/* * Wine X11drv display settings functions * * Copyright 2003 Alexander James Pasadyn * Copyright 2020 Zhiyi Zhang for CodeWeavers * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "config.h" #include #define NONAMELESSUNION #define NONAMELESSSTRUCT #include "x11drv.h" #include "windef.h" #include "winreg.h" #include "wingdi.h" #include "wine/debug.h" #include "wine/heap.h" #include "wine/unicode.h" WINE_DEFAULT_DEBUG_CHANNEL(x11settings); struct x11drv_display_setting { ULONG_PTR id; BOOL placed; RECT new_rect; RECT desired_rect; DEVMODEW desired_mode; }; /* All Windows drivers seen so far either support 32 bit depths, or 24 bit depths, but never both. So if we have * a 32 bit framebuffer, report 32 bit bpps, otherwise 24 bit ones. */ static const unsigned int depths_24[] = {8, 16, 24}; static const unsigned int depths_32[] = {8, 16, 32}; const unsigned int *depths; static struct x11drv_settings_handler handler; /* Cached display modes for a device, protected by modes_section */ static WCHAR cached_device_name[CCHDEVICENAME]; static DWORD cached_flags; static DEVMODEW *cached_modes; static UINT cached_mode_count; static CRITICAL_SECTION modes_section; static CRITICAL_SECTION_DEBUG modes_critsect_debug = { 0, 0, &modes_section, {&modes_critsect_debug.ProcessLocksList, &modes_critsect_debug.ProcessLocksList}, 0, 0, {(DWORD_PTR)(__FILE__ ": modes_section")} }; static CRITICAL_SECTION modes_section = {&modes_critsect_debug, -1, 0, 0, 0, 0}; void X11DRV_Settings_SetHandler(const struct x11drv_settings_handler *new_handler) { if (new_handler->priority > handler.priority) { handler = *new_handler; TRACE("Display settings are now handled by: %s.\n", handler.name); } } /*********************************************************************** * Default handlers if resolution switching is not enabled * */ static BOOL nores_get_id(const WCHAR *device_name, ULONG_PTR *id) { WCHAR primary_adapter[CCHDEVICENAME]; if (!get_primary_adapter( primary_adapter )) return FALSE; *id = !lstrcmpiW( device_name, primary_adapter ) ? 1 : 0; return TRUE; } static BOOL nores_get_modes(ULONG_PTR id, DWORD flags, DEVMODEW **new_modes, UINT *mode_count) { RECT primary = get_host_primary_monitor_rect(); DEVMODEW *modes; modes = heap_calloc(1, sizeof(*modes)); if (!modes) { SetLastError(ERROR_NOT_ENOUGH_MEMORY); return FALSE; } modes[0].dmSize = sizeof(*modes); modes[0].dmDriverExtra = 0; modes[0].dmFields = DM_DISPLAYORIENTATION | DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT | DM_DISPLAYFLAGS | DM_DISPLAYFREQUENCY; modes[0].u1.s2.dmDisplayOrientation = DMDO_DEFAULT; modes[0].dmBitsPerPel = screen_bpp; modes[0].dmPelsWidth = primary.right; modes[0].dmPelsHeight = primary.bottom; modes[0].u2.dmDisplayFlags = 0; modes[0].dmDisplayFrequency = 60; *new_modes = modes; *mode_count = 1; return TRUE; } static void nores_free_modes(DEVMODEW *modes) { heap_free(modes); } static BOOL nores_get_current_mode(ULONG_PTR id, DEVMODEW *mode) { RECT primary = get_host_primary_monitor_rect(); mode->dmFields = DM_DISPLAYORIENTATION | DM_BITSPERPEL | DM_PELSWIDTH | DM_PELSHEIGHT | DM_DISPLAYFLAGS | DM_DISPLAYFREQUENCY | DM_POSITION; mode->u1.s2.dmDisplayOrientation = DMDO_DEFAULT; mode->u2.dmDisplayFlags = 0; mode->u1.s2.dmPosition.x = 0; mode->u1.s2.dmPosition.y = 0; if (id != 1) { FIXME("Non-primary adapters are unsupported.\n"); mode->dmBitsPerPel = 0; mode->dmPelsWidth = 0; mode->dmPelsHeight = 0; mode->dmDisplayFrequency = 0; return TRUE; } mode->dmBitsPerPel = screen_bpp; mode->dmPelsWidth = primary.right; mode->dmPelsHeight = primary.bottom; mode->dmDisplayFrequency = 60; return TRUE; } static LONG nores_set_current_mode(ULONG_PTR id, DEVMODEW *mode) { WARN("NoRes settings handler, ignoring mode change request.\n"); return DISP_CHANGE_SUCCESSFUL; } /* default handler only gets the current X desktop resolution */ void X11DRV_Settings_Init(void) { struct x11drv_settings_handler nores_handler; depths = screen_bpp == 32 ? depths_32 : depths_24; nores_handler.name = "NoRes"; nores_handler.priority = 0; nores_handler.get_id = nores_get_id; nores_handler.get_modes = nores_get_modes; nores_handler.free_modes = nores_free_modes; nores_handler.get_current_mode = nores_get_current_mode; nores_handler.set_current_mode = nores_set_current_mode; X11DRV_Settings_SetHandler(&nores_handler); } /* Initialize registry display settings when new display devices are added */ void init_registry_display_settings(void) { DEVMODEW dm = {.dmSize = sizeof(dm)}; DISPLAY_DEVICEW dd = {sizeof(dd)}; DWORD i = 0; LONG ret; while (EnumDisplayDevicesW(NULL, i++, &dd, 0)) { /* Skip if the device already has registry display settings */ if (EnumDisplaySettingsExW(dd.DeviceName, ENUM_REGISTRY_SETTINGS, &dm, 0)) continue; if (!EnumDisplaySettingsExW(dd.DeviceName, ENUM_CURRENT_SETTINGS, &dm, 0)) { ERR("Failed to query current display settings for %s.\n", wine_dbgstr_w(dd.DeviceName)); continue; } TRACE("Device %s current display mode %ux%u %ubits %uHz at %d,%d.\n", wine_dbgstr_w(dd.DeviceName), dm.dmPelsWidth, dm.dmPelsHeight, dm.dmBitsPerPel, dm.dmDisplayFrequency, dm.u1.s2.dmPosition.x, dm.u1.s2.dmPosition.y); ret = ChangeDisplaySettingsExW(dd.DeviceName, &dm, NULL, CDS_GLOBAL | CDS_NORESET | CDS_UPDATEREGISTRY, NULL); if (ret != DISP_CHANGE_SUCCESSFUL) ERR("Failed to save registry display settings for %s, returned %d.\n", wine_dbgstr_w(dd.DeviceName), ret); } } static BOOL get_display_device_reg_key(const WCHAR *device_name, WCHAR *key, unsigned len) { static const WCHAR display[] = {'\\','\\','.','\\','D','I','S','P','L','A','Y'}; static const WCHAR video_value_fmt[] = {'\\','D','e','v','i','c','e','\\', 'V','i','d','e','o','%','d',0}; static const WCHAR video_key[] = {'H','A','R','D','W','A','R','E','\\', 'D','E','V','I','C','E','M','A','P','\\', 'V','I','D','E','O','\\',0}; WCHAR value_name[MAX_PATH], buffer[MAX_PATH], *end_ptr; DWORD adapter_index, size; /* Device name has to be \\.\DISPLAY%d */ if (strncmpiW(device_name, display, ARRAY_SIZE(display))) return FALSE; /* Parse \\.\DISPLAY* */ adapter_index = strtolW(device_name + ARRAY_SIZE(display), &end_ptr, 10) - 1; if (*end_ptr) return FALSE; /* Open \Device\Video* in HKLM\HARDWARE\DEVICEMAP\VIDEO\ */ sprintfW(value_name, video_value_fmt, adapter_index); size = sizeof(buffer); if (RegGetValueW(HKEY_LOCAL_MACHINE, video_key, value_name, RRF_RT_REG_SZ, NULL, buffer, &size)) return FALSE; if (len < lstrlenW(buffer + 18) + 1) return FALSE; /* Skip \Registry\Machine\ prefix */ lstrcpyW(key, buffer + 18); TRACE("display device %s registry settings key %s.\n", wine_dbgstr_w(device_name), wine_dbgstr_w(key)); return TRUE; } static BOOL read_registry_settings(const WCHAR *device_name, DEVMODEW *dm) { WCHAR wine_x11_reg_key[MAX_PATH]; HANDLE mutex; HKEY hkey; DWORD type, size; BOOL ret = TRUE; dm->dmFields = 0; mutex = get_display_device_init_mutex(); if (!get_display_device_reg_key(device_name, wine_x11_reg_key, ARRAY_SIZE(wine_x11_reg_key))) { release_display_device_init_mutex(mutex); return FALSE; } if (RegOpenKeyExW(HKEY_CURRENT_CONFIG, wine_x11_reg_key, 0, KEY_READ, &hkey)) { release_display_device_init_mutex(mutex); return FALSE; } #define query_value(name, data) \ size = sizeof(DWORD); \ if (RegQueryValueExA(hkey, name, 0, &type, (LPBYTE)(data), &size) || \ type != REG_DWORD || size != sizeof(DWORD)) \ ret = FALSE query_value("DefaultSettings.BitsPerPel", &dm->dmBitsPerPel); dm->dmFields |= DM_BITSPERPEL; query_value("DefaultSettings.XResolution", &dm->dmPelsWidth); dm->dmFields |= DM_PELSWIDTH; query_value("DefaultSettings.YResolution", &dm->dmPelsHeight); dm->dmFields |= DM_PELSHEIGHT; query_value("DefaultSettings.VRefresh", &dm->dmDisplayFrequency); dm->dmFields |= DM_DISPLAYFREQUENCY; query_value("DefaultSettings.Flags", &dm->u2.dmDisplayFlags); dm->dmFields |= DM_DISPLAYFLAGS; query_value("DefaultSettings.XPanning", &dm->u1.s2.dmPosition.x); query_value("DefaultSettings.YPanning", &dm->u1.s2.dmPosition.y); dm->dmFields |= DM_POSITION; query_value("DefaultSettings.Orientation", &dm->u1.s2.dmDisplayOrientation); dm->dmFields |= DM_DISPLAYORIENTATION; query_value("DefaultSettings.FixedOutput", &dm->u1.s2.dmDisplayFixedOutput); #undef query_value RegCloseKey(hkey); release_display_device_init_mutex(mutex); return ret; } static BOOL write_registry_settings(const WCHAR *device_name, const DEVMODEW *dm) { WCHAR wine_x11_reg_key[MAX_PATH]; HANDLE mutex; HKEY hkey; BOOL ret = TRUE; mutex = get_display_device_init_mutex(); if (!get_display_device_reg_key(device_name, wine_x11_reg_key, ARRAY_SIZE(wine_x11_reg_key))) { release_display_device_init_mutex(mutex); return FALSE; } if (RegCreateKeyExW(HKEY_CURRENT_CONFIG, wine_x11_reg_key, 0, NULL, REG_OPTION_VOLATILE, KEY_WRITE, NULL, &hkey, NULL)) { release_display_device_init_mutex(mutex); return FALSE; } #define set_value(name, data) \ if (RegSetValueExA(hkey, name, 0, REG_DWORD, (const BYTE*)(data), sizeof(DWORD))) \ ret = FALSE set_value("DefaultSettings.BitsPerPel", &dm->dmBitsPerPel); set_value("DefaultSettings.XResolution", &dm->dmPelsWidth); set_value("DefaultSettings.YResolution", &dm->dmPelsHeight); set_value("DefaultSettings.VRefresh", &dm->dmDisplayFrequency); set_value("DefaultSettings.Flags", &dm->u2.dmDisplayFlags); set_value("DefaultSettings.XPanning", &dm->u1.s2.dmPosition.x); set_value("DefaultSettings.YPanning", &dm->u1.s2.dmPosition.y); set_value("DefaultSettings.Orientation", &dm->u1.s2.dmDisplayOrientation); set_value("DefaultSettings.FixedOutput", &dm->u1.s2.dmDisplayFixedOutput); #undef set_value RegCloseKey(hkey); release_display_device_init_mutex(mutex); return ret; } BOOL get_primary_adapter(WCHAR *name) { DISPLAY_DEVICEW dd; DWORD i; dd.cb = sizeof(dd); for (i = 0; EnumDisplayDevicesW(NULL, i, &dd, 0); ++i) { if (dd.StateFlags & DISPLAY_DEVICE_PRIMARY_DEVICE) { lstrcpyW(name, dd.DeviceName); return TRUE; } } return FALSE; } static int mode_compare(const void *p1, const void *p2) { const DEVMODEW *a = p1, *b = p2; if (a->dmBitsPerPel != b->dmBitsPerPel) return b->dmBitsPerPel - a->dmBitsPerPel; if (a->dmPelsWidth != b->dmPelsWidth) return a->dmPelsWidth - b->dmPelsWidth; if (a->dmPelsHeight != b->dmPelsHeight) return a->dmPelsHeight - b->dmPelsHeight; return b->dmDisplayFrequency - a->dmDisplayFrequency; } /*********************************************************************** * EnumDisplaySettingsEx (X11DRV.@) * */ BOOL CDECL X11DRV_EnumDisplaySettingsEx( LPCWSTR name, DWORD n, LPDEVMODEW devmode, DWORD flags) { static const WCHAR dev_name[CCHDEVICENAME] = { 'W','i','n','e',' ','X','1','1',' ','d','r','i','v','e','r',0 }; DEVMODEW *modes; UINT mode_count; ULONG_PTR id; if (n == ENUM_REGISTRY_SETTINGS) { if (!read_registry_settings(name, devmode)) { ERR("Failed to get %s registry display settings.\n", wine_dbgstr_w(name)); return FALSE; } goto done; } if (n == ENUM_CURRENT_SETTINGS) { if (!handler.get_id(name, &id) || !handler.get_current_mode(id, devmode)) { ERR("Failed to get %s current display settings.\n", wine_dbgstr_w(name)); return FALSE; } goto done; } EnterCriticalSection(&modes_section); if (n == 0 || lstrcmpiW(cached_device_name, name) || cached_flags != flags) { if (!handler.get_id(name, &id) || !handler.get_modes(id, flags, &modes, &mode_count)) { ERR("Failed to get %s supported display modes.\n", wine_dbgstr_w(name)); LeaveCriticalSection(&modes_section); return FALSE; } qsort(modes, mode_count, sizeof(*modes) + modes[0].dmDriverExtra, mode_compare); if (cached_modes) handler.free_modes(cached_modes); lstrcpyW(cached_device_name, name); cached_flags = flags; cached_modes = modes; cached_mode_count = mode_count; } if (n >= cached_mode_count) { LeaveCriticalSection(&modes_section); WARN("handler:%s device:%s mode index:%#x not found.\n", handler.name, wine_dbgstr_w(name), n); SetLastError(ERROR_NO_MORE_FILES); return FALSE; } memcpy(devmode, (BYTE *)cached_modes + (sizeof(*cached_modes) + cached_modes[0].dmDriverExtra) * n, sizeof(*devmode)); LeaveCriticalSection(&modes_section); done: /* Set generic fields */ devmode->dmSize = FIELD_OFFSET(DEVMODEW, dmICMMethod); devmode->dmDriverExtra = 0; devmode->dmSpecVersion = DM_SPECVERSION; devmode->dmDriverVersion = DM_SPECVERSION; lstrcpyW(devmode->dmDeviceName, dev_name); return TRUE; } BOOL is_detached_mode(const DEVMODEW *mode) { return mode->dmFields & DM_POSITION && mode->dmFields & DM_PELSWIDTH && mode->dmFields & DM_PELSHEIGHT && mode->dmPelsWidth == 0 && mode->dmPelsHeight == 0; } /* Get the full display mode with all the necessary fields set. * Return NULL on failure. Caller should call free_full_mode() to free the returned mode. */ static DEVMODEW *get_full_mode(ULONG_PTR id, DEVMODEW *dev_mode) { DEVMODEW *modes, *full_mode, *found_mode = NULL; UINT mode_count, mode_idx; if (is_detached_mode(dev_mode)) return dev_mode; if (!handler.get_modes(id, 0, &modes, &mode_count)) return NULL; qsort(modes, mode_count, sizeof(*modes) + modes[0].dmDriverExtra, mode_compare); for (mode_idx = 0; mode_idx < mode_count; ++mode_idx) { found_mode = (DEVMODEW *)((BYTE *)modes + (sizeof(*modes) + modes[0].dmDriverExtra) * mode_idx); if (dev_mode->dmFields & DM_BITSPERPEL && found_mode->dmBitsPerPel != dev_mode->dmBitsPerPel) continue; if (dev_mode->dmFields & DM_PELSWIDTH && found_mode->dmPelsWidth != dev_mode->dmPelsWidth) continue; if (dev_mode->dmFields & DM_PELSHEIGHT && found_mode->dmPelsHeight != dev_mode->dmPelsHeight) continue; if (dev_mode->dmFields & DM_DISPLAYFREQUENCY && dev_mode->dmDisplayFrequency && found_mode->dmDisplayFrequency && dev_mode->dmDisplayFrequency != 1 && dev_mode->dmDisplayFrequency != found_mode->dmDisplayFrequency) continue; break; } if (!found_mode || mode_idx == mode_count) { handler.free_modes(modes); return NULL; } if (!(full_mode = heap_alloc(sizeof(*found_mode) + found_mode->dmDriverExtra))) { handler.free_modes(modes); return NULL; } memcpy(full_mode, found_mode, sizeof(*found_mode) + found_mode->dmDriverExtra); handler.free_modes(modes); full_mode->dmFields |= DM_POSITION; full_mode->u1.s2.dmPosition = dev_mode->u1.s2.dmPosition; return full_mode; } static void free_full_mode(DEVMODEW *mode) { if (!is_detached_mode(mode)) heap_free(mode); } static LONG get_display_settings(struct x11drv_display_setting **new_displays, INT *new_display_count, const WCHAR *dev_name, DEVMODEW *dev_mode) { struct x11drv_display_setting *displays; DEVMODEW registry_mode, current_mode; INT display_idx, display_count = 0; DISPLAY_DEVICEW display_device; LONG ret = DISP_CHANGE_FAILED; display_device.cb = sizeof(display_device); for (display_idx = 0; EnumDisplayDevicesW(NULL, display_idx, &display_device, 0); ++display_idx) ++display_count; displays = heap_calloc(display_count, sizeof(*displays)); if (!displays) goto done; for (display_idx = 0; display_idx < display_count; ++display_idx) { if (!EnumDisplayDevicesW(NULL, display_idx, &display_device, 0)) goto done; if (!handler.get_id(display_device.DeviceName, &displays[display_idx].id)) { ret = DISP_CHANGE_BADPARAM; goto done; } if (!dev_mode) { memset(®istry_mode, 0, sizeof(registry_mode)); registry_mode.dmSize = sizeof(registry_mode); if (!EnumDisplaySettingsExW(display_device.DeviceName, ENUM_REGISTRY_SETTINGS, ®istry_mode, 0)) goto done; displays[display_idx].desired_mode = registry_mode; } else if (!lstrcmpiW(dev_name, display_device.DeviceName)) { displays[display_idx].desired_mode = *dev_mode; if (!(dev_mode->dmFields & DM_POSITION)) { memset(¤t_mode, 0, sizeof(current_mode)); current_mode.dmSize = sizeof(current_mode); if (!EnumDisplaySettingsExW(display_device.DeviceName, ENUM_CURRENT_SETTINGS, ¤t_mode, 0)) goto done; displays[display_idx].desired_mode.dmFields |= DM_POSITION; displays[display_idx].desired_mode.u1.s2.dmPosition = current_mode.u1.s2.dmPosition; } } else { memset(¤t_mode, 0, sizeof(current_mode)); current_mode.dmSize = sizeof(current_mode); if (!EnumDisplaySettingsExW(display_device.DeviceName, ENUM_CURRENT_SETTINGS, ¤t_mode, 0)) goto done; displays[display_idx].desired_mode = current_mode; } SetRect(&displays[display_idx].desired_rect, displays[display_idx].desired_mode.u1.s2.dmPosition.x, displays[display_idx].desired_mode.u1.s2.dmPosition.y, displays[display_idx].desired_mode.u1.s2.dmPosition.x + displays[display_idx].desired_mode.dmPelsWidth, displays[display_idx].desired_mode.u1.s2.dmPosition.y + displays[display_idx].desired_mode.dmPelsHeight); lstrcpyW(displays[display_idx].desired_mode.dmDeviceName, display_device.DeviceName); } *new_displays = displays; *new_display_count = display_count; return DISP_CHANGE_SUCCESSFUL; done: heap_free(displays); return ret; } static INT offset_length(POINT offset) { return offset.x * offset.x + offset.y * offset.y; } /* Check if a rect overlaps with placed display rects */ static BOOL overlap_placed_displays(const RECT *rect, const struct x11drv_display_setting *displays, INT display_count) { INT display_idx; RECT intersect; for (display_idx = 0; display_idx < display_count; ++display_idx) { if (displays[display_idx].placed && IntersectRect(&intersect, &displays[display_idx].new_rect, rect)) return TRUE; } return FALSE; } /* Get the offset with minimum length to place a display next to the placed displays with no spacing and overlaps */ static POINT get_placement_offset(const struct x11drv_display_setting *displays, INT display_count, INT placing_idx) { POINT points[8], left_top, offset, min_offset = {0, 0}; INT display_idx, point_idx, point_count, vertex_idx; BOOL has_placed = FALSE, first = TRUE; INT width, height; RECT rect; /* If the display to be placed is detached, no offset is needed to place it */ if (IsRectEmpty(&displays[placing_idx].desired_rect)) return min_offset; /* If there is no placed and attached display, place this display as it is */ for (display_idx = 0; display_idx < display_count; ++display_idx) { if (displays[display_idx].placed && !IsRectEmpty(&displays[display_idx].new_rect)) { has_placed = TRUE; break; } } if (!has_placed) return min_offset; /* Try to place this display with each of its four vertices at every vertex of the placed * displays and see which combination has the minimum offset length */ width = displays[placing_idx].desired_rect.right - displays[placing_idx].desired_rect.left; height = displays[placing_idx].desired_rect.bottom - displays[placing_idx].desired_rect.top; for (display_idx = 0; display_idx < display_count; ++display_idx) { if (!displays[display_idx].placed || IsRectEmpty(&displays[display_idx].new_rect)) continue; /* Get four vertices of the placed display rectangle */ points[0].x = displays[display_idx].new_rect.left; points[0].y = displays[display_idx].new_rect.top; points[1].x = displays[display_idx].new_rect.left; points[1].y = displays[display_idx].new_rect.bottom; points[2].x = displays[display_idx].new_rect.right; points[2].y = displays[display_idx].new_rect.top; points[3].x = displays[display_idx].new_rect.right; points[3].y = displays[display_idx].new_rect.bottom; point_count = 4; /* Intersected points when moving the display to be placed horizontally */ if (displays[placing_idx].desired_rect.bottom >= displays[display_idx].new_rect.top && displays[placing_idx].desired_rect.top <= displays[display_idx].new_rect.bottom) { points[point_count].x = displays[display_idx].new_rect.left; points[point_count++].y = displays[placing_idx].desired_rect.top; points[point_count].x = displays[display_idx].new_rect.right; points[point_count++].y = displays[placing_idx].desired_rect.top; } /* Intersected points when moving the display to be placed vertically */ if (displays[placing_idx].desired_rect.left <= displays[display_idx].new_rect.right && displays[placing_idx].desired_rect.right >= displays[display_idx].new_rect.left) { points[point_count].x = displays[placing_idx].desired_rect.left; points[point_count++].y = displays[display_idx].new_rect.top; points[point_count].x = displays[placing_idx].desired_rect.left; points[point_count++].y = displays[display_idx].new_rect.bottom; } /* Try moving each vertex of the display rectangle to each points */ for (point_idx = 0; point_idx < point_count; ++point_idx) { for (vertex_idx = 0; vertex_idx < 4; ++vertex_idx) { switch (vertex_idx) { /* Move the bottom right vertex to the point */ case 0: left_top.x = points[point_idx].x - width; left_top.y = points[point_idx].y - height; break; /* Move the bottom left vertex to the point */ case 1: left_top.x = points[point_idx].x; left_top.y = points[point_idx].y - height; break; /* Move the top right vertex to the point */ case 2: left_top.x = points[point_idx].x - width; left_top.y = points[point_idx].y; break; /* Move the top left vertex to the point */ case 3: left_top.x = points[point_idx].x; left_top.y = points[point_idx].y; break; } offset.x = left_top.x - displays[placing_idx].desired_rect.left; offset.y = left_top.y - displays[placing_idx].desired_rect.top; rect = displays[placing_idx].desired_rect; OffsetRect(&rect, offset.x, offset.y); if (!overlap_placed_displays(&rect, displays, display_count)) { if (first) { min_offset = offset; first = FALSE; continue; } if (offset_length(offset) < offset_length(min_offset)) min_offset = offset; } } } } return min_offset; } static void place_all_displays(struct x11drv_display_setting *displays, INT display_count) { INT left_most = INT_MAX, top_most = INT_MAX; INT placing_idx, display_idx; POINT min_offset, offset; /* Place all displays with no extra space between them and no overlapping */ while (1) { /* Place the unplaced display with the minimum offset length first */ placing_idx = -1; for (display_idx = 0; display_idx < display_count; ++display_idx) { if (displays[display_idx].placed) continue; offset = get_placement_offset(displays, display_count, display_idx); if (placing_idx == -1 || offset_length(offset) < offset_length(min_offset)) { min_offset = offset; placing_idx = display_idx; } } /* If all displays are placed */ if (placing_idx == -1) break; displays[placing_idx].new_rect = displays[placing_idx].desired_rect; OffsetRect(&displays[placing_idx].new_rect, min_offset.x, min_offset.y); displays[placing_idx].placed = TRUE; } for (display_idx = 0; display_idx < display_count; ++display_idx) { displays[display_idx].desired_mode.u1.s2.dmPosition.x = displays[display_idx].new_rect.left; displays[display_idx].desired_mode.u1.s2.dmPosition.y = displays[display_idx].new_rect.top; left_most = min(left_most, displays[display_idx].new_rect.left); top_most = min(top_most, displays[display_idx].new_rect.top); } /* Convert virtual screen coordinates to root coordinates */ for (display_idx = 0; display_idx < display_count; ++display_idx) { displays[display_idx].desired_mode.u1.s2.dmPosition.x -= left_most; displays[display_idx].desired_mode.u1.s2.dmPosition.y -= top_most; } } static LONG apply_display_settings(struct x11drv_display_setting *displays, INT display_count, BOOL do_attach) { DEVMODEW *full_mode; BOOL attached_mode; INT display_idx; LONG ret; for (display_idx = 0; display_idx < display_count; ++display_idx) { attached_mode = !is_detached_mode(&displays[display_idx].desired_mode); if ((attached_mode && !do_attach) || (!attached_mode && do_attach)) continue; full_mode = get_full_mode(displays[display_idx].id, &displays[display_idx].desired_mode); if (!full_mode) return DISP_CHANGE_BADMODE; TRACE("handler:%s changing %s to position:(%d,%d) resolution:%ux%u frequency:%uHz " "depth:%ubits orientation:%#x.\n", handler.name, wine_dbgstr_w(displays[display_idx].desired_mode.dmDeviceName), full_mode->u1.s2.dmPosition.x, full_mode->u1.s2.dmPosition.y, full_mode->dmPelsWidth, full_mode->dmPelsHeight, full_mode->dmDisplayFrequency, full_mode->dmBitsPerPel, full_mode->u1.s2.dmDisplayOrientation); ret = handler.set_current_mode(displays[display_idx].id, full_mode); free_full_mode(full_mode); if (ret != DISP_CHANGE_SUCCESSFUL) return ret; } return DISP_CHANGE_SUCCESSFUL; } static BOOL all_detached_settings(const struct x11drv_display_setting *displays, INT display_count) { INT display_idx; for (display_idx = 0; display_idx < display_count; ++display_idx) { if (!is_detached_mode(&displays[display_idx].desired_mode)) return FALSE; } return TRUE; } /*********************************************************************** * ChangeDisplaySettingsEx (X11DRV.@) * */ LONG CDECL X11DRV_ChangeDisplaySettingsEx( LPCWSTR devname, LPDEVMODEW devmode, HWND hwnd, DWORD flags, LPVOID lpvoid ) { struct x11drv_display_setting *displays; INT display_idx, display_count; DEVMODEW *full_mode; LONG ret; ret = get_display_settings(&displays, &display_count, devname, devmode); if (ret != DISP_CHANGE_SUCCESSFUL) return ret; if (flags & CDS_UPDATEREGISTRY && devname && devmode) { for (display_idx = 0; display_idx < display_count; ++display_idx) { if (!lstrcmpiW(displays[display_idx].desired_mode.dmDeviceName, devname)) { full_mode = get_full_mode(displays[display_idx].id, &displays[display_idx].desired_mode); if (!full_mode) { heap_free(displays); return DISP_CHANGE_BADMODE; } if (!write_registry_settings(devname, full_mode)) { ERR("Failed to write %s display settings to registry.\n", wine_dbgstr_w(devname)); free_full_mode(full_mode); heap_free(displays); return DISP_CHANGE_NOTUPDATED; } free_full_mode(full_mode); break; } } } if (flags & (CDS_TEST | CDS_NORESET)) { heap_free(displays); return DISP_CHANGE_SUCCESSFUL; } if (all_detached_settings(displays, display_count)) { WARN("Detaching all displays is not permitted.\n"); heap_free(displays); return DISP_CHANGE_SUCCESSFUL; } place_all_displays(displays, display_count); /* Detach displays first to free up CRTCs */ ret = apply_display_settings(displays, display_count, FALSE); if (ret == DISP_CHANGE_SUCCESSFUL) ret = apply_display_settings(displays, display_count, TRUE); if (ret == DISP_CHANGE_SUCCESSFUL) X11DRV_DisplayDevices_Update(TRUE); heap_free(displays); return ret; }