/* Unit test suite for Rtl* API functions * * Copyright 2003 Thomas Mertes * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA * * NOTES * We use function pointers here as there is no import library for NTDLL on * windows. */ #include #include "ntdll_test.h" #ifndef __WINE_WINTERNL_H typedef struct _RTL_HANDLE { struct _RTL_HANDLE * Next; } RTL_HANDLE; typedef struct _RTL_HANDLE_TABLE { ULONG MaxHandleCount; ULONG HandleSize; ULONG Unused[2]; PVOID NextFree; PVOID FirstHandle; PVOID ReservedMemory; PVOID MaxHandle; } RTL_HANDLE_TABLE; #endif /* Function ptrs for ntdll calls */ static HMODULE hntdll = 0; static SIZE_T (WINAPI *pRtlCompareMemory)(LPCVOID,LPCVOID,SIZE_T); static SIZE_T (WINAPI *pRtlCompareMemoryUlong)(PULONG, SIZE_T, ULONG); static VOID (WINAPI *pRtlMoveMemory)(LPVOID,LPCVOID,SIZE_T); static VOID (WINAPI *pRtlFillMemory)(LPVOID,SIZE_T,BYTE); static VOID (WINAPI *pRtlFillMemoryUlong)(LPVOID,SIZE_T,ULONG); static VOID (WINAPI *pRtlZeroMemory)(LPVOID,SIZE_T); static ULONGLONG (WINAPIV *pRtlUlonglongByteSwap)(ULONGLONG source); static ULONG (WINAPI *pRtlUniform)(PULONG); static ULONG (WINAPI *pRtlRandom)(PULONG); static BOOLEAN (WINAPI *pRtlAreAllAccessesGranted)(ACCESS_MASK, ACCESS_MASK); static BOOLEAN (WINAPI *pRtlAreAnyAccessesGranted)(ACCESS_MASK, ACCESS_MASK); static DWORD (WINAPI *pRtlComputeCrc32)(DWORD,const BYTE*,INT); static void (WINAPI * pRtlInitializeHandleTable)(ULONG, ULONG, RTL_HANDLE_TABLE *); static BOOLEAN (WINAPI * pRtlIsValidIndexHandle)(const RTL_HANDLE_TABLE *, ULONG, RTL_HANDLE **); static NTSTATUS (WINAPI * pRtlDestroyHandleTable)(RTL_HANDLE_TABLE *); static RTL_HANDLE * (WINAPI * pRtlAllocateHandle)(RTL_HANDLE_TABLE *, ULONG *); static BOOLEAN (WINAPI * pRtlFreeHandle)(RTL_HANDLE_TABLE *, RTL_HANDLE *); static NTSTATUS (WINAPI *pRtlAllocateAndInitializeSid)(PSID_IDENTIFIER_AUTHORITY,BYTE,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,DWORD,PSID*); static NTSTATUS (WINAPI *pRtlFreeSid)(PSID); #define LEN 16 static const char* src_src = "This is a test!"; /* 16 bytes long, incl NUL */ static ULONG src_aligned_block[4]; static ULONG dest_aligned_block[32]; static const char *src = (const char*)src_aligned_block; static char* dest = (char*)dest_aligned_block; static void InitFunctionPtrs(void) { hntdll = LoadLibraryA("ntdll.dll"); ok(hntdll != 0, "LoadLibrary failed\n"); if (hntdll) { pRtlCompareMemory = (void *)GetProcAddress(hntdll, "RtlCompareMemory"); pRtlCompareMemoryUlong = (void *)GetProcAddress(hntdll, "RtlCompareMemoryUlong"); pRtlMoveMemory = (void *)GetProcAddress(hntdll, "RtlMoveMemory"); pRtlFillMemory = (void *)GetProcAddress(hntdll, "RtlFillMemory"); pRtlFillMemoryUlong = (void *)GetProcAddress(hntdll, "RtlFillMemoryUlong"); pRtlZeroMemory = (void *)GetProcAddress(hntdll, "RtlZeroMemory"); pRtlUlonglongByteSwap = (void *)GetProcAddress(hntdll, "RtlUlonglongByteSwap"); pRtlUniform = (void *)GetProcAddress(hntdll, "RtlUniform"); pRtlRandom = (void *)GetProcAddress(hntdll, "RtlRandom"); pRtlAreAllAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAllAccessesGranted"); pRtlAreAnyAccessesGranted = (void *)GetProcAddress(hntdll, "RtlAreAnyAccessesGranted"); pRtlComputeCrc32 = (void *)GetProcAddress(hntdll, "RtlComputeCrc32"); pRtlInitializeHandleTable = (void *)GetProcAddress(hntdll, "RtlInitializeHandleTable"); pRtlIsValidIndexHandle = (void *)GetProcAddress(hntdll, "RtlIsValidIndexHandle"); pRtlDestroyHandleTable = (void *)GetProcAddress(hntdll, "RtlDestroyHandleTable"); pRtlAllocateHandle = (void *)GetProcAddress(hntdll, "RtlAllocateHandle"); pRtlFreeHandle = (void *)GetProcAddress(hntdll, "RtlFreeHandle"); pRtlAllocateAndInitializeSid = (void *)GetProcAddress(hntdll, "RtlAllocateAndInitializeSid"); pRtlFreeSid = (void *)GetProcAddress(hntdll, "RtlFreeSid"); } strcpy((char*)src_aligned_block, src_src); ok(strlen(src) == 15, "Source must be 16 bytes long!\n"); } #define COMP(str1,str2,cmplen,len) size = pRtlCompareMemory(str1, str2, cmplen); \ ok(size == len, "Expected %ld, got %ld\n", size, (SIZE_T)len) static void test_RtlCompareMemory(void) { SIZE_T size; if (!pRtlCompareMemory) return; strcpy(dest, src); COMP(src,src,0,0); COMP(src,src,LEN,LEN); dest[0] = 'x'; COMP(src,dest,LEN,0); } static void test_RtlCompareMemoryUlong(void) { ULONG a[10]; ULONG result; a[0]= 0x0123; a[1]= 0x4567; a[2]= 0x89ab; a[3]= 0xcdef; result = pRtlCompareMemoryUlong(a, 0, 0x0123); ok(result == 0, "RtlCompareMemoryUlong(%p, 0, 0x0123) returns %u, expected 0\n", a, result); result = pRtlCompareMemoryUlong(a, 3, 0x0123); ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %u, expected 0\n", a, result); result = pRtlCompareMemoryUlong(a, 4, 0x0123); ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %u, expected 4\n", a, result); result = pRtlCompareMemoryUlong(a, 5, 0x0123); ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %u, expected 4\n", a, result); result = pRtlCompareMemoryUlong(a, 7, 0x0123); ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %u, expected 4\n", a, result); result = pRtlCompareMemoryUlong(a, 8, 0x0123); ok(result == 4, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %u, expected 4\n", a, result); result = pRtlCompareMemoryUlong(a, 9, 0x0123); ok(result == 4, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %u, expected 4\n", a, result); result = pRtlCompareMemoryUlong(a, 4, 0x0127); ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x0127) returns %u, expected 0\n", a, result); result = pRtlCompareMemoryUlong(a, 4, 0x7123); ok(result == 0, "RtlCompareMemoryUlong(%p, 4, 0x7123) returns %u, expected 0\n", a, result); result = pRtlCompareMemoryUlong(a, 16, 0x4567); ok(result == 0, "RtlCompareMemoryUlong(%p, 16, 0x4567) returns %u, expected 0\n", a, result); a[1]= 0x0123; result = pRtlCompareMemoryUlong(a, 3, 0x0123); ok(result == 0, "RtlCompareMemoryUlong(%p, 3, 0x0123) returns %u, expected 0\n", a, result); result = pRtlCompareMemoryUlong(a, 4, 0x0123); ok(result == 4, "RtlCompareMemoryUlong(%p, 4, 0x0123) returns %u, expected 4\n", a, result); result = pRtlCompareMemoryUlong(a, 5, 0x0123); ok(result == 4, "RtlCompareMemoryUlong(%p, 5, 0x0123) returns %u, expected 4\n", a, result); result = pRtlCompareMemoryUlong(a, 7, 0x0123); ok(result == 4, "RtlCompareMemoryUlong(%p, 7, 0x0123) returns %u, expected 4\n", a, result); result = pRtlCompareMemoryUlong(a, 8, 0x0123); ok(result == 8, "RtlCompareMemoryUlong(%p, 8, 0x0123) returns %u, expected 8\n", a, result); result = pRtlCompareMemoryUlong(a, 9, 0x0123); ok(result == 8, "RtlCompareMemoryUlong(%p, 9, 0x0123) returns %u, expected 8\n", a, result); } #define COPY(len) memset(dest,0,sizeof(dest_aligned_block)); pRtlMoveMemory(dest, src, len) #define CMP(str) ok(strcmp(dest,str) == 0, "Expected '%s', got '%s'\n", str, dest) static void test_RtlMoveMemory(void) { if (!pRtlMoveMemory) return; /* Length should be in bytes and not rounded. Use strcmp to ensure we * didn't write past the end (it checks for the final NUL left by memset) */ COPY(0); CMP(""); COPY(1); CMP("T"); COPY(2); CMP("Th"); COPY(3); CMP("Thi"); COPY(4); CMP("This"); COPY(5); CMP("This "); COPY(6); CMP("This i"); COPY(7); CMP("This is"); COPY(8); CMP("This is "); COPY(9); CMP("This is a"); /* Overlapping */ strcpy(dest, src); pRtlMoveMemory(dest, dest + 1, strlen(src) - 1); CMP("his is a test!!"); strcpy(dest, src); pRtlMoveMemory(dest + 1, dest, strlen(src)); CMP("TThis is a test!"); } #define FILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemory(dest,len,'x') static void test_RtlFillMemory(void) { if (!pRtlFillMemory) return; /* Length should be in bytes and not rounded. Use strcmp to ensure we * didn't write past the end (the remainder of the string should match) */ FILL(0); CMP("This is a test!"); FILL(1); CMP("xhis is a test!"); FILL(2); CMP("xxis is a test!"); FILL(3); CMP("xxxs is a test!"); FILL(4); CMP("xxxx is a test!"); FILL(5); CMP("xxxxxis a test!"); FILL(6); CMP("xxxxxxs a test!"); FILL(7); CMP("xxxxxxx a test!"); FILL(8); CMP("xxxxxxxxa test!"); FILL(9); CMP("xxxxxxxxx test!"); } #define LFILL(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlFillMemoryUlong(dest,len,val) static void test_RtlFillMemoryUlong(void) { ULONG val = ('x' << 24) | ('x' << 16) | ('x' << 8) | 'x'; if (!pRtlFillMemoryUlong) return; /* Length should be in bytes and not rounded. Use strcmp to ensure we * didn't write past the end (the remainder of the string should match) */ LFILL(0); CMP("This is a test!"); LFILL(1); CMP("This is a test!"); LFILL(2); CMP("This is a test!"); LFILL(3); CMP("This is a test!"); LFILL(4); CMP("xxxx is a test!"); LFILL(5); CMP("xxxx is a test!"); LFILL(6); CMP("xxxx is a test!"); LFILL(7); CMP("xxxx is a test!"); LFILL(8); CMP("xxxxxxxxa test!"); LFILL(9); CMP("xxxxxxxxa test!"); } #define ZERO(len) memset(dest,0,sizeof(dest_aligned_block)); strcpy(dest, src); pRtlZeroMemory(dest,len) #define MCMP(str) ok(memcmp(dest,str,LEN) == 0, "Memcmp failed\n") static void test_RtlZeroMemory(void) { if (!pRtlZeroMemory) return; /* Length should be in bytes and not rounded. */ ZERO(0); MCMP("This is a test!"); ZERO(1); MCMP("\0his is a test!"); ZERO(2); MCMP("\0\0is is a test!"); ZERO(3); MCMP("\0\0\0s is a test!"); ZERO(4); MCMP("\0\0\0\0 is a test!"); ZERO(5); MCMP("\0\0\0\0\0is a test!"); ZERO(6); MCMP("\0\0\0\0\0\0s a test!"); ZERO(7); MCMP("\0\0\0\0\0\0\0 a test!"); ZERO(8); MCMP("\0\0\0\0\0\0\0\0a test!"); ZERO(9); MCMP("\0\0\0\0\0\0\0\0\0 test!"); } static void test_RtlUlonglongByteSwap(void) { ULONGLONG result; result = pRtlUlonglongByteSwap( ((ULONGLONG)0x76543210 << 32) | 0x87654321 ); ok( (((ULONGLONG)0x21436587 << 32) | 0x10325476) == result, "RtlUlonglongByteSwap(0x7654321087654321) returns 0x%x%08x, expected 0x2143658710325476\n", (DWORD)(result >> 32), (DWORD)result); } static void test_RtlUniform(void) { ULONGLONG num; ULONG seed; ULONG seed_bak; ULONG expected; ULONG result; /* * According to the documentation RtlUniform is using D.H. Lehmer's 1948 * algorithm. This algorithm is: * * seed = (seed * const_1 + const_2) % const_3; * * According to the documentation the random number is distributed over * [0..MAXLONG]. Therefore const_3 is MAXLONG + 1: * * seed = (seed * const_1 + const_2) % (MAXLONG + 1); * * Because MAXLONG is 0x7fffffff (and MAXLONG + 1 is 0x80000000) the * algorithm can be expressed without division as: * * seed = (seed * const_1 + const_2) & MAXLONG; * * To find out const_2 we just call RtlUniform with seed set to 0: */ seed = 0; expected = 0x7fffffc3; result = pRtlUniform(&seed); ok(result == expected, "RtlUniform(&seed (seed == 0)) returns %x, expected %x\n", result, expected); /* * The algorithm is now: * * seed = (seed * const_1 + 0x7fffffc3) & MAXLONG; * * To find out const_1 we can use: * * const_1 = RtlUniform(1) - 0x7fffffc3; * * If that does not work a search loop can try all possible values of * const_1 and compare to the result to RtlUniform(1). * This way we find out that const_1 is 0xffffffed. * * For seed = 1 the const_2 is 0x7fffffc4: */ seed = 1; expected = seed * 0xffffffed + 0x7fffffc3 + 1; result = pRtlUniform(&seed); ok(result == expected, "RtlUniform(&seed (seed == 1)) returns %x, expected %x\n", result, expected); /* * For seed = 2 the const_2 is 0x7fffffc3: */ seed = 2; expected = seed * 0xffffffed + 0x7fffffc3; result = pRtlUniform(&seed); /* * Windows Vista uses different algorithms, so skip the rest of the tests * until that is figured out. Trace output for the failures is about 10.5 MB! */ if (result == 0x7fffff9f) { skip("Most likely running on Windows Vista which uses a different algorithm\n"); return; } ok(result == expected, "RtlUniform(&seed (seed == 2)) returns %x, expected %x\n", result, expected); /* * More tests show that if seed is odd the result must be incremented by 1: */ seed = 3; expected = seed * 0xffffffed + 0x7fffffc3 + (seed & 1); result = pRtlUniform(&seed); ok(result == expected, "RtlUniform(&seed (seed == 3)) returns %x, expected %x\n", result, expected); seed = 0x6bca1aa; expected = seed * 0xffffffed + 0x7fffffc3; result = pRtlUniform(&seed); ok(result == expected, "RtlUniform(&seed (seed == 0x6bca1aa)) returns %x, expected %x\n", result, expected); seed = 0x6bca1ab; expected = seed * 0xffffffed + 0x7fffffc3 + 1; result = pRtlUniform(&seed); ok(result == expected, "RtlUniform(&seed (seed == 0x6bca1ab)) returns %x, expected %x\n", result, expected); /* * When seed is 0x6bca1ac there is an exception: */ seed = 0x6bca1ac; expected = seed * 0xffffffed + 0x7fffffc3 + 2; result = pRtlUniform(&seed); ok(result == expected, "RtlUniform(&seed (seed == 0x6bca1ac)) returns %x, expected %x\n", result, expected); /* * Note that up to here const_3 is not used * (the highest bit of the result is not set). * * Starting with 0x6bca1ad: If seed is even the result must be incremented by 1: */ seed = 0x6bca1ad; expected = (seed * 0xffffffed + 0x7fffffc3) & MAXLONG; result = pRtlUniform(&seed); ok(result == expected, "RtlUniform(&seed (seed == 0x6bca1ad)) returns %x, expected %x\n", result, expected); seed = 0x6bca1ae; expected = (seed * 0xffffffed + 0x7fffffc3 + 1) & MAXLONG; result = pRtlUniform(&seed); ok(result == expected, "RtlUniform(&seed (seed == 0x6bca1ae)) returns %x, expected %x\n", result, expected); /* * There are several ranges where for odd or even seed the result must be * incremented by 1. You can see this ranges in the following test. * * For a full test use one of the following loop heads: * * for (num = 0; num <= 0xffffffff; num++) { * seed = num; * ... * * seed = 0; * for (num = 0; num <= 0xffffffff; num++) { * ... */ seed = 0; for (num = 0; num <= 100000; num++) { expected = seed * 0xffffffed + 0x7fffffc3; if (seed < 0x6bca1ac) { expected = expected + (seed & 1); } else if (seed == 0x6bca1ac) { expected = (expected + 2) & MAXLONG; } else if (seed < 0xd79435c) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0x1435e50b) { expected = expected + (seed & 1); } else if (seed < 0x1af286ba) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0x21af2869) { expected = expected + (seed & 1); } else if (seed < 0x286bca18) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0x2f286bc7) { expected = expected + (seed & 1); } else if (seed < 0x35e50d77) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0x3ca1af26) { expected = expected + (seed & 1); } else if (seed < 0x435e50d5) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0x4a1af284) { expected = expected + (seed & 1); } else if (seed < 0x50d79433) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0x579435e2) { expected = expected + (seed & 1); } else if (seed < 0x5e50d792) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0x650d7941) { expected = expected + (seed & 1); } else if (seed < 0x6bca1af0) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0x7286bc9f) { expected = expected + (seed & 1); } else if (seed < 0x79435e4e) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0x7ffffffd) { expected = expected + (seed & 1); } else if (seed < 0x86bca1ac) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed == 0x86bca1ac) { expected = (expected + 1) & MAXLONG; } else if (seed < 0x8d79435c) { expected = expected + (seed & 1); } else if (seed < 0x9435e50b) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0x9af286ba) { expected = expected + (seed & 1); } else if (seed < 0xa1af2869) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0xa86bca18) { expected = expected + (seed & 1); } else if (seed < 0xaf286bc7) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed == 0xaf286bc7) { expected = (expected + 2) & MAXLONG; } else if (seed < 0xb5e50d77) { expected = expected + (seed & 1); } else if (seed < 0xbca1af26) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0xc35e50d5) { expected = expected + (seed & 1); } else if (seed < 0xca1af284) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0xd0d79433) { expected = expected + (seed & 1); } else if (seed < 0xd79435e2) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0xde50d792) { expected = expected + (seed & 1); } else if (seed < 0xe50d7941) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0xebca1af0) { expected = expected + (seed & 1); } else if (seed < 0xf286bc9f) { expected = (expected + (~seed & 1)) & MAXLONG; } else if (seed < 0xf9435e4e) { expected = expected + (seed & 1); } else if (seed < 0xfffffffd) { expected = (expected + (~seed & 1)) & MAXLONG; } else { expected = expected + (seed & 1); } /* if */ seed_bak = seed; result = pRtlUniform(&seed); ok(result == expected, "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n", (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected); ok(seed == expected, "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n", (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected); } /* for */ /* * Further investigation shows: In the different regions the highest bit * is set or cleared when even or odd seeds need an increment by 1. * This leads to a simplified algorithm: * * seed = seed * 0xffffffed + 0x7fffffc3; * if (seed == 0xffffffff || seed == 0x7ffffffe) { * seed = (seed + 2) & MAXLONG; * } else if (seed == 0x7fffffff) { * seed = 0; * } else if ((seed & 0x80000000) == 0) { * seed = seed + (~seed & 1); * } else { * seed = (seed + (seed & 1)) & MAXLONG; * } * * This is also the algorithm used for RtlUniform of wine (see dlls/ntdll/rtl.c). * * Now comes the funny part: * It took me one weekend, to find the complicated algorithm and one day more, * to find the simplified algorithm. Several weeks later I found out: The value * MAXLONG (=0x7fffffff) is never returned, neither with the native function * nor with the simplified algorithm. In reality the native function and our * function return a random number distributed over [0..MAXLONG-1]. Note * that this is different from what native documentation states [0..MAXLONG]. * Expressed with D.H. Lehmer's 1948 algorithm it looks like: * * seed = (seed * const_1 + const_2) % MAXLONG; * * Further investigations show that the real algorithm is: * * seed = (seed * 0x7fffffed + 0x7fffffc3) % MAXLONG; * * This is checked with the test below: */ seed = 0; for (num = 0; num <= 100000; num++) { expected = (seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff; seed_bak = seed; result = pRtlUniform(&seed); ok(result == expected, "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n", (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected); ok(seed == expected, "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n", (DWORD)(num >> 32), (DWORD)num, seed_bak, result, expected); } /* for */ /* * More tests show that RtlUniform does not return 0x7ffffffd for seed values * in the range [0..MAXLONG-1]. Additionally 2 is returned twice. This shows * that there is more than one cycle of generated randon numbers ... */ } static ULONG WINAPI my_RtlRandom(PULONG seed) { static ULONG saved_value[128] = { /* 0 */ 0x4c8bc0aa, 0x4c022957, 0x2232827a, 0x2f1e7626, 0x7f8bdafb, 0x5c37d02a, 0x0ab48f72, 0x2f0c4ffa, /* 8 */ 0x290e1954, 0x6b635f23, 0x5d3885c0, 0x74b49ff8, 0x5155fa54, 0x6214ad3f, 0x111e9c29, 0x242a3a09, /* 16 */ 0x75932ae1, 0x40ac432e, 0x54f7ba7a, 0x585ccbd5, 0x6df5c727, 0x0374dad1, 0x7112b3f1, 0x735fc311, /* 24 */ 0x404331a9, 0x74d97781, 0x64495118, 0x323e04be, 0x5974b425, 0x4862e393, 0x62389c1d, 0x28a68b82, /* 32 */ 0x0f95da37, 0x7a50bbc6, 0x09b0091c, 0x22cdb7b4, 0x4faaed26, 0x66417ccd, 0x189e4bfa, 0x1ce4e8dd, /* 40 */ 0x5274c742, 0x3bdcf4dc, 0x2d94e907, 0x32eac016, 0x26d33ca3, 0x60415a8a, 0x31f57880, 0x68c8aa52, /* 48 */ 0x23eb16da, 0x6204f4a1, 0x373927c1, 0x0d24eb7c, 0x06dd7379, 0x2b3be507, 0x0f9c55b1, 0x2c7925eb, /* 56 */ 0x36d67c9a, 0x42f831d9, 0x5e3961cb, 0x65d637a8, 0x24bb3820, 0x4d08e33d, 0x2188754f, 0x147e409e, /* 64 */ 0x6a9620a0, 0x62e26657, 0x7bd8ce81, 0x11da0abb, 0x5f9e7b50, 0x23e444b6, 0x25920c78, 0x5fc894f0, /* 72 */ 0x5e338cbb, 0x404237fd, 0x1d60f80f, 0x320a1743, 0x76013d2b, 0x070294ee, 0x695e243b, 0x56b177fd, /* 80 */ 0x752492e1, 0x6decd52f, 0x125f5219, 0x139d2e78, 0x1898d11e, 0x2f7ee785, 0x4db405d8, 0x1a028a35, /* 88 */ 0x63f6f323, 0x1f6d0078, 0x307cfd67, 0x3f32a78a, 0x6980796c, 0x462b3d83, 0x34b639f2, 0x53fce379, /* 96 */ 0x74ba50f4, 0x1abc2c4b, 0x5eeaeb8d, 0x335a7a0d, 0x3973dd20, 0x0462d66b, 0x159813ff, 0x1e4643fd, /* 104 */ 0x06bc5c62, 0x3115e3fc, 0x09101613, 0x47af2515, 0x4f11ec54, 0x78b99911, 0x3db8dd44, 0x1ec10b9b, /* 112 */ 0x5b5506ca, 0x773ce092, 0x567be81a, 0x5475b975, 0x7a2cde1a, 0x494536f5, 0x34737bb4, 0x76d9750b, /* 120 */ 0x2a1f6232, 0x2e49644d, 0x7dddcbe7, 0x500cebdb, 0x619dab9e, 0x48c626fe, 0x1cda3193, 0x52dabe9d }; ULONG rand; int pos; ULONG result; rand = (*seed * 0x7fffffed + 0x7fffffc3) % 0x7fffffff; *seed = (rand * 0x7fffffed + 0x7fffffc3) % 0x7fffffff; pos = *seed & 0x7f; result = saved_value[pos]; saved_value[pos] = rand; return(result); } static void test_RtlRandom(void) { ULONGLONG num; ULONG seed; ULONG seed_bak; ULONG seed_expected; ULONG result; ULONG result_expected; /* * Unlike RtlUniform, RtlRandom is not documented. We guess that for * RtlRandom D.H. Lehmer's 1948 algorithm is used like stated in * the documentation of the RtlUniform function. This algorithm is: * * seed = (seed * const_1 + const_2) % const_3; * * According to the RtlUniform documentation the random number is * distributed over [0..MAXLONG], but in reality it is distributed * over [0..MAXLONG-1]. Therefore const_3 might be MAXLONG + 1 or * MAXLONG: * * seed = (seed * const_1 + const_2) % (MAXLONG + 1); * * or * * seed = (seed * const_1 + const_2) % MAXLONG; * * To find out const_2 we just call RtlRandom with seed set to 0: */ seed = 0; result_expected = 0x320a1743; seed_expected =0x44b; result = pRtlRandom(&seed); /* * Windows Vista uses different algorithms, so skip the rest of the tests * until that is figured out. Trace output for the failures is about 10.5 MB! */ if (seed == 0x3fc) { skip("Most likely running on Windows Vista which uses a different algorithm\n"); return; } ok(result == result_expected, "pRtlRandom(&seed (seed == 0)) returns %x, expected %x\n", result, result_expected); ok(seed == seed_expected, "pRtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n", seed, seed_expected); /* * Seed is not equal to result as with RtlUniform. To see more we * call RtlRandom aggain with seed set to 0: */ seed = 0; result_expected = 0x7fffffc3; seed_expected =0x44b; result = pRtlRandom(&seed); ok(result == result_expected, "RtlRandom(&seed (seed == 0)) returns %x, expected %x\n", result, result_expected); ok(seed == seed_expected, "RtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n", seed, seed_expected); /* * Seed is set to the same value as before but the result is different. * To see more we call RtlRandom aggain with seed set to 0: */ seed = 0; result_expected = 0x7fffffc3; seed_expected =0x44b; result = pRtlRandom(&seed); ok(result == result_expected, "RtlRandom(&seed (seed == 0)) returns %x, expected %x\n", result, result_expected); ok(seed == seed_expected, "RtlRandom(&seed (seed == 0)) sets seed to %x, expected %x\n", seed, seed_expected); /* * Seed is aggain set to the same value as before. This time we also * have the same result as before. Interestingly the value of the * result is 0x7fffffc3 which is the same value used in RtlUniform * as const_2. If we do * * seed = 0; * result = RtlUniform(&seed); * * we get the same result (0x7fffffc3) as with * * seed = 0; * RtlRandom(&seed); * seed = 0; * result = RtlRandom(&seed); * * And there is another interesting thing. If we do * * seed = 0; * RtlUniform(&seed); * RtlUniform(&seed); * * seed is set to the value 0x44b which ist the same value that * * seed = 0; * RtlRandom(&seed); * * assigns to seed. Putting these two findings together leads to * the concluson that RtlRandom saves the value in some variable, * like in the following algorithm: * * result = saved_value; * saved_value = RtlUniform(&seed); * RtlUniform(&seed); * return(result); * * Now we do further tests with seed set to 1: */ seed = 1; result_expected = 0x7a50bbc6; seed_expected =0x5a1; result = pRtlRandom(&seed); ok(result == result_expected, "RtlRandom(&seed (seed == 1)) returns %x, expected %x\n", result, result_expected); ok(seed == seed_expected, "RtlRandom(&seed (seed == 1)) sets seed to %x, expected %x\n", seed, seed_expected); /* * If there is just one saved_value the result now would be * 0x7fffffc3. From this test we can see that there is more than * one saved_value, like with this algorithm: * * result = saved_value[pos]; * saved_value[pos] = RtlUniform(&seed); * RtlUniform(&seed); * return(result); * * But how is the value of pos determined? The calls to RtlUniform * create a sequence of random numbers. Every second random number * is put into the saved_value array and is used in some later call * of RtlRandom as result. The only reasonable source to determine * pos are the random numbers generated by RtlUniform which are not * put into the saved_value array. This are the values of seed * between the two calls of RtlUniform as in this algorithm: * * rand = RtlUniform(&seed); * RtlUniform(&seed); * pos = position(seed); * result = saved_value[pos]; * saved_value[pos] = rand; * return(result); * * What remains to be determined is: The size of the saved_value array, * the initial values of the saved_value array and the function * position(seed). These tests are not shown here. * The result of these tests is: The size of the saved_value array * is 128, the initial values can be seen in the my_RtlRandom * function and the position(seed) function is (seed & 0x7f). * * For a full test of RtlRandom use one of the following loop heads: * * for (num = 0; num <= 0xffffffff; num++) { * seed = num; * ... * * seed = 0; * for (num = 0; num <= 0xffffffff; num++) { * ... */ seed = 0; for (num = 0; num <= 100000; num++) { seed_bak = seed; seed_expected = seed; result_expected = my_RtlRandom(&seed_expected); /* The following corrections are necessary because the */ /* previous tests changed the saved_value array */ if (num == 0) { result_expected = 0x7fffffc3; } else if (num == 81) { result_expected = 0x7fffffb1; } /* if */ result = pRtlRandom(&seed); ok(result == result_expected, "test: 0x%x%08x RtlUniform(&seed (seed == %x)) returns %x, expected %x\n", (DWORD)(num >> 32), (DWORD)num, seed_bak, result, result_expected); ok(seed == seed_expected, "test: 0x%x%08x RtlUniform(&seed (seed == %x)) sets seed to %x, expected %x\n", (DWORD)(num >> 32), (DWORD)num, seed_bak, result, seed_expected); } /* for */ } typedef struct { ACCESS_MASK GrantedAccess; ACCESS_MASK DesiredAccess; BOOLEAN result; } all_accesses_t; static const all_accesses_t all_accesses[] = { {0xFEDCBA76, 0xFEDCBA76, 1}, {0x00000000, 0xFEDCBA76, 0}, {0xFEDCBA76, 0x00000000, 1}, {0x00000000, 0x00000000, 1}, {0xFEDCBA76, 0xFEDCBA70, 1}, {0xFEDCBA70, 0xFEDCBA76, 0}, {0xFEDCBA76, 0xFEDC8A76, 1}, {0xFEDC8A76, 0xFEDCBA76, 0}, {0xFEDCBA76, 0xC8C4B242, 1}, {0xC8C4B242, 0xFEDCBA76, 0}, }; #define NB_ALL_ACCESSES (sizeof(all_accesses)/sizeof(*all_accesses)) static void test_RtlAreAllAccessesGranted(void) { unsigned int test_num; BOOLEAN result; for (test_num = 0; test_num < NB_ALL_ACCESSES; test_num++) { result = pRtlAreAllAccessesGranted(all_accesses[test_num].GrantedAccess, all_accesses[test_num].DesiredAccess); ok(all_accesses[test_num].result == result, "(test %d): RtlAreAllAccessesGranted(%08x, %08x) returns %d, expected %d\n", test_num, all_accesses[test_num].GrantedAccess, all_accesses[test_num].DesiredAccess, result, all_accesses[test_num].result); } /* for */ } typedef struct { ACCESS_MASK GrantedAccess; ACCESS_MASK DesiredAccess; BOOLEAN result; } any_accesses_t; static const any_accesses_t any_accesses[] = { {0xFEDCBA76, 0xFEDCBA76, 1}, {0x00000000, 0xFEDCBA76, 0}, {0xFEDCBA76, 0x00000000, 0}, {0x00000000, 0x00000000, 0}, {0xFEDCBA76, 0x01234589, 0}, {0x00040000, 0xFEDCBA76, 1}, {0x00040000, 0xFED8BA76, 0}, {0xFEDCBA76, 0x00040000, 1}, {0xFED8BA76, 0x00040000, 0}, }; #define NB_ANY_ACCESSES (sizeof(any_accesses)/sizeof(*any_accesses)) static void test_RtlAreAnyAccessesGranted(void) { unsigned int test_num; BOOLEAN result; for (test_num = 0; test_num < NB_ANY_ACCESSES; test_num++) { result = pRtlAreAnyAccessesGranted(any_accesses[test_num].GrantedAccess, any_accesses[test_num].DesiredAccess); ok(any_accesses[test_num].result == result, "(test %d): RtlAreAnyAccessesGranted(%08x, %08x) returns %d, expected %d\n", test_num, any_accesses[test_num].GrantedAccess, any_accesses[test_num].DesiredAccess, result, any_accesses[test_num].result); } /* for */ } static void test_RtlComputeCrc32(void) { DWORD crc = 0; if (!pRtlComputeCrc32) return; crc = pRtlComputeCrc32(crc, (const BYTE *)src, LEN); ok(crc == 0x40861dc2,"Expected 0x40861dc2, got %8x\n", crc); } typedef struct MY_HANDLE { RTL_HANDLE RtlHandle; void * MyValue; } MY_HANDLE; static inline void RtlpMakeHandleAllocated(RTL_HANDLE * Handle) { ULONG_PTR *AllocatedBit = (ULONG_PTR *)(&Handle->Next); *AllocatedBit = *AllocatedBit | 1; } static void test_HandleTables(void) { BOOLEAN result; NTSTATUS status; ULONG Index; MY_HANDLE * MyHandle; RTL_HANDLE_TABLE HandleTable; pRtlInitializeHandleTable(0x3FFF, sizeof(MY_HANDLE), &HandleTable); MyHandle = (MY_HANDLE *)pRtlAllocateHandle(&HandleTable, &Index); ok(MyHandle != NULL, "RtlAllocateHandle failed\n"); RtlpMakeHandleAllocated(&MyHandle->RtlHandle); MyHandle = NULL; result = pRtlIsValidIndexHandle(&HandleTable, Index, (RTL_HANDLE **)&MyHandle); ok(result, "Handle %p wasn't valid\n", MyHandle); result = pRtlFreeHandle(&HandleTable, &MyHandle->RtlHandle); ok(result, "Couldn't free handle %p\n", MyHandle); status = pRtlDestroyHandleTable(&HandleTable); ok(status == STATUS_SUCCESS, "RtlDestroyHandleTable failed with error 0x%08x\n", status); } static void test_RtlAllocateAndInitializeSid(void) { NTSTATUS ret; SID_IDENTIFIER_AUTHORITY sia = {{ 1, 2, 3, 4, 5, 6 }}; PSID psid; ret = pRtlAllocateAndInitializeSid(&sia, 0, 1, 2, 3, 4, 5, 6, 7, 8, &psid); ok(!ret, "RtlAllocateAndInitializeSid error %08x\n", ret); ret = pRtlFreeSid(psid); ok(!ret, "RtlFreeSid error %08x\n", ret); /* these tests crash on XP ret = pRtlAllocateAndInitializeSid(NULL, 0, 1, 2, 3, 4, 5, 6, 7, 8, &psid); ret = pRtlAllocateAndInitializeSid(&sia, 0, 1, 2, 3, 4, 5, 6, 7, 8, NULL);*/ ret = pRtlAllocateAndInitializeSid(&sia, 9, 1, 2, 3, 4, 5, 6, 7, 8, &psid); ok(ret == STATUS_INVALID_SID, "wrong error %08x\n", ret); } START_TEST(rtl) { InitFunctionPtrs(); if (pRtlCompareMemory) test_RtlCompareMemory(); if (pRtlCompareMemoryUlong) test_RtlCompareMemoryUlong(); if (pRtlMoveMemory) test_RtlMoveMemory(); if (pRtlFillMemory) test_RtlFillMemory(); if (pRtlFillMemoryUlong) test_RtlFillMemoryUlong(); if (pRtlZeroMemory) test_RtlZeroMemory(); if (pRtlUlonglongByteSwap) test_RtlUlonglongByteSwap(); if (pRtlUniform) test_RtlUniform(); if (pRtlRandom) test_RtlRandom(); if (pRtlAreAllAccessesGranted) test_RtlAreAllAccessesGranted(); if (pRtlAreAnyAccessesGranted) test_RtlAreAnyAccessesGranted(); if (pRtlComputeCrc32) test_RtlComputeCrc32(); if (pRtlInitializeHandleTable) test_HandleTables(); if (pRtlAllocateAndInitializeSid) test_RtlAllocateAndInitializeSid(); }