); /* FIELD_OFFSET(STACK16FRAME,entry_point) */ /* Switch stack back */ output( "\t.byte 0x64\n\tmovw (%d), %%ss\n", STACKOFFSET+2 ); output( "\t.byte 0x64\n\tmovzwl (%d), %%esp\n", STACKOFFSET ); output( "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET ); /* Restore registers and return directly to caller */ output( "\taddl $8, %%esp\n" ); output( "\tpopl %%ebp\n" ); output( "\tpopw %%ds\n" ); output( "\tpopw %%es\n" ); output( "\tpopw %%fs\n" ); output( "\tpopw %%gs\n" ); output( "\taddl $20, %%esp\n" ); output( "\txorb %%ch, %%ch\n" ); output( "\tpopl %%ebx\n" ); output( "\taddw %%cx, %%sp\n" ); output( "\tpush %%ebx\n" ); output( "\t.byte 0x66\n" ); output( "\tlret\n" ); output_function_size( "__wine_call_from_16_thunk" ); return; } /* Build register CONTEXT */ if ( reg_func ) { output( "\tsubl $0x2cc,%%esp\n" ); /* sizeof(CONTEXT86) */ output( "\tmovl %%ecx,0xc0(%%esp)\n" ); /* EFlags */ output( "\tmovl %%eax,0xb0(%%esp)\n" ); /* Eax */ output( "\tmovl %%ebx,0xa4(%%esp)\n" ); /* Ebx */ output( "\tmovl %%esi,0xa0(%%esp)\n" ); /* Esi */ output( "\tmovl %%edi,0x9c(%%esp)\n" ); /* Edi */ output( "\tmovl 0x0c(%%edx),%%eax\n"); /* FIELD_OFFSET(STACK16FRAME,ebp) */ output( "\tmovl %%eax,0xb4(%%esp)\n" ); /* Ebp */ output( "\tmovl 0x08(%%edx),%%eax\n"); /* FIELD_OFFSET(STACK16FRAME,ecx) */ output( "\tmovl %%eax,0xac(%%esp)\n" ); /* Ecx */ output( "\tmovl 0x04(%%edx),%%eax\n"); /* FIELD_OFFSET(STACK16FRAME,edx) */ output( "\tmovl %%eax,0xa8(%%esp)\n" ); /* Edx */ output( "\tmovzwl 0x10(%%edx),%%eax\n"); /* FIELD_OFFSET(STACK16FRAME,ds) */ output( "\tmovl %%eax,0x98(%%esp)\n" ); /* SegDs */ output( "\tmovzwl 0x12(%%edx),%%eax\n"); /* FIELD_OFFSET(STACK16FRAME,es) */ output( "\tmovl %%eax,0x94(%%esp)\n" ); /* SegEs */ output( "\tmovzwl 0x14(%%edx),%%eax\n"); /* FIELD_OFFSET(STACK16FRAME,fs) */ output( "\tmovl %%eax,0x90(%%esp)\n" ); /* SegFs */ output( "\tmovzwl 0x16(%%edx),%%eax\n"); /* FIELD_OFFSET(STACK16FRAME,gs) */ output( "\tmovl %%eax,0x8c(%%esp)\n" ); /* SegGs */ output( "\tmovzwl 0x2e(%%edx),%%eax\n"); /* FIELD_OFFSET(STACK16FRAME,cs) */ output( "\tmovl %%eax,0xbc(%%esp)\n" ); /* SegCs */ output( "\tmovzwl 0x2c(%%edx),%%eax\n"); /* FIELD_OFFSET(STACK16FRAME,ip) */ output( "\tmovl %%eax,0xb8(%%esp)\n" ); /* Eip */ output( "\t.byte 0x64\n\tmovzwl (%d), %%eax\n", STACKOFFSET+2 ); output( "\tmovl %%eax,0xc8(%%esp)\n" ); /* SegSs */ output( "\t.byte 0x64\n\tmovzwl (%d), %%eax\n", STACKOFFSET ); output( "\taddl $0x2c,%%eax\n"); /* FIELD_OFFSET(STACK16FRAME,ip) */ output( "\tmovl %%eax,0xc4(%%esp)\n" ); /* Esp */ #if 0 output( "\tfsave 0x1c(%%esp)\n" ); /* FloatSave */ #endif /* Push address of CONTEXT86 structure -- popped by the relay routine */ output( "\tmovl %%esp,%%eax\n" ); output( "\tandl $~15,%%esp\n" ); output( "\tsubl $4,%%esp\n" ); output( "\tpushl %%eax\n" ); } else { output( "\tsubl $8,%%esp\n" ); output( "\tandl $~15,%%esp\n" ); output( "\taddl $8,%%esp\n" ); } /* Call relay routine (which will call the API entry point) */ output( "\tleal 0x30(%%edx),%%eax\n" ); /* sizeof(STACK16FRAME) */ output( "\tpushl %%eax\n" ); output( "\tpushl 0x26(%%edx)\n"); /* FIELD_OFFSET(STACK16FRAME,entry_point) */ output( "\tcall *0x20(%%edx)\n"); /* FIELD_OFFSET(STACK16FRAME,relay) */ if ( reg_func ) { output( "\tleal -748(%%ebp),%%ebx\n" ); /* sizeof(CONTEXT) + FIELD_OFFSET(STACK32FRAME,ebp) */ /* Switch stack back */ output( "\t.byte 0x64\n\tmovw (%d), %%ss\n", STACKOFFSET+2 ); output( "\t.byte 0x64\n\tmovzwl (%d), %%esp\n", STACKOFFSET ); output( "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET ); /* Get return address to CallFrom16 stub */ output( "\taddw $0x14,%%sp\n" ); /* FIELD_OFFSET(STACK16FRAME,callfrom_ip)-4 */ output( "\tpopl %%eax\n" ); output( "\tpopl %%edx\n" ); /* Restore all registers from CONTEXT */ output( "\tmovw 0xc8(%%ebx),%%ss\n"); /* SegSs */ output( "\tmovl 0xc4(%%ebx),%%esp\n"); /* Esp */ output( "\taddl $4, %%esp\n" ); /* room for final return address */ output( "\tpushw 0xbc(%%ebx)\n"); /* SegCs */ output( "\tpushw 0xb8(%%ebx)\n"); /* Eip */ output( "\tpushl %%edx\n" ); output( "\tpushl %%eax\n" ); output( "\tpushl 0xc0(%%ebx)\n"); /* EFlags */ output( "\tpushl 0x98(%%ebx)\n"); /* SegDs */ output( "\tpushl 0x94(%%ebx)\n"); /* SegEs */ output( "\tpopl %%es\n" ); output( "\tpushl 0x90(%%ebx)\n"); /* SegFs */ output( "\tpopl %%fs\n" ); output( "\tpushl 0x8c(%%ebx)\n"); /* SegGs */ output( "\tpopl %%gs\n" ); output( "\tmovl 0xb4(%%ebx),%%ebp\n"); /* Ebp */ output( "\tmovl 0xa0(%%ebx),%%esi\n"); /* Esi */ output( "\tmovl 0x9c(%%ebx),%%edi\n"); /* Edi */ output( "\tmovl 0xb0(%%ebx),%%eax\n"); /* Eax */ output( "\tmovl 0xa8(%%ebx),%%edx\n"); /* Edx */ output( "\tmovl 0xac(%%ebx),%%ecx\n"); /* Ecx */ output( "\tmovl 0xa4(%%ebx),%%ebx\n"); /* Ebx */ output( "\tpopl %%ds\n" ); output( "\tpopfl\n" ); output( "\tlret\n" ); output_function_size( "__wine_call_from_16_regs" ); } else { /* Switch stack back */ output( "\t.byte 0x64\n\tmovw (%d), %%ss\n", STACKOFFSET+2 ); output( "\t.byte 0x64\n\tmovzwl (%d), %%esp\n", STACKOFFSET ); output( "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET ); /* Restore registers */ output( "\tpopl %%edx\n" ); output( "\tpopl %%ecx\n" ); output( "\tpopl %%ebp\n" ); output( "\tpopw %%ds\n" ); output( "\tpopw %%es\n" ); output( "\tpopw %%fs\n" ); output( "\tpopw %%gs\n" ); /* Return to return stub which will return to caller */ output( "\tlret $12\n" ); output_function_size( "__wine_call_from_16" ); } } /******************************************************************* * BuildCallTo16Core * * This routine builds the core routines used in 32->16 thunks: * * extern DWORD WINAPI wine_call_to_16( FARPROC16 target, DWORD cbArgs, PEXCEPTION_HANDLER handler ); * extern void WINAPI wine_call_to_16_regs( CONTEXT86 *context, DWORD cbArgs, PEXCEPTION_HANDLER handler ); * * These routines can be called directly from 32-bit code. * * All routines expect that the 16-bit stack contents (arguments) and the * return address (segptr to CallTo16_Ret) were already set up by the * caller; nb_args must contain the number of bytes to be conserved. The * 16-bit SS:SP will be set accordingly. * * All other registers are either taken from the CONTEXT86 structure * or else set to default values. The target routine address is either * given directly or taken from the CONTEXT86. */ static void BuildCallTo16Core( int reg_func ) { const char *name = reg_func ? "wine_call_to_16_regs" : "wine_call_to_16"; /* Function header */ function_header( name ); /* Function entry sequence */ output_cfi( ".cfi_startproc" ); output( "\tpushl %%ebp\n" ); output_cfi( ".cfi_adjust_cfa_offset 4" ); output_cfi( ".cfi_rel_offset %%ebp,0" ); output( "\tmovl %%esp, %%ebp\n" ); output_cfi( ".cfi_def_cfa_register %%ebp" ); /* Save the 32-bit registers */ output( "\tpushl %%ebx\n" ); output_cfi( ".cfi_rel_offset %%ebx,-4" ); output( "\tpushl %%esi\n" ); output_cfi( ".cfi_rel_offset %%esi,-8" ); output( "\tpushl %%edi\n" ); output_cfi( ".cfi_rel_offset %%edi,-12" ); output( "\t.byte 0x64\n\tmov %%gs,(%d)\n", GS_OFFSET ); /* Setup exception frame */ output( "\t.byte 0x64\n\tpushl (%d)\n", STACKOFFSET ); output( "\tpushl 16(%%ebp)\n" ); /* handler */ output( "\t.byte 0x64\n\tpushl (0)\n" ); output( "\t.byte 0x64\n\tmovl %%esp,(0)\n" ); /* Call the actual CallTo16 routine (simulate a lcall) */ output( "\tpushl %%cs\n" ); output( "\tcall .L%s\n", name ); /* Remove exception frame */ output( "\t.byte 0x64\n\tpopl (0)\n" ); output( "\taddl $4, %%esp\n" ); output( "\t.byte 0x64\n\tpopl (%d)\n", STACKOFFSET ); if ( !reg_func ) { /* Convert return value */ output( "\tandl $0xffff,%%eax\n" ); output( "\tshll $16,%%edx\n" ); output( "\torl %%edx,%%eax\n" ); } else { /* * Modify CONTEXT86 structure to contain new values * * NOTE: We restore only EAX, EBX, EDX, EDX, EBP, and ESP. * The segment registers as well as ESI and EDI should * not be modified by a well-behaved 16-bit routine in * any case. [If necessary, we could restore them as well, * at the cost of a somewhat less efficient return path.] */ output( "\tmovl 0x14(%%esp),%%edi\n" ); /* FIELD_OFFSET(STACK32FRAME,target) - FIELD_OFFSET(STACK32FRAME,edi) */ /* everything above edi has been popped already */ output( "\tmovl %%eax,0xb0(%%edi)\n"); /* Eax */ output( "\tmovl %%ebx,0xa4(%%edi)\n"); /* Ebx */ output( "\tmovl %%ecx,0xac(%%edi)\n"); /* Ecx */ output( "\tmovl %%edx,0xa8(%%edi)\n"); /* Edx */ output( "\tmovl %%ebp,0xb4(%%edi)\n"); /* Ebp */ output( "\tmovl %%esi,0xc4(%%edi)\n"); /* Esp */ /* The return glue code saved %esp into %esi */ } /* Restore the 32-bit registers */ output( "\tpopl %%edi\n" ); output_cfi( ".cfi_same_value %%edi" ); output( "\tpopl %%esi\n" ); output_cfi( ".cfi_same_value %%esi" ); output( "\tpopl %%ebx\n" ); output_cfi( ".cfi_same_value %%ebx" ); /* Function exit sequence */ output( "\tpopl %%ebp\n" ); output_cfi( ".cfi_def_cfa %%esp,4" ); output_cfi( ".cfi_same_value %%ebp" ); output( "\tret $12\n" ); output_cfi( ".cfi_endproc" ); /* Start of the actual CallTo16 routine */ output( ".L%s:\n", name ); /* Switch to the 16-bit stack */ output( "\tmovl %%esp,%%edx\n" ); output( "\t.byte 0x64\n\tmovw (%d),%%ss\n", STACKOFFSET + 2); output( "\t.byte 0x64\n\tmovw (%d),%%sp\n", STACKOFFSET ); output( "\t.byte 0x64\n\tmovl %%edx,(%d)\n", STACKOFFSET ); /* Make %bp point to the previous stackframe (built by CallFrom16) */ output( "\tmovzwl %%sp,%%ebp\n" ); output( "\tleal 0x2a(%%ebp),%%ebp\n"); /* FIELD_OFFSET(STACK16FRAME,bp) */ /* Add the specified offset to the new sp */ output( "\tsubw 0x2c(%%edx), %%sp\n"); /* FIELD_OFFSET(STACK32FRAME,nb_args) */ if (reg_func) { /* Push the called routine address */ output( "\tmovl 0x28(%%edx),%%edx\n"); /* FIELD_OFFSET(STACK32FRAME,target) */ output( "\tpushw 0xbc(%%edx)\n"); /* SegCs */ output( "\tpushw 0xb8(%%edx)\n"); /* Eip */ /* Get the registers */ output( "\tpushw 0x98(%%edx)\n"); /* SegDs */ output( "\tpushl 0x94(%%edx)\n"); /* SegEs */ output( "\tpopl %%es\n" ); output( "\tpushl 0x90(%%edx)\n"); /* SegFs */ output( "\tpopl %%fs\n" ); output( "\tpushl 0x8c(%%edx)\n"); /* SegGs */ output( "\tpopl %%gs\n" ); output( "\tmovl 0xb4(%%edx),%%ebp\n"); /* Ebp */ output( "\tmovl 0xa0(%%edx),%%esi\n"); /* Esi */ output( "\tmovl 0x9c(%%edx),%%edi\n"); /* Edi */ output( "\tmovl 0xb0(%%edx),%%eax\n"); /* Eax */ output( "\tmovl 0xa4(%%edx),%%ebx\n"); /* Ebx */ output( "\tmovl 0xac(%%edx),%%ecx\n"); /* Ecx */ output( "\tmovl 0xa8(%%edx),%%edx\n"); /* Edx */ /* Get the 16-bit ds */ output( "\tpopw %%ds\n" ); } else /* not a register function */ { /* Push the called routine address */ output( "\tpushl 0x28(%%edx)\n"); /* FIELD_OFFSET(STACK32FRAME,target) */ /* Set %fs and %gs to the value saved by the last CallFrom16 */ output( "\tpushw -22(%%ebp)\n" ); /* FIELD_OFFSET(STACK16FRAME,fs)-FIELD_OFFSET(STACK16FRAME,bp) */ output( "\tpopw %%fs\n" ); output( "\tpushw -20(%%ebp)\n" ); /* FIELD_OFFSET(STACK16FRAME,gs)-FIELD_OFFSET(STACK16FRAME,bp) */ output( "\tpopw %%gs\n" ); /* Set %ds and %es (and %ax just in case) equal to %ss */ output( "\tmovw %%ss,%%ax\n" ); output( "\tmovw %%ax,%%ds\n" ); output( "\tmovw %%ax,%%es\n" ); } /* Jump to the called routine */ output( "\t.byte 0x66\n" ); output( "\tlret\n" ); /* Function footer */ output_function_size( name ); } /******************************************************************* * BuildRet16Func * * Build the return code for 16-bit callbacks */ static void BuildRet16Func(void) { function_header( "__wine_call_to_16_ret" ); /* Save %esp into %esi */ output( "\tmovl %%esp,%%esi\n" ); /* Restore 32-bit segment registers */ output( "\t.byte 0x2e\n\tmovl %s", asm_name("CallTo16_DataSelector") ); output( "-%s,%%edi\n", asm_name("__wine_call16_start") ); output( "\tmovw %%di,%%ds\n" ); output( "\tmovw %%di,%%es\n" ); output( "\t.byte 0x2e\n\tmov %s", asm_name("CallTo16_TebSelector") ); output( "-%s,%%fs\n", asm_name("__wine_call16_start") ); output( "\t.byte 0x64\n\tmov (%d),%%gs\n", GS_OFFSET ); /* Restore the 32-bit stack */ output( "\tmovw %%di,%%ss\n" ); output( "\t.byte 0x64\n\tmovl (%d),%%esp\n", STACKOFFSET ); /* Return to caller */ output( "\tlret\n" ); output_function_size( "__wine_call_to_16_ret" ); } /******************************************************************* * BuildCallTo32CBClient * * Call a CBClient relay stub from 32-bit code (KERNEL.620). * * Since the relay stub is itself 32-bit, this should not be a problem; * unfortunately, the relay stubs are expected to switch back to a * 16-bit stack (and 16-bit code) after completion :-( * * This would conflict with our 16- vs. 32-bit stack handling, so * we simply switch *back* to our 32-bit stack before returning to * the caller ... * * The CBClient relay stub expects to be called with the following * 16-bit stack layout, and with ebp and ebx pointing into the 16-bit * stack at the designated places: * * ... * (ebp+14) original arguments to the callback routine * (ebp+10) far return address to original caller * (ebp+6) Thunklet target address * (ebp+2) Thunklet relay ID code * (ebp) BP (saved by CBClientGlueSL) * (ebp-2) SI (saved by CBClientGlueSL) * (ebp-4) DI (saved by CBClientGlueSL) * (ebp-6) DS (saved by CBClientGlueSL) * * ... buffer space used by the 16-bit side glue for temp copies * * (ebx+4) far return address to 16-bit side glue code * (ebx) saved 16-bit ss:sp (pointing to ebx+4) * * The 32-bit side glue code accesses both the original arguments (via ebp) * and the temporary copies prepared by the 16-bit side glue (via ebx). * After completion, the stub will load ss:sp from the buffer at ebx * and perform a far return to 16-bit code. * * To trick the relay stub into returning to us, we replace the 16-bit * return address to the glue code by a cs:ip pair pointing to our * return entry point (the original return address is saved first). * Our return stub thus called will then reload the 32-bit ss:esp and * return to 32-bit code (by using and ss:esp value that we have also * pushed onto the 16-bit stack before and a cs:eip values found at * that position on the 32-bit stack). The ss:esp to be restored is * found relative to the 16-bit stack pointer at: * * (ebx-4) ss (flat) * (ebx-8) sp (32-bit stack pointer) * * The second variant of this routine, CALL32_CBClientEx, which is used * to implement KERNEL.621, has to cope with yet another problem: Here, * the 32-bit side directly returns to the caller of the CBClient thunklet, * restoring registers saved by CBClientGlueSL and cleaning up the stack. * As we have to return to our 32-bit code first, we have to adapt the * layout of our temporary area so as to include values for the registers * that are to be restored, and later (in the implementation of KERNEL.621) * we *really* restore them. The return stub restores DS, DI, SI, and BP * from the stack, skips the next 8 bytes (CBClient relay code / target), * and then performs a lret NN, where NN is the number of arguments to be * removed. Thus, we prepare our temporary area as follows: * * (ebx+22) 16-bit cs (this segment) * (ebx+20) 16-bit ip ('16-bit' return entry point) * (ebx+16) 32-bit ss (flat) * (ebx+12) 32-bit sp (32-bit stack pointer) * (ebx+10) 16-bit bp (points to ebx+24) * (ebx+8) 16-bit si (ignored) * (ebx+6) 16-bit di (ignored) * (ebx+4) 16-bit ds (we actually use the flat DS here) * (ebx+2) 16-bit ss (16-bit stack segment) * (ebx+0) 16-bit sp (points to ebx+4) * * Note that we ensure that DS is not changed and remains the flat segment, * and the 32-bit stack pointer our own return stub needs fits just * perfectly into the 8 bytes that are skipped by the Windows stub. * One problem is that we have to determine the number of removed arguments, * as these have to be really removed in KERNEL.621. Thus, the BP value * that we place in the temporary area to be restored, contains the value * that SP would have if no arguments were removed. By comparing the actual * value of SP with this value in our return stub we can compute the number * of removed arguments. This is then returned to KERNEL.621. * * The stack layout of this function: * (ebp+20) nArgs pointer to variable receiving nr. of args (Ex only) * (ebp+16) esi pointer to caller's esi value * (ebp+12) arg ebp value to be set for relay stub * (ebp+8) func CBClient relay stub address * (ebp+4) ret addr * (ebp) ebp */ static void BuildCallTo32CBClient( int isEx ) { function_header( isEx ? "CALL32_CBClientEx" : "CALL32_CBClient" ); /* Entry code */ output_cfi( ".cfi_startproc" ); output( "\tpushl %%ebp\n" ); output_cfi( ".cfi_adjust_cfa_offset 4" ); output_cfi( ".cfi_rel_offset %%ebp,0" ); output( "\tmovl %%esp,%%ebp\n" ); output_cfi( ".cfi_def_cfa_register %%ebp" ); output( "\tpushl %%edi\n" ); output_cfi( ".cfi_rel_offset %%edi,-4" ); output( "\tpushl %%esi\n" ); output_cfi( ".cfi_rel_offset %%esi,-8" ); output( "\tpushl %%ebx\n" ); output_cfi( ".cfi_rel_offset %%ebx,-12" ); /* Get pointer to temporary area and save the 32-bit stack pointer */ output( "\tmovl 16(%%ebp), %%ebx\n" ); output( "\tleal -8(%%esp), %%eax\n" ); if ( !isEx ) output( "\tmovl %%eax, -8(%%ebx)\n" ); else output( "\tmovl %%eax, 12(%%ebx)\n" ); /* Set up registers and call CBClient relay stub (simulating a far call) */ output( "\tmovl 20(%%ebp), %%esi\n" ); output( "\tmovl (%%esi), %%esi\n" ); output( "\tmovl 8(%%ebp), %%eax\n" ); output( "\tmovl 12(%%ebp), %%ebp\n" ); output( "\tpushl %%cs\n" ); output( "\tcall *%%eax\n" ); /* Return new esi value to caller */ output( "\tmovl 32(%%esp), %%edi\n" ); output( "\tmovl %%esi, (%%edi)\n" ); /* Return argument size to caller */ if ( isEx ) { output( "\tmovl 36(%%esp), %%ebx\n" ); output( "\tmovl %%ebp, (%%ebx)\n" ); } /* Restore registers and return */ output( "\tpopl %%ebx\n" ); output_cfi( ".cfi_same_value %%ebx" ); output( "\tpopl %%esi\n" ); output_cfi( ".cfi_same_value %%esi" ); output( "\tpopl %%edi\n" ); output_cfi( ".cfi_same_value %%edi" ); output( "\tpopl %%ebp\n" ); output_cfi( ".cfi_def_cfa %%esp,4" ); output_cfi( ".cfi_same_value %%ebp" ); output( "\tret\n" ); output_cfi( ".cfi_endproc" ); output_function_size( isEx ? "CALL32_CBClientEx" : "CALL32_CBClient" ); /* '16-bit' return stub */ function_header( isEx ? "CALL32_CBClientEx_Ret" : "CALL32_CBClient_Ret" ); if ( !isEx ) { output( "\tmovzwl %%sp, %%ebx\n" ); output( "\tlssl %%ss:-16(%%ebx), %%esp\n" ); } else { output( "\tmovzwl %%bp, %%ebx\n" ); output( "\tsubw %%bp, %%sp\n" ); output( "\tmovzwl %%sp, %%ebp\n" ); output( "\tlssl %%ss:-12(%%ebx), %%esp\n" ); } output( "\tlret\n" ); output_function_size( isEx ? "CALL32_CBClientEx_Ret" : "CALL32_CBClient_Ret" ); } /******************************************************************* * build_call_from_regs_x86 * * Build a 32-bit-to-Wine call-back function for a 'register' function. * 'args' is the number of dword arguments. * * Stack layout: * ... * (ebp+20) first arg * (ebp+16) ret addr to user code * (ebp+12) func to call (relative to relay code ret addr) * (ebp+8) number of args * (ebp+4) ret addr to relay code * (ebp+0) saved ebp * (ebp-128) buffer area to allow stack frame manipulation * (ebp-332) CONTEXT86 struct * (ebp-336) padding for stack alignment * (ebp-336-n) CONTEXT86 *argument * .... other arguments copied from (ebp+12) * * The entry point routine is called with a CONTEXT* extra argument, * following the normal args. In this context structure, EIP_reg * contains the return address to user code, and ESP_reg the stack * pointer on return (with the return address and arguments already * removed). */ static void build_call_from_regs_x86(void) { static const int STACK_SPACE = 128 + 0x2cc /* sizeof(CONTEXT86) */; /* Function header */ output( "\t.text\n" ); function_header( "__wine_call_from_regs" ); /* Allocate some buffer space on the stack */ output_cfi( ".cfi_startproc" ); output( "\tpushl %%ebp\n" ); output_cfi( ".cfi_adjust_cfa_offset 4" ); output_cfi( ".cfi_rel_offset %%ebp,0" ); output( "\tmovl %%esp,%%ebp\n" ); output_cfi( ".cfi_def_cfa_register %%ebp" ); output( "\tleal -%d(%%esp),%%esp\n", STACK_SPACE ); /* Build the context structure */ output( "\tmovl %%eax,0xb0(%%esp)\n" ); /* Eax */ output( "\tpushfl\n" ); output( "\tpopl %%eax\n" ); output( "\tmovl %%eax,0xc0(%%esp)\n"); /* EFlags */ output( "\tmovl 0(%%ebp),%%eax\n" ); output( "\tmovl %%eax,0xb4(%%esp)\n"); /* Ebp */ output( "\tmovl %%ebx,0xa4(%%esp)\n"); /* Ebx */ output( "\tmovl %%ecx,0xac(%%esp)\n"); /* Ecx */ output( "\tmovl %%edx,0xa8(%%esp)\n"); /* Edx */ output( "\tmovl %%esi,0xa0(%%esp)\n"); /* Esi */ output( "\tmovl %%edi,0x9c(%%esp)\n"); /* Edi */ output( "\txorl %%eax,%%eax\n" ); output( "\tmovw %%cs,%%ax\n" ); output( "\tmovl %%eax,0xbc(%%esp)\n"); /* SegCs */ output( "\tmovw %%es,%%ax\n" ); output( "\tmovl %%eax,0x94(%%esp)\n"); /* SegEs */ output( "\tmovw %%fs,%%ax\n" ); output( "\tmovl %%eax,0x90(%%esp)\n"); /* SegFs */ output( "\tmovw %%gs,%%ax\n" ); output( "\tmovl %%eax,0x8c(%%esp)\n"); /* SegGs */ output( "\tmovw %%ss,%%ax\n" ); output( "\tmovl %%eax,0xc8(%%esp)\n"); /* SegSs */ output( "\tmovw %%ds,%%ax\n" ); output( "\tmovl %%eax,0x98(%%esp)\n"); /* SegDs */ output( "\tmovw %%ax,%%es\n" ); /* set %es equal to %ds just in case */ output( "\tmovl $0x10007,0(%%esp)\n"); /* ContextFlags */ output( "\tmovl 16(%%ebp),%%eax\n" ); /* Get %eip at time of call */ output( "\tmovl %%eax,0xb8(%%esp)\n"); /* Eip */ /* Transfer the arguments */ output( "\tmovl 8(%%ebp),%%ecx\n" ); /* fetch number of args to copy */ output( "\tleal 4(,%%ecx,4),%%edx\n" ); /* add 4 for context arg */ output( "\tsubl %%edx,%%esp\n" ); output( "\tandl $~15,%%esp\n" ); output( "\tleal 20(%%ebp),%%esi\n" ); /* get %esp at time of call */ output( "\tmovl %%esp,%%edi\n" ); output( "\ttest %%ecx,%%ecx\n" ); output( "\tjz 1f\n" ); output( "\tcld\n" ); output( "\trep\n\tmovsl\n" ); /* copy args */ output( "1:\tleal %d(%%ebp),%%eax\n", -STACK_SPACE ); /* get addr of context struct */ output( "\tmovl %%eax,(%%edi)\n" ); /* and pass it as extra arg */ output( "\tmovl %%esi,%d(%%ebp)\n", 0xc4 /* Esp */ - STACK_SPACE ); /* Call the entry point */ output( "\tmovl 4(%%ebp),%%eax\n" ); /* get relay code addr */ output( "\taddl 12(%%ebp),%%eax\n" ); output( "\tcall *%%eax\n" ); output( "\tleal -%d(%%ebp),%%ecx\n", STACK_SPACE ); /* Restore the context structure */ output( "2:\tpushl 0x94(%%ecx)\n" ); /* SegEs */ output( "\tpopl %%es\n" ); output( "\tpushl 0x90(%%ecx)\n" ); /* SegFs */ output( "\tpopl %%fs\n" ); output( "\tpushl 0x8c(%%ecx)\n" ); /* SegGs */ output( "\tpopl %%gs\n" ); output( "\tmovw %%ss,%%ax\n" ); output( "\tcmpw 0xc8(%%ecx),%%ax\n" ); /* SegSs */ output( "\tjne 3f\n" ); /* As soon as we have switched stacks the context structure could * be invalid (when signal handlers are executed for example). Copy * values on the target stack before changing ESP. */ output( "\tmovl 0xc4(%%ecx),%%eax\n" ); /* Esp */ output( "\tleal -4*4(%%eax),%%eax\n" ); output( "\tmovl 0xc0(%%ecx),%%edx\n" ); /* EFlags */ output( "\t.byte 0x36\n\tmovl %%edx,3*4(%%eax)\n" ); output( "\tmovl 0xbc(%%ecx),%%edx\n" ); /* SegCs */ output( "\t.byte 0x36\n\tmovl %%edx,2*4(%%eax)\n" ); output( "\tmovl 0xb8(%%ecx),%%edx\n" ); /* Eip */ output( "\t.byte 0x36\n\tmovl %%edx,1*4(%%eax)\n" ); output( "\tmovl 0xb0(%%ecx),%%edx\n" ); /* Eax */ output( "\t.byte 0x36\n\tmovl %%edx,0*4(%%eax)\n" ); output( "\tpushl 0x98(%%ecx)\n" ); /* SegDs */ output( "\tmovl 0x9c(%%ecx),%%edi\n" ); /* Edi */ output( "\tmovl 0xa0(%%ecx),%%esi\n" ); /* Esi */ output( "\tmovl 0xa4(%%ecx),%%ebx\n" ); /* Ebx */ output( "\tmovl 0xa8(%%ecx),%%edx\n" ); /* Edx */ output( "\tmovl 0xb4(%%ecx),%%ebp\n" ); /* Ebp */ output( "\tmovl 0xac(%%ecx),%%ecx\n" ); /* Ecx */ output( "\tpopl %%ds\n" ); output( "\tmovl %%eax,%%esp\n" ); output( "\tpopl %%eax\n" ); output( "\tiret\n" ); output("3:\n"); /* Restore the context when the stack segment changes. We can't use * the same code as above because we do not know if the stack segment * is 16 or 32 bit, and 'movl' will throw an exception when we try to * access memory above the limit. */ output( "\tmovl 0x9c(%%ecx),%%edi\n" ); /* Edi */ output( "\tmovl 0xa0(%%ecx),%%esi\n" ); /* Esi */ output( "\tmovl 0xa4(%%ecx),%%ebx\n" ); /* Ebx */ output( "\tmovl 0xa8(%%ecx),%%edx\n" ); /* Edx */ output( "\tmovl 0xb0(%%ecx),%%eax\n" ); /* Eax */ output( "\tmovl 0xb4(%%ecx),%%ebp\n" ); /* Ebp */ output( "\tpushl 0xc8(%%ecx)\n" ); /* SegSs */ output( "\tpopl %%ss\n" ); output( "\tmovl 0xc4(%%ecx),%%esp\n" ); /* Esp */ output( "\tpushl 0xc0(%%ecx)\n" ); /* EFlags */ output( "\tpushl 0xbc(%%ecx)\n" ); /* SegCs */ output( "\tpushl 0xb8(%%ecx)\n" ); /* Eip */ output( "\tpushl 0x98(%%ecx)\n" ); /* SegDs */ output( "\tmovl 0xac(%%ecx),%%ecx\n" ); /* Ecx */ output( "\tpopl %%ds\n" ); output( "\tiret\n" ); output_cfi( ".cfi_endproc" ); output_function_size( "__wine_call_from_regs" ); function_header( "__wine_restore_regs" ); output_cfi( ".cfi_startproc" ); output( "\tmovl 4(%%esp),%%ecx\n" ); output( "\tjmp 2b\n" ); output_cfi( ".cfi_endproc" ); output_function_size( "__wine_restore_regs" ); } /******************************************************************* * BuildPendingEventCheck * * Build a function that checks whether there are any * pending DPMI events. * * Stack layout: * * (sp+12) long eflags * (sp+6) long cs * (sp+2) long ip * (sp) word fs * * On entry to function, fs register points to a valid TEB. * On exit from function, stack will be popped. */ static void BuildPendingEventCheck(void) { /* Function header */ function_header( "DPMI_PendingEventCheck" ); /* Check for pending events. */ output( "\t.byte 0x64\n\ttestl $0xffffffff,(%d)\n", VM86_PENDING_OFFSET ); output( "\tje %s\n", asm_name("DPMI_PendingEventCheck_Cleanup") ); output( "\t.byte 0x64\n\ttestl $0xffffffff,(%d)\n", DPMI_VIF_OFFSET ); output( "\tje %s\n", asm_name("DPMI_PendingEventCheck_Cleanup") ); /* Process pending events. */ output( "\tsti\n" ); /* Start cleanup. Restore fs register. */ output( "%s\n", asm_globl("DPMI_PendingEventCheck_Cleanup") ); output( "\tpopw %%fs\n" ); /* Return from function. */ output( "%s\n", asm_globl("DPMI_PendingEventCheck_Return") ); output( "\tiret\n" ); output_function_size( "DPMI_PendingEventCheck" ); } /******************************************************************* * output_asm_relays16 * * Build all the 16-bit relay callbacks */ void output_asm_relays16(void) { /* File header */ output( "\t.text\n" ); output( "%s:\n\n", asm_name("__wine_spec_thunk_text_16") ); output( "%s\n", asm_globl("__wine_call16_start") ); /* Standard CallFrom16 routine */ BuildCallFrom16Core( 0, 0 ); /* Register CallFrom16 routine */ BuildCallFrom16Core( 1, 0 ); /* C16ThkSL CallFrom16 routine */ BuildCallFrom16Core( 0, 1 ); /* Standard CallTo16 routine */ BuildCallTo16Core( 0 ); /* Register CallTo16 routine */ BuildCallTo16Core( 1 ); /* Standard CallTo16 return stub */ BuildRet16Func(); /* CBClientThunkSL routine */ BuildCallTo32CBClient( 0 ); /* CBClientThunkSLEx routine */ BuildCallTo32CBClient( 1 ); /* Pending DPMI events check stub */ BuildPendingEventCheck(); output( "%s\n", asm_globl("__wine_call16_end") ); output_function_size( "__wine_spec_thunk_text_16" ); /* Declare the return address and data selector variables */ output( "\n\t.data\n\t.align %d\n", get_alignment(4) ); output( "%s\n\t.long 0\n", asm_globl("CallTo16_DataSelector") ); output( "%s\n\t.long 0\n", asm_globl("CallTo16_TebSelector") ); output( "\t.text\n" ); output( "%s:\n", asm_name("__wine_spec_thunk_text_32") ); build_call_from_regs_x86(); output_function_size( "__wine_spec_thunk_text_32" ); } /******************************************************************* * output_asm_relays * * Build all the assembly relay callbacks */ void output_asm_relays(void) { switch (target_cpu) { case CPU_x86: build_call_from_regs_x86(); break; default: break; } }