/* * Graphics paths (BeginPath, EndPath etc.) * * Copyright 1997, 1998 Martin Boehme * 1999 Huw D M Davies * Copyright 2005 Dmitry Timoshkov * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA */ #include "config.h" #include "wine/port.h" #include #include #include #include #include #if defined(HAVE_FLOAT_H) #include #endif #include "windef.h" #include "winbase.h" #include "wingdi.h" #include "winerror.h" #include "gdi_private.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(gdi); /* Notes on the implementation * * The implementation is based on dynamically resizable arrays of points and * flags. I dithered for a bit before deciding on this implementation, and * I had even done a bit of work on a linked list version before switching * to arrays. It's a bit of a tradeoff. When you use linked lists, the * implementation of FlattenPath is easier, because you can rip the * PT_BEZIERTO entries out of the middle of the list and link the * corresponding PT_LINETO entries in. However, when you use arrays, * PathToRegion becomes easier, since you can essentially just pass your array * of points to CreatePolyPolygonRgn. Also, if I'd used linked lists, I would * have had the extra effort of creating a chunk-based allocation scheme * in order to use memory effectively. That's why I finally decided to use * arrays. Note by the way that the array based implementation has the same * linear time complexity that linked lists would have since the arrays grow * exponentially. * * The points are stored in the path in device coordinates. This is * consistent with the way Windows does things (for instance, see the Win32 * SDK documentation for GetPath). * * The word "stroke" appears in several places (e.g. in the flag * GdiPath.newStroke). A stroke consists of a PT_MOVETO followed by one or * more PT_LINETOs or PT_BEZIERTOs, up to, but not including, the next * PT_MOVETO. Note that this is not the same as the definition of a figure; * a figure can contain several strokes. * * I modified the drawing functions (MoveTo, LineTo etc.) to test whether * the path is open and to call the corresponding function in path.c if this * is the case. A more elegant approach would be to modify the function * pointers in the DC_FUNCTIONS structure; however, this would be a lot more * complex. Also, the performance degradation caused by my approach in the * case where no path is open is so small that it cannot be measured. * * Martin Boehme */ /* FIXME: A lot of stuff isn't implemented yet. There is much more to come. */ #define NUM_ENTRIES_INITIAL 16 /* Initial size of points / flags arrays */ #define GROW_FACTOR_NUMER 2 /* Numerator of grow factor for the array */ #define GROW_FACTOR_DENOM 1 /* Denominator of grow factor */ /* A floating point version of the POINT structure */ typedef struct tagFLOAT_POINT { double x, y; } FLOAT_POINT; static BOOL PATH_AddEntry(GdiPath *pPath, const POINT *pPoint, BYTE flags); static BOOL PATH_PathToRegion(GdiPath *pPath, INT nPolyFillMode, HRGN *pHrgn); static void PATH_EmptyPath(GdiPath *pPath); static BOOL PATH_ReserveEntries(GdiPath *pPath, INT numEntries); static BOOL PATH_DoArcPart(GdiPath *pPath, FLOAT_POINT corners[], double angleStart, double angleEnd, BYTE startEntryType); static void PATH_ScaleNormalizedPoint(FLOAT_POINT corners[], double x, double y, POINT *pPoint); static void PATH_NormalizePoint(FLOAT_POINT corners[], const FLOAT_POINT *pPoint, double *pX, double *pY); static BOOL PATH_CheckCorners(DC *dc, POINT corners[], INT x1, INT y1, INT x2, INT y2); /* Performs a world-to-viewport transformation on the specified point (which * is in floating point format). */ static inline void INTERNAL_LPTODP_FLOAT(DC *dc, FLOAT_POINT *point) { double x, y; /* Perform the transformation */ x = point->x; y = point->y; point->x = x * dc->xformWorld2Vport.eM11 + y * dc->xformWorld2Vport.eM21 + dc->xformWorld2Vport.eDx; point->y = x * dc->xformWorld2Vport.eM12 + y * dc->xformWorld2Vport.eM22 + dc->xformWorld2Vport.eDy; } /*********************************************************************** * BeginPath (GDI32.@) */ BOOL WINAPI BeginPath(HDC hdc) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pBeginPath ); ret = physdev->funcs->pBeginPath( physdev ); release_dc_ptr( dc ); } return ret; } /*********************************************************************** * EndPath (GDI32.@) */ BOOL WINAPI EndPath(HDC hdc) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pEndPath ); ret = physdev->funcs->pEndPath( physdev ); release_dc_ptr( dc ); } return ret; } /****************************************************************************** * AbortPath [GDI32.@] * Closes and discards paths from device context * * NOTES * Check that SetLastError is being called correctly * * PARAMS * hdc [I] Handle to device context * * RETURNS * Success: TRUE * Failure: FALSE */ BOOL WINAPI AbortPath( HDC hdc ) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pAbortPath ); ret = physdev->funcs->pAbortPath( physdev ); release_dc_ptr( dc ); } return ret; } /*********************************************************************** * CloseFigure (GDI32.@) * * FIXME: Check that SetLastError is being called correctly */ BOOL WINAPI CloseFigure(HDC hdc) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pCloseFigure ); ret = physdev->funcs->pCloseFigure( physdev ); release_dc_ptr( dc ); } return ret; } /*********************************************************************** * GetPath (GDI32.@) */ INT WINAPI GetPath(HDC hdc, LPPOINT pPoints, LPBYTE pTypes, INT nSize) { INT ret = -1; GdiPath *pPath; DC *dc = get_dc_ptr( hdc ); if(!dc) return -1; pPath = &dc->path; /* Check that path is closed */ if(pPath->state!=PATH_Closed) { SetLastError(ERROR_CAN_NOT_COMPLETE); goto done; } if(nSize==0) ret = pPath->numEntriesUsed; else if(nSizenumEntriesUsed) { SetLastError(ERROR_INVALID_PARAMETER); goto done; } else { memcpy(pPoints, pPath->pPoints, sizeof(POINT)*pPath->numEntriesUsed); memcpy(pTypes, pPath->pFlags, sizeof(BYTE)*pPath->numEntriesUsed); /* Convert the points to logical coordinates */ if(!DPtoLP(hdc, pPoints, pPath->numEntriesUsed)) { /* FIXME: Is this the correct value? */ SetLastError(ERROR_CAN_NOT_COMPLETE); goto done; } else ret = pPath->numEntriesUsed; } done: release_dc_ptr( dc ); return ret; } /*********************************************************************** * PathToRegion (GDI32.@) * * FIXME * Check that SetLastError is being called correctly * * The documentation does not state this explicitly, but a test under Windows * shows that the region which is returned should be in device coordinates. */ HRGN WINAPI PathToRegion(HDC hdc) { GdiPath *pPath; HRGN hrgnRval = 0; DC *dc = get_dc_ptr( hdc ); /* Get pointer to path */ if(!dc) return 0; pPath = &dc->path; /* Check that path is closed */ if(pPath->state!=PATH_Closed) SetLastError(ERROR_CAN_NOT_COMPLETE); else { /* FIXME: Should we empty the path even if conversion failed? */ if(PATH_PathToRegion(pPath, GetPolyFillMode(hdc), &hrgnRval)) PATH_EmptyPath(pPath); else hrgnRval=0; } release_dc_ptr( dc ); return hrgnRval; } static BOOL PATH_FillPath(DC *dc, GdiPath *pPath) { INT mapMode, graphicsMode; SIZE ptViewportExt, ptWindowExt; POINT ptViewportOrg, ptWindowOrg; XFORM xform; HRGN hrgn; /* Construct a region from the path and fill it */ if(PATH_PathToRegion(pPath, dc->polyFillMode, &hrgn)) { /* Since PaintRgn interprets the region as being in logical coordinates * but the points we store for the path are already in device * coordinates, we have to set the mapping mode to MM_TEXT temporarily. * Using SaveDC to save information about the mapping mode / world * transform would be easier but would require more overhead, especially * now that SaveDC saves the current path. */ /* Save the information about the old mapping mode */ mapMode=GetMapMode(dc->hSelf); GetViewportExtEx(dc->hSelf, &ptViewportExt); GetViewportOrgEx(dc->hSelf, &ptViewportOrg); GetWindowExtEx(dc->hSelf, &ptWindowExt); GetWindowOrgEx(dc->hSelf, &ptWindowOrg); /* Save world transform * NB: The Windows documentation on world transforms would lead one to * believe that this has to be done only in GM_ADVANCED; however, my * tests show that resetting the graphics mode to GM_COMPATIBLE does * not reset the world transform. */ GetWorldTransform(dc->hSelf, &xform); /* Set MM_TEXT */ SetMapMode(dc->hSelf, MM_TEXT); SetViewportOrgEx(dc->hSelf, 0, 0, NULL); SetWindowOrgEx(dc->hSelf, 0, 0, NULL); graphicsMode=GetGraphicsMode(dc->hSelf); SetGraphicsMode(dc->hSelf, GM_ADVANCED); ModifyWorldTransform(dc->hSelf, &xform, MWT_IDENTITY); SetGraphicsMode(dc->hSelf, graphicsMode); /* Paint the region */ PaintRgn(dc->hSelf, hrgn); DeleteObject(hrgn); /* Restore the old mapping mode */ SetMapMode(dc->hSelf, mapMode); SetViewportExtEx(dc->hSelf, ptViewportExt.cx, ptViewportExt.cy, NULL); SetViewportOrgEx(dc->hSelf, ptViewportOrg.x, ptViewportOrg.y, NULL); SetWindowExtEx(dc->hSelf, ptWindowExt.cx, ptWindowExt.cy, NULL); SetWindowOrgEx(dc->hSelf, ptWindowOrg.x, ptWindowOrg.y, NULL); /* Go to GM_ADVANCED temporarily to restore the world transform */ graphicsMode=GetGraphicsMode(dc->hSelf); SetGraphicsMode(dc->hSelf, GM_ADVANCED); SetWorldTransform(dc->hSelf, &xform); SetGraphicsMode(dc->hSelf, graphicsMode); return TRUE; } return FALSE; } /*********************************************************************** * FillPath (GDI32.@) * * FIXME * Check that SetLastError is being called correctly */ BOOL WINAPI FillPath(HDC hdc) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pFillPath ); ret = physdev->funcs->pFillPath( physdev ); release_dc_ptr( dc ); } return ret; } /*********************************************************************** * SelectClipPath (GDI32.@) * FIXME * Check that SetLastError is being called correctly */ BOOL WINAPI SelectClipPath(HDC hdc, INT iMode) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pSelectClipPath ); ret = physdev->funcs->pSelectClipPath( physdev, iMode ); release_dc_ptr( dc ); } return ret; } /*********************************************************************** * Exported functions */ /* PATH_InitGdiPath * * Initializes the GdiPath structure. */ void PATH_InitGdiPath(GdiPath *pPath) { assert(pPath!=NULL); pPath->state=PATH_Null; pPath->pPoints=NULL; pPath->pFlags=NULL; pPath->numEntriesUsed=0; pPath->numEntriesAllocated=0; } /* PATH_DestroyGdiPath * * Destroys a GdiPath structure (frees the memory in the arrays). */ void PATH_DestroyGdiPath(GdiPath *pPath) { assert(pPath!=NULL); HeapFree( GetProcessHeap(), 0, pPath->pPoints ); HeapFree( GetProcessHeap(), 0, pPath->pFlags ); } /* PATH_AssignGdiPath * * Copies the GdiPath structure "pPathSrc" to "pPathDest". A deep copy is * performed, i.e. the contents of the pPoints and pFlags arrays are copied, * not just the pointers. Since this means that the arrays in pPathDest may * need to be resized, pPathDest should have been initialized using * PATH_InitGdiPath (in C++, this function would be an assignment operator, * not a copy constructor). * Returns TRUE if successful, else FALSE. */ BOOL PATH_AssignGdiPath(GdiPath *pPathDest, const GdiPath *pPathSrc) { assert(pPathDest!=NULL && pPathSrc!=NULL); /* Make sure destination arrays are big enough */ if(!PATH_ReserveEntries(pPathDest, pPathSrc->numEntriesUsed)) return FALSE; /* Perform the copy operation */ memcpy(pPathDest->pPoints, pPathSrc->pPoints, sizeof(POINT)*pPathSrc->numEntriesUsed); memcpy(pPathDest->pFlags, pPathSrc->pFlags, sizeof(BYTE)*pPathSrc->numEntriesUsed); pPathDest->state=pPathSrc->state; pPathDest->numEntriesUsed=pPathSrc->numEntriesUsed; pPathDest->newStroke=pPathSrc->newStroke; return TRUE; } /* PATH_MoveTo * * Should be called when a MoveTo is performed on a DC that has an * open path. This starts a new stroke. Returns TRUE if successful, else * FALSE. */ BOOL PATH_MoveTo(DC *dc) { GdiPath *pPath = &dc->path; /* Check that path is open */ if(pPath->state!=PATH_Open) /* FIXME: Do we have to call SetLastError? */ return FALSE; /* Start a new stroke */ pPath->newStroke=TRUE; return TRUE; } /* PATH_LineTo * * Should be called when a LineTo is performed on a DC that has an * open path. This adds a PT_LINETO entry to the path (and possibly * a PT_MOVETO entry, if this is the first LineTo in a stroke). * Returns TRUE if successful, else FALSE. */ BOOL PATH_LineTo(DC *dc, INT x, INT y) { GdiPath *pPath = &dc->path; POINT point, pointCurPos; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; /* Convert point to device coordinates */ point.x=x; point.y=y; if(!LPtoDP(dc->hSelf, &point, 1)) return FALSE; /* Add a PT_MOVETO if necessary */ if(pPath->newStroke) { pPath->newStroke=FALSE; pointCurPos.x = dc->CursPosX; pointCurPos.y = dc->CursPosY; if(!LPtoDP(dc->hSelf, &pointCurPos, 1)) return FALSE; if(!PATH_AddEntry(pPath, &pointCurPos, PT_MOVETO)) return FALSE; } /* Add a PT_LINETO entry */ return PATH_AddEntry(pPath, &point, PT_LINETO); } /* PATH_RoundRect * * Should be called when a call to RoundRect is performed on a DC that has * an open path. Returns TRUE if successful, else FALSE. * * FIXME: it adds the same entries to the path as windows does, but there * is an error in the bezier drawing code so that there are small pixel-size * gaps when the resulting path is drawn by StrokePath() */ BOOL PATH_RoundRect(DC *dc, INT x1, INT y1, INT x2, INT y2, INT ell_width, INT ell_height) { GdiPath *pPath = &dc->path; POINT corners[2], pointTemp; FLOAT_POINT ellCorners[2]; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; if(!PATH_CheckCorners(dc,corners,x1,y1,x2,y2)) return FALSE; /* Add points to the roundrect path */ ellCorners[0].x = corners[1].x-ell_width; ellCorners[0].y = corners[0].y; ellCorners[1].x = corners[1].x; ellCorners[1].y = corners[0].y+ell_height; if(!PATH_DoArcPart(pPath, ellCorners, 0, -M_PI_2, PT_MOVETO)) return FALSE; pointTemp.x = corners[0].x+ell_width/2; pointTemp.y = corners[0].y; if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO)) return FALSE; ellCorners[0].x = corners[0].x; ellCorners[1].x = corners[0].x+ell_width; if(!PATH_DoArcPart(pPath, ellCorners, -M_PI_2, -M_PI, FALSE)) return FALSE; pointTemp.x = corners[0].x; pointTemp.y = corners[1].y-ell_height/2; if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO)) return FALSE; ellCorners[0].y = corners[1].y-ell_height; ellCorners[1].y = corners[1].y; if(!PATH_DoArcPart(pPath, ellCorners, M_PI, M_PI_2, FALSE)) return FALSE; pointTemp.x = corners[1].x-ell_width/2; pointTemp.y = corners[1].y; if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO)) return FALSE; ellCorners[0].x = corners[1].x-ell_width; ellCorners[1].x = corners[1].x; if(!PATH_DoArcPart(pPath, ellCorners, M_PI_2, 0, FALSE)) return FALSE; /* Close the roundrect figure */ if(!CloseFigure(dc->hSelf)) return FALSE; return TRUE; } /* PATH_Rectangle * * Should be called when a call to Rectangle is performed on a DC that has * an open path. Returns TRUE if successful, else FALSE. */ BOOL PATH_Rectangle(DC *dc, INT x1, INT y1, INT x2, INT y2) { GdiPath *pPath = &dc->path; POINT corners[2], pointTemp; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; if(!PATH_CheckCorners(dc,corners,x1,y1,x2,y2)) return FALSE; /* Close any previous figure */ if(!CloseFigure(dc->hSelf)) { /* The CloseFigure call shouldn't have failed */ assert(FALSE); return FALSE; } /* Add four points to the path */ pointTemp.x=corners[1].x; pointTemp.y=corners[0].y; if(!PATH_AddEntry(pPath, &pointTemp, PT_MOVETO)) return FALSE; if(!PATH_AddEntry(pPath, corners, PT_LINETO)) return FALSE; pointTemp.x=corners[0].x; pointTemp.y=corners[1].y; if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO)) return FALSE; if(!PATH_AddEntry(pPath, corners+1, PT_LINETO)) return FALSE; /* Close the rectangle figure */ if(!CloseFigure(dc->hSelf)) { /* The CloseFigure call shouldn't have failed */ assert(FALSE); return FALSE; } return TRUE; } /* PATH_Ellipse * * Should be called when a call to Ellipse is performed on a DC that has * an open path. This adds four Bezier splines representing the ellipse * to the path. Returns TRUE if successful, else FALSE. */ BOOL PATH_Ellipse(DC *dc, INT x1, INT y1, INT x2, INT y2) { return( PATH_Arc(dc, x1, y1, x2, y2, x1, (y1+y2)/2, x1, (y1+y2)/2,0) && CloseFigure(dc->hSelf) ); } /* PATH_Arc * * Should be called when a call to Arc is performed on a DC that has * an open path. This adds up to five Bezier splines representing the arc * to the path. When 'lines' is 1, we add 1 extra line to get a chord, * when 'lines' is 2, we add 2 extra lines to get a pie, and when 'lines' is * -1 we add 1 extra line from the current DC position to the starting position * of the arc before drawing the arc itself (arcto). Returns TRUE if successful, * else FALSE. */ BOOL PATH_Arc(DC *dc, INT x1, INT y1, INT x2, INT y2, INT xStart, INT yStart, INT xEnd, INT yEnd, INT lines) { GdiPath *pPath = &dc->path; double angleStart, angleEnd, angleStartQuadrant, angleEndQuadrant=0.0; /* Initialize angleEndQuadrant to silence gcc's warning */ double x, y; FLOAT_POINT corners[2], pointStart, pointEnd; POINT centre, pointCurPos; BOOL start, end; INT temp; /* FIXME: This function should check for all possible error returns */ /* FIXME: Do we have to respect newStroke? */ /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; /* Check for zero height / width */ /* FIXME: Only in GM_COMPATIBLE? */ if(x1==x2 || y1==y2) return TRUE; /* Convert points to device coordinates */ corners[0].x = x1; corners[0].y = y1; corners[1].x = x2; corners[1].y = y2; pointStart.x = xStart; pointStart.y = yStart; pointEnd.x = xEnd; pointEnd.y = yEnd; INTERNAL_LPTODP_FLOAT(dc, corners); INTERNAL_LPTODP_FLOAT(dc, corners+1); INTERNAL_LPTODP_FLOAT(dc, &pointStart); INTERNAL_LPTODP_FLOAT(dc, &pointEnd); /* Make sure first corner is top left and second corner is bottom right */ if(corners[0].x>corners[1].x) { temp=corners[0].x; corners[0].x=corners[1].x; corners[1].x=temp; } if(corners[0].y>corners[1].y) { temp=corners[0].y; corners[0].y=corners[1].y; corners[1].y=temp; } /* Compute start and end angle */ PATH_NormalizePoint(corners, &pointStart, &x, &y); angleStart=atan2(y, x); PATH_NormalizePoint(corners, &pointEnd, &x, &y); angleEnd=atan2(y, x); /* Make sure the end angle is "on the right side" of the start angle */ if(dc->ArcDirection==AD_CLOCKWISE) { if(angleEnd<=angleStart) { angleEnd+=2*M_PI; assert(angleEnd>=angleStart); } } else { if(angleEnd>=angleStart) { angleEnd-=2*M_PI; assert(angleEnd<=angleStart); } } /* In GM_COMPATIBLE, don't include bottom and right edges */ if(dc->GraphicsMode==GM_COMPATIBLE) { corners[1].x--; corners[1].y--; } /* arcto: Add a PT_MOVETO only if this is the first entry in a stroke */ if(lines==-1 && pPath->newStroke) { pPath->newStroke=FALSE; pointCurPos.x = dc->CursPosX; pointCurPos.y = dc->CursPosY; if(!LPtoDP(dc->hSelf, &pointCurPos, 1)) return FALSE; if(!PATH_AddEntry(pPath, &pointCurPos, PT_MOVETO)) return FALSE; } /* Add the arc to the path with one Bezier spline per quadrant that the * arc spans */ start=TRUE; end=FALSE; do { /* Determine the start and end angles for this quadrant */ if(start) { angleStartQuadrant=angleStart; if(dc->ArcDirection==AD_CLOCKWISE) angleEndQuadrant=(floor(angleStart/M_PI_2)+1.0)*M_PI_2; else angleEndQuadrant=(ceil(angleStart/M_PI_2)-1.0)*M_PI_2; } else { angleStartQuadrant=angleEndQuadrant; if(dc->ArcDirection==AD_CLOCKWISE) angleEndQuadrant+=M_PI_2; else angleEndQuadrant-=M_PI_2; } /* Have we reached the last part of the arc? */ if((dc->ArcDirection==AD_CLOCKWISE && angleEndArcDirection==AD_COUNTERCLOCKWISE && angleEnd>angleEndQuadrant)) { /* Adjust the end angle for this quadrant */ angleEndQuadrant=angleEnd; end=TRUE; } /* Add the Bezier spline to the path */ PATH_DoArcPart(pPath, corners, angleStartQuadrant, angleEndQuadrant, start ? (lines==-1 ? PT_LINETO : PT_MOVETO) : FALSE); start=FALSE; } while(!end); /* chord: close figure. pie: add line and close figure */ if(lines==1) { if(!CloseFigure(dc->hSelf)) return FALSE; } else if(lines==2) { centre.x = (corners[0].x+corners[1].x)/2; centre.y = (corners[0].y+corners[1].y)/2; if(!PATH_AddEntry(pPath, ¢re, PT_LINETO | PT_CLOSEFIGURE)) return FALSE; } return TRUE; } BOOL PATH_PolyBezierTo(DC *dc, const POINT *pts, DWORD cbPoints) { GdiPath *pPath = &dc->path; POINT pt; UINT i; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; /* Add a PT_MOVETO if necessary */ if(pPath->newStroke) { pPath->newStroke=FALSE; pt.x = dc->CursPosX; pt.y = dc->CursPosY; if(!LPtoDP(dc->hSelf, &pt, 1)) return FALSE; if(!PATH_AddEntry(pPath, &pt, PT_MOVETO)) return FALSE; } for(i = 0; i < cbPoints; i++) { pt = pts[i]; if(!LPtoDP(dc->hSelf, &pt, 1)) return FALSE; PATH_AddEntry(pPath, &pt, PT_BEZIERTO); } return TRUE; } BOOL PATH_PolyBezier(DC *dc, const POINT *pts, DWORD cbPoints) { GdiPath *pPath = &dc->path; POINT pt; UINT i; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; for(i = 0; i < cbPoints; i++) { pt = pts[i]; if(!LPtoDP(dc->hSelf, &pt, 1)) return FALSE; PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : PT_BEZIERTO); } return TRUE; } /* PATH_PolyDraw * * Should be called when a call to PolyDraw is performed on a DC that has * an open path. Returns TRUE if successful, else FALSE. */ BOOL PATH_PolyDraw(DC *dc, const POINT *pts, const BYTE *types, DWORD cbPoints) { GdiPath *pPath = &dc->path; POINT lastmove, orig_pos; INT i; lastmove.x = orig_pos.x = dc->CursPosX; lastmove.y = orig_pos.y = dc->CursPosY; for(i = pPath->numEntriesUsed - 1; i >= 0; i--){ if(pPath->pFlags[i] == PT_MOVETO){ lastmove.x = pPath->pPoints[i].x; lastmove.y = pPath->pPoints[i].y; if(!DPtoLP(dc->hSelf, &lastmove, 1)) return FALSE; break; } } for(i = 0; i < cbPoints; i++){ if(types[i] == PT_MOVETO){ pPath->newStroke = TRUE; lastmove.x = pts[i].x; lastmove.y = pts[i].y; } else if((types[i] & ~PT_CLOSEFIGURE) == PT_LINETO){ PATH_LineTo(dc, pts[i].x, pts[i].y); } else if(types[i] == PT_BEZIERTO){ if(!((i + 2 < cbPoints) && (types[i + 1] == PT_BEZIERTO) && ((types[i + 2] & ~PT_CLOSEFIGURE) == PT_BEZIERTO))) goto err; PATH_PolyBezierTo(dc, &(pts[i]), 3); i += 2; } else goto err; dc->CursPosX = pts[i].x; dc->CursPosY = pts[i].y; if(types[i] & PT_CLOSEFIGURE){ pPath->pFlags[pPath->numEntriesUsed-1] |= PT_CLOSEFIGURE; pPath->newStroke = TRUE; dc->CursPosX = lastmove.x; dc->CursPosY = lastmove.y; } } return TRUE; err: if((dc->CursPosX != orig_pos.x) || (dc->CursPosY != orig_pos.y)){ pPath->newStroke = TRUE; dc->CursPosX = orig_pos.x; dc->CursPosY = orig_pos.y; } return FALSE; } BOOL PATH_Polyline(DC *dc, const POINT *pts, DWORD cbPoints) { GdiPath *pPath = &dc->path; POINT pt; UINT i; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; for(i = 0; i < cbPoints; i++) { pt = pts[i]; if(!LPtoDP(dc->hSelf, &pt, 1)) return FALSE; PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : PT_LINETO); } return TRUE; } BOOL PATH_PolylineTo(DC *dc, const POINT *pts, DWORD cbPoints) { GdiPath *pPath = &dc->path; POINT pt; UINT i; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; /* Add a PT_MOVETO if necessary */ if(pPath->newStroke) { pPath->newStroke=FALSE; pt.x = dc->CursPosX; pt.y = dc->CursPosY; if(!LPtoDP(dc->hSelf, &pt, 1)) return FALSE; if(!PATH_AddEntry(pPath, &pt, PT_MOVETO)) return FALSE; } for(i = 0; i < cbPoints; i++) { pt = pts[i]; if(!LPtoDP(dc->hSelf, &pt, 1)) return FALSE; PATH_AddEntry(pPath, &pt, PT_LINETO); } return TRUE; } BOOL PATH_Polygon(DC *dc, const POINT *pts, DWORD cbPoints) { GdiPath *pPath = &dc->path; POINT pt; UINT i; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; for(i = 0; i < cbPoints; i++) { pt = pts[i]; if(!LPtoDP(dc->hSelf, &pt, 1)) return FALSE; PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : ((i == cbPoints-1) ? PT_LINETO | PT_CLOSEFIGURE : PT_LINETO)); } return TRUE; } BOOL PATH_PolyPolygon( DC *dc, const POINT* pts, const INT* counts, UINT polygons ) { GdiPath *pPath = &dc->path; POINT pt, startpt; UINT poly, i; INT point; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; for(i = 0, poly = 0; poly < polygons; poly++) { for(point = 0; point < counts[poly]; point++, i++) { pt = pts[i]; if(!LPtoDP(dc->hSelf, &pt, 1)) return FALSE; if(point == 0) startpt = pt; PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO); } /* win98 adds an extra line to close the figure for some reason */ PATH_AddEntry(pPath, &startpt, PT_LINETO | PT_CLOSEFIGURE); } return TRUE; } BOOL PATH_PolyPolyline( DC *dc, const POINT* pts, const DWORD* counts, DWORD polylines ) { GdiPath *pPath = &dc->path; POINT pt; UINT poly, point, i; /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; for(i = 0, poly = 0; poly < polylines; poly++) { for(point = 0; point < counts[poly]; point++, i++) { pt = pts[i]; if(!LPtoDP(dc->hSelf, &pt, 1)) return FALSE; PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO); } } return TRUE; } /*********************************************************************** * Internal functions */ /* PATH_CheckCorners * * Helper function for PATH_RoundRect() and PATH_Rectangle() */ static BOOL PATH_CheckCorners(DC *dc, POINT corners[], INT x1, INT y1, INT x2, INT y2) { INT temp; /* Convert points to device coordinates */ corners[0].x=x1; corners[0].y=y1; corners[1].x=x2; corners[1].y=y2; if(!LPtoDP(dc->hSelf, corners, 2)) return FALSE; /* Make sure first corner is top left and second corner is bottom right */ if(corners[0].x>corners[1].x) { temp=corners[0].x; corners[0].x=corners[1].x; corners[1].x=temp; } if(corners[0].y>corners[1].y) { temp=corners[0].y; corners[0].y=corners[1].y; corners[1].y=temp; } /* In GM_COMPATIBLE, don't include bottom and right edges */ if(dc->GraphicsMode==GM_COMPATIBLE) { corners[1].x--; corners[1].y--; } return TRUE; } /* PATH_AddFlatBezier */ static BOOL PATH_AddFlatBezier(GdiPath *pPath, POINT *pt, BOOL closed) { POINT *pts; INT no, i; pts = GDI_Bezier( pt, 4, &no ); if(!pts) return FALSE; for(i = 1; i < no; i++) PATH_AddEntry(pPath, &pts[i], (i == no-1 && closed) ? PT_LINETO | PT_CLOSEFIGURE : PT_LINETO); HeapFree( GetProcessHeap(), 0, pts ); return TRUE; } /* PATH_FlattenPath * * Replaces Beziers with line segments * */ static BOOL PATH_FlattenPath(GdiPath *pPath) { GdiPath newPath; INT srcpt; memset(&newPath, 0, sizeof(newPath)); newPath.state = PATH_Open; for(srcpt = 0; srcpt < pPath->numEntriesUsed; srcpt++) { switch(pPath->pFlags[srcpt] & ~PT_CLOSEFIGURE) { case PT_MOVETO: case PT_LINETO: PATH_AddEntry(&newPath, &pPath->pPoints[srcpt], pPath->pFlags[srcpt]); break; case PT_BEZIERTO: PATH_AddFlatBezier(&newPath, &pPath->pPoints[srcpt-1], pPath->pFlags[srcpt+2] & PT_CLOSEFIGURE); srcpt += 2; break; } } newPath.state = PATH_Closed; PATH_AssignGdiPath(pPath, &newPath); PATH_DestroyGdiPath(&newPath); return TRUE; } /* PATH_PathToRegion * * Creates a region from the specified path using the specified polygon * filling mode. The path is left unchanged. A handle to the region that * was created is stored in *pHrgn. If successful, TRUE is returned; if an * error occurs, SetLastError is called with the appropriate value and * FALSE is returned. */ static BOOL PATH_PathToRegion(GdiPath *pPath, INT nPolyFillMode, HRGN *pHrgn) { int numStrokes, iStroke, i; INT *pNumPointsInStroke; HRGN hrgn; assert(pPath!=NULL); assert(pHrgn!=NULL); PATH_FlattenPath(pPath); /* FIXME: What happens when number of points is zero? */ /* First pass: Find out how many strokes there are in the path */ /* FIXME: We could eliminate this with some bookkeeping in GdiPath */ numStrokes=0; for(i=0; inumEntriesUsed; i++) if((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO) numStrokes++; /* Allocate memory for number-of-points-in-stroke array */ pNumPointsInStroke=HeapAlloc( GetProcessHeap(), 0, sizeof(int) * numStrokes ); if(!pNumPointsInStroke) { SetLastError(ERROR_NOT_ENOUGH_MEMORY); return FALSE; } /* Second pass: remember number of points in each polygon */ iStroke=-1; /* Will get incremented to 0 at beginning of first stroke */ for(i=0; inumEntriesUsed; i++) { /* Is this the beginning of a new stroke? */ if((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO) { iStroke++; pNumPointsInStroke[iStroke]=0; } pNumPointsInStroke[iStroke]++; } /* Create a region from the strokes */ hrgn=CreatePolyPolygonRgn(pPath->pPoints, pNumPointsInStroke, numStrokes, nPolyFillMode); /* Free memory for number-of-points-in-stroke array */ HeapFree( GetProcessHeap(), 0, pNumPointsInStroke ); if(hrgn==NULL) { SetLastError(ERROR_NOT_ENOUGH_MEMORY); return FALSE; } /* Success! */ *pHrgn=hrgn; return TRUE; } static inline INT int_from_fixed(FIXED f) { return (f.fract >= 0x8000) ? (f.value + 1) : f.value; } /********************************************************************** * PATH_BezierTo * * internally used by PATH_add_outline */ static void PATH_BezierTo(GdiPath *pPath, POINT *lppt, INT n) { if (n < 2) return; if (n == 2) { PATH_AddEntry(pPath, &lppt[1], PT_LINETO); } else if (n == 3) { PATH_AddEntry(pPath, &lppt[0], PT_BEZIERTO); PATH_AddEntry(pPath, &lppt[1], PT_BEZIERTO); PATH_AddEntry(pPath, &lppt[2], PT_BEZIERTO); } else { POINT pt[3]; INT i = 0; pt[2] = lppt[0]; n--; while (n > 2) { pt[0] = pt[2]; pt[1] = lppt[i+1]; pt[2].x = (lppt[i+2].x + lppt[i+1].x) / 2; pt[2].y = (lppt[i+2].y + lppt[i+1].y) / 2; PATH_BezierTo(pPath, pt, 3); n--; i++; } pt[0] = pt[2]; pt[1] = lppt[i+1]; pt[2] = lppt[i+2]; PATH_BezierTo(pPath, pt, 3); } } static BOOL PATH_add_outline(DC *dc, INT x, INT y, TTPOLYGONHEADER *header, DWORD size) { GdiPath *pPath = &dc->path; TTPOLYGONHEADER *start; POINT pt; start = header; while ((char *)header < (char *)start + size) { TTPOLYCURVE *curve; if (header->dwType != TT_POLYGON_TYPE) { FIXME("Unknown header type %d\n", header->dwType); return FALSE; } pt.x = x + int_from_fixed(header->pfxStart.x); pt.y = y - int_from_fixed(header->pfxStart.y); PATH_AddEntry(pPath, &pt, PT_MOVETO); curve = (TTPOLYCURVE *)(header + 1); while ((char *)curve < (char *)header + header->cb) { /*TRACE("curve->wType %d\n", curve->wType);*/ switch(curve->wType) { case TT_PRIM_LINE: { WORD i; for (i = 0; i < curve->cpfx; i++) { pt.x = x + int_from_fixed(curve->apfx[i].x); pt.y = y - int_from_fixed(curve->apfx[i].y); PATH_AddEntry(pPath, &pt, PT_LINETO); } break; } case TT_PRIM_QSPLINE: case TT_PRIM_CSPLINE: { WORD i; POINTFX ptfx; POINT *pts = HeapAlloc(GetProcessHeap(), 0, (curve->cpfx + 1) * sizeof(POINT)); if (!pts) return FALSE; ptfx = *(POINTFX *)((char *)curve - sizeof(POINTFX)); pts[0].x = x + int_from_fixed(ptfx.x); pts[0].y = y - int_from_fixed(ptfx.y); for(i = 0; i < curve->cpfx; i++) { pts[i + 1].x = x + int_from_fixed(curve->apfx[i].x); pts[i + 1].y = y - int_from_fixed(curve->apfx[i].y); } PATH_BezierTo(pPath, pts, curve->cpfx + 1); HeapFree(GetProcessHeap(), 0, pts); break; } default: FIXME("Unknown curve type %04x\n", curve->wType); return FALSE; } curve = (TTPOLYCURVE *)&curve->apfx[curve->cpfx]; } header = (TTPOLYGONHEADER *)((char *)header + header->cb); } return CloseFigure(dc->hSelf); } /********************************************************************** * PATH_ExtTextOut */ BOOL PATH_ExtTextOut(DC *dc, INT x, INT y, UINT flags, const RECT *lprc, LPCWSTR str, UINT count, const INT *dx) { unsigned int idx; HDC hdc = dc->hSelf; POINT offset = {0, 0}; TRACE("%p, %d, %d, %08x, %s, %s, %d, %p)\n", hdc, x, y, flags, wine_dbgstr_rect(lprc), debugstr_wn(str, count), count, dx); if (!count) return TRUE; for (idx = 0; idx < count; idx++) { static const MAT2 identity = { {0,1},{0,0},{0,0},{0,1} }; GLYPHMETRICS gm; DWORD dwSize; void *outline; dwSize = GetGlyphOutlineW(hdc, str[idx], GGO_GLYPH_INDEX | GGO_NATIVE, &gm, 0, NULL, &identity); if (dwSize == GDI_ERROR) return FALSE; /* add outline only if char is printable */ if(dwSize) { outline = HeapAlloc(GetProcessHeap(), 0, dwSize); if (!outline) return FALSE; GetGlyphOutlineW(hdc, str[idx], GGO_GLYPH_INDEX | GGO_NATIVE, &gm, dwSize, outline, &identity); PATH_add_outline(dc, x + offset.x, y + offset.y, outline, dwSize); HeapFree(GetProcessHeap(), 0, outline); } if (dx) { if(flags & ETO_PDY) { offset.x += dx[idx * 2]; offset.y += dx[idx * 2 + 1]; } else offset.x += dx[idx]; } else { offset.x += gm.gmCellIncX; offset.y += gm.gmCellIncY; } } return TRUE; } /* PATH_EmptyPath * * Removes all entries from the path and sets the path state to PATH_Null. */ static void PATH_EmptyPath(GdiPath *pPath) { assert(pPath!=NULL); pPath->state=PATH_Null; pPath->numEntriesUsed=0; } /* PATH_AddEntry * * Adds an entry to the path. For "flags", pass either PT_MOVETO, PT_LINETO * or PT_BEZIERTO, optionally ORed with PT_CLOSEFIGURE. Returns TRUE if * successful, FALSE otherwise (e.g. if not enough memory was available). */ static BOOL PATH_AddEntry(GdiPath *pPath, const POINT *pPoint, BYTE flags) { assert(pPath!=NULL); /* FIXME: If newStroke is true, perhaps we want to check that we're * getting a PT_MOVETO */ TRACE("(%d,%d) - %d\n", pPoint->x, pPoint->y, flags); /* Check that path is open */ if(pPath->state!=PATH_Open) return FALSE; /* Reserve enough memory for an extra path entry */ if(!PATH_ReserveEntries(pPath, pPath->numEntriesUsed+1)) return FALSE; /* Store information in path entry */ pPath->pPoints[pPath->numEntriesUsed]=*pPoint; pPath->pFlags[pPath->numEntriesUsed]=flags; /* If this is PT_CLOSEFIGURE, we have to start a new stroke next time */ if((flags & PT_CLOSEFIGURE) == PT_CLOSEFIGURE) pPath->newStroke=TRUE; /* Increment entry count */ pPath->numEntriesUsed++; return TRUE; } /* PATH_ReserveEntries * * Ensures that at least "numEntries" entries (for points and flags) have * been allocated; allocates larger arrays and copies the existing entries * to those arrays, if necessary. Returns TRUE if successful, else FALSE. */ static BOOL PATH_ReserveEntries(GdiPath *pPath, INT numEntries) { INT numEntriesToAllocate; POINT *pPointsNew; BYTE *pFlagsNew; assert(pPath!=NULL); assert(numEntries>=0); /* Do we have to allocate more memory? */ if(numEntries > pPath->numEntriesAllocated) { /* Find number of entries to allocate. We let the size of the array * grow exponentially, since that will guarantee linear time * complexity. */ if(pPath->numEntriesAllocated) { numEntriesToAllocate=pPath->numEntriesAllocated; while(numEntriesToAllocatepPoints) { assert(pPath->pFlags); memcpy(pPointsNew, pPath->pPoints, sizeof(POINT)*pPath->numEntriesUsed); memcpy(pFlagsNew, pPath->pFlags, sizeof(BYTE)*pPath->numEntriesUsed); HeapFree( GetProcessHeap(), 0, pPath->pPoints ); HeapFree( GetProcessHeap(), 0, pPath->pFlags ); } pPath->pPoints=pPointsNew; pPath->pFlags=pFlagsNew; pPath->numEntriesAllocated=numEntriesToAllocate; } return TRUE; } /* PATH_DoArcPart * * Creates a Bezier spline that corresponds to part of an arc and appends the * corresponding points to the path. The start and end angles are passed in * "angleStart" and "angleEnd"; these angles should span a quarter circle * at most. If "startEntryType" is non-zero, an entry of that type for the first * control point is added to the path; otherwise, it is assumed that the current * position is equal to the first control point. */ static BOOL PATH_DoArcPart(GdiPath *pPath, FLOAT_POINT corners[], double angleStart, double angleEnd, BYTE startEntryType) { double halfAngle, a; double xNorm[4], yNorm[4]; POINT point; int i; assert(fabs(angleEnd-angleStart)<=M_PI_2); /* FIXME: Is there an easier way of computing this? */ /* Compute control points */ halfAngle=(angleEnd-angleStart)/2.0; if(fabs(halfAngle)>1e-8) { a=4.0/3.0*(1-cos(halfAngle))/sin(halfAngle); xNorm[0]=cos(angleStart); yNorm[0]=sin(angleStart); xNorm[1]=xNorm[0] - a*yNorm[0]; yNorm[1]=yNorm[0] + a*xNorm[0]; xNorm[3]=cos(angleEnd); yNorm[3]=sin(angleEnd); xNorm[2]=xNorm[3] + a*yNorm[3]; yNorm[2]=yNorm[3] - a*xNorm[3]; } else for(i=0; i<4; i++) { xNorm[i]=cos(angleStart); yNorm[i]=sin(angleStart); } /* Add starting point to path if desired */ if(startEntryType) { PATH_ScaleNormalizedPoint(corners, xNorm[0], yNorm[0], &point); if(!PATH_AddEntry(pPath, &point, startEntryType)) return FALSE; } /* Add remaining control points */ for(i=1; i<4; i++) { PATH_ScaleNormalizedPoint(corners, xNorm[i], yNorm[i], &point); if(!PATH_AddEntry(pPath, &point, PT_BEZIERTO)) return FALSE; } return TRUE; } /* PATH_ScaleNormalizedPoint * * Scales a normalized point (x, y) with respect to the box whose corners are * passed in "corners". The point is stored in "*pPoint". The normalized * coordinates (-1.0, -1.0) correspond to corners[0], the coordinates * (1.0, 1.0) correspond to corners[1]. */ static void PATH_ScaleNormalizedPoint(FLOAT_POINT corners[], double x, double y, POINT *pPoint) { pPoint->x=GDI_ROUND( (double)corners[0].x + (double)(corners[1].x-corners[0].x)*0.5*(x+1.0) ); pPoint->y=GDI_ROUND( (double)corners[0].y + (double)(corners[1].y-corners[0].y)*0.5*(y+1.0) ); } /* PATH_NormalizePoint * * Normalizes a point with respect to the box whose corners are passed in * "corners". The normalized coordinates are stored in "*pX" and "*pY". */ static void PATH_NormalizePoint(FLOAT_POINT corners[], const FLOAT_POINT *pPoint, double *pX, double *pY) { *pX=(double)(pPoint->x-corners[0].x)/(double)(corners[1].x-corners[0].x) * 2.0 - 1.0; *pY=(double)(pPoint->y-corners[0].y)/(double)(corners[1].y-corners[0].y) * 2.0 - 1.0; } /******************************************************************* * FlattenPath [GDI32.@] * * */ BOOL WINAPI FlattenPath(HDC hdc) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pFlattenPath ); ret = physdev->funcs->pFlattenPath( physdev ); release_dc_ptr( dc ); } return ret; } static BOOL PATH_StrokePath(DC *dc, GdiPath *pPath) { INT i, nLinePts, nAlloc; POINT *pLinePts; POINT ptViewportOrg, ptWindowOrg; SIZE szViewportExt, szWindowExt; DWORD mapMode, graphicsMode; XFORM xform; BOOL ret = TRUE; /* Save the mapping mode info */ mapMode=GetMapMode(dc->hSelf); GetViewportExtEx(dc->hSelf, &szViewportExt); GetViewportOrgEx(dc->hSelf, &ptViewportOrg); GetWindowExtEx(dc->hSelf, &szWindowExt); GetWindowOrgEx(dc->hSelf, &ptWindowOrg); GetWorldTransform(dc->hSelf, &xform); /* Set MM_TEXT */ SetMapMode(dc->hSelf, MM_TEXT); SetViewportOrgEx(dc->hSelf, 0, 0, NULL); SetWindowOrgEx(dc->hSelf, 0, 0, NULL); graphicsMode=GetGraphicsMode(dc->hSelf); SetGraphicsMode(dc->hSelf, GM_ADVANCED); ModifyWorldTransform(dc->hSelf, &xform, MWT_IDENTITY); SetGraphicsMode(dc->hSelf, graphicsMode); /* Allocate enough memory for the worst case without beziers (one PT_MOVETO * and the rest PT_LINETO with PT_CLOSEFIGURE at the end) plus some buffer * space in case we get one to keep the number of reallocations small. */ nAlloc = pPath->numEntriesUsed + 1 + 300; pLinePts = HeapAlloc(GetProcessHeap(), 0, nAlloc * sizeof(POINT)); nLinePts = 0; for(i = 0; i < pPath->numEntriesUsed; i++) { if((i == 0 || (pPath->pFlags[i-1] & PT_CLOSEFIGURE)) && (pPath->pFlags[i] != PT_MOVETO)) { ERR("Expected PT_MOVETO %s, got path flag %d\n", i == 0 ? "as first point" : "after PT_CLOSEFIGURE", (INT)pPath->pFlags[i]); ret = FALSE; goto end; } switch(pPath->pFlags[i]) { case PT_MOVETO: TRACE("Got PT_MOVETO (%d, %d)\n", pPath->pPoints[i].x, pPath->pPoints[i].y); if(nLinePts >= 2) Polyline(dc->hSelf, pLinePts, nLinePts); nLinePts = 0; pLinePts[nLinePts++] = pPath->pPoints[i]; break; case PT_LINETO: case (PT_LINETO | PT_CLOSEFIGURE): TRACE("Got PT_LINETO (%d, %d)\n", pPath->pPoints[i].x, pPath->pPoints[i].y); pLinePts[nLinePts++] = pPath->pPoints[i]; break; case PT_BEZIERTO: TRACE("Got PT_BEZIERTO\n"); if(pPath->pFlags[i+1] != PT_BEZIERTO || (pPath->pFlags[i+2] & ~PT_CLOSEFIGURE) != PT_BEZIERTO) { ERR("Path didn't contain 3 successive PT_BEZIERTOs\n"); ret = FALSE; goto end; } else { INT nBzrPts, nMinAlloc; POINT *pBzrPts = GDI_Bezier(&pPath->pPoints[i-1], 4, &nBzrPts); /* Make sure we have allocated enough memory for the lines of * this bezier and the rest of the path, assuming we won't get * another one (since we won't reallocate again then). */ nMinAlloc = nLinePts + (pPath->numEntriesUsed - i) + nBzrPts; if(nAlloc < nMinAlloc) { nAlloc = nMinAlloc * 2; pLinePts = HeapReAlloc(GetProcessHeap(), 0, pLinePts, nAlloc * sizeof(POINT)); } memcpy(&pLinePts[nLinePts], &pBzrPts[1], (nBzrPts - 1) * sizeof(POINT)); nLinePts += nBzrPts - 1; HeapFree(GetProcessHeap(), 0, pBzrPts); i += 2; } break; default: ERR("Got path flag %d\n", (INT)pPath->pFlags[i]); ret = FALSE; goto end; } if(pPath->pFlags[i] & PT_CLOSEFIGURE) pLinePts[nLinePts++] = pLinePts[0]; } if(nLinePts >= 2) Polyline(dc->hSelf, pLinePts, nLinePts); end: HeapFree(GetProcessHeap(), 0, pLinePts); /* Restore the old mapping mode */ SetMapMode(dc->hSelf, mapMode); SetWindowExtEx(dc->hSelf, szWindowExt.cx, szWindowExt.cy, NULL); SetWindowOrgEx(dc->hSelf, ptWindowOrg.x, ptWindowOrg.y, NULL); SetViewportExtEx(dc->hSelf, szViewportExt.cx, szViewportExt.cy, NULL); SetViewportOrgEx(dc->hSelf, ptViewportOrg.x, ptViewportOrg.y, NULL); /* Go to GM_ADVANCED temporarily to restore the world transform */ graphicsMode=GetGraphicsMode(dc->hSelf); SetGraphicsMode(dc->hSelf, GM_ADVANCED); SetWorldTransform(dc->hSelf, &xform); SetGraphicsMode(dc->hSelf, graphicsMode); /* If we've moved the current point then get its new position which will be in device (MM_TEXT) co-ords, convert it to logical co-ords and re-set it. This basically updates dc->CurPosX|Y so that their values are in the correct mapping mode. */ if(i > 0) { POINT pt; GetCurrentPositionEx(dc->hSelf, &pt); DPtoLP(dc->hSelf, &pt, 1); MoveToEx(dc->hSelf, pt.x, pt.y, NULL); } return ret; } #define round(x) ((int)((x)>0?(x)+0.5:(x)-0.5)) static BOOL PATH_WidenPath(DC *dc) { INT i, j, numStrokes, penWidth, penWidthIn, penWidthOut, size, penStyle; BOOL ret = FALSE; GdiPath *pPath, *pNewPath, **pStrokes = NULL, *pUpPath, *pDownPath; EXTLOGPEN *elp; DWORD obj_type, joint, endcap, penType; pPath = &dc->path; PATH_FlattenPath(pPath); size = GetObjectW( dc->hPen, 0, NULL ); if (!size) { SetLastError(ERROR_CAN_NOT_COMPLETE); return FALSE; } elp = HeapAlloc( GetProcessHeap(), 0, size ); GetObjectW( dc->hPen, size, elp ); obj_type = GetObjectType(dc->hPen); if(obj_type == OBJ_PEN) { penStyle = ((LOGPEN*)elp)->lopnStyle; } else if(obj_type == OBJ_EXTPEN) { penStyle = elp->elpPenStyle; } else { SetLastError(ERROR_CAN_NOT_COMPLETE); HeapFree( GetProcessHeap(), 0, elp ); return FALSE; } penWidth = elp->elpWidth; HeapFree( GetProcessHeap(), 0, elp ); endcap = (PS_ENDCAP_MASK & penStyle); joint = (PS_JOIN_MASK & penStyle); penType = (PS_TYPE_MASK & penStyle); /* The function cannot apply to cosmetic pens */ if(obj_type == OBJ_EXTPEN && penType == PS_COSMETIC) { SetLastError(ERROR_CAN_NOT_COMPLETE); return FALSE; } penWidthIn = penWidth / 2; penWidthOut = penWidth / 2; if(penWidthIn + penWidthOut < penWidth) penWidthOut++; numStrokes = 0; for(i = 0, j = 0; i < pPath->numEntriesUsed; i++, j++) { POINT point; if((i == 0 || (pPath->pFlags[i-1] & PT_CLOSEFIGURE)) && (pPath->pFlags[i] != PT_MOVETO)) { ERR("Expected PT_MOVETO %s, got path flag %c\n", i == 0 ? "as first point" : "after PT_CLOSEFIGURE", pPath->pFlags[i]); return FALSE; } switch(pPath->pFlags[i]) { case PT_MOVETO: if(numStrokes > 0) { pStrokes[numStrokes - 1]->state = PATH_Closed; } numStrokes++; j = 0; if(numStrokes == 1) pStrokes = HeapAlloc(GetProcessHeap(), 0, sizeof(GdiPath*)); else pStrokes = HeapReAlloc(GetProcessHeap(), 0, pStrokes, numStrokes * sizeof(GdiPath*)); if(!pStrokes) return FALSE; pStrokes[numStrokes - 1] = HeapAlloc(GetProcessHeap(), 0, sizeof(GdiPath)); PATH_InitGdiPath(pStrokes[numStrokes - 1]); pStrokes[numStrokes - 1]->state = PATH_Open; /* fall through */ case PT_LINETO: case (PT_LINETO | PT_CLOSEFIGURE): point.x = pPath->pPoints[i].x; point.y = pPath->pPoints[i].y; PATH_AddEntry(pStrokes[numStrokes - 1], &point, pPath->pFlags[i]); break; case PT_BEZIERTO: /* should never happen because of the FlattenPath call */ ERR("Should never happen\n"); break; default: ERR("Got path flag %c\n", pPath->pFlags[i]); return FALSE; } } pNewPath = HeapAlloc(GetProcessHeap(), 0, sizeof(GdiPath)); PATH_InitGdiPath(pNewPath); pNewPath->state = PATH_Open; for(i = 0; i < numStrokes; i++) { pUpPath = HeapAlloc(GetProcessHeap(), 0, sizeof(GdiPath)); PATH_InitGdiPath(pUpPath); pUpPath->state = PATH_Open; pDownPath = HeapAlloc(GetProcessHeap(), 0, sizeof(GdiPath)); PATH_InitGdiPath(pDownPath); pDownPath->state = PATH_Open; for(j = 0; j < pStrokes[i]->numEntriesUsed; j++) { /* Beginning or end of the path if not closed */ if((!(pStrokes[i]->pFlags[pStrokes[i]->numEntriesUsed - 1] & PT_CLOSEFIGURE)) && (j == 0 || j == pStrokes[i]->numEntriesUsed - 1) ) { /* Compute segment angle */ double xo, yo, xa, ya, theta; POINT pt; FLOAT_POINT corners[2]; if(j == 0) { xo = pStrokes[i]->pPoints[j].x; yo = pStrokes[i]->pPoints[j].y; xa = pStrokes[i]->pPoints[1].x; ya = pStrokes[i]->pPoints[1].y; } else { xa = pStrokes[i]->pPoints[j - 1].x; ya = pStrokes[i]->pPoints[j - 1].y; xo = pStrokes[i]->pPoints[j].x; yo = pStrokes[i]->pPoints[j].y; } theta = atan2( ya - yo, xa - xo ); switch(endcap) { case PS_ENDCAP_SQUARE : pt.x = xo + round(sqrt(2) * penWidthOut * cos(M_PI_4 + theta)); pt.y = yo + round(sqrt(2) * penWidthOut * sin(M_PI_4 + theta)); PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO) ); pt.x = xo + round(sqrt(2) * penWidthIn * cos(- M_PI_4 + theta)); pt.y = yo + round(sqrt(2) * penWidthIn * sin(- M_PI_4 + theta)); PATH_AddEntry(pUpPath, &pt, PT_LINETO); break; case PS_ENDCAP_FLAT : pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) ); pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) ); PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO)); pt.x = xo - round( penWidthIn * cos(theta + M_PI_2) ); pt.y = yo - round( penWidthIn * sin(theta + M_PI_2) ); PATH_AddEntry(pUpPath, &pt, PT_LINETO); break; case PS_ENDCAP_ROUND : default : corners[0].x = xo - penWidthIn; corners[0].y = yo - penWidthIn; corners[1].x = xo + penWidthOut; corners[1].y = yo + penWidthOut; PATH_DoArcPart(pUpPath ,corners, theta + M_PI_2 , theta + 3 * M_PI_4, (j == 0 ? PT_MOVETO : FALSE)); PATH_DoArcPart(pUpPath ,corners, theta + 3 * M_PI_4 , theta + M_PI, FALSE); PATH_DoArcPart(pUpPath ,corners, theta + M_PI, theta + 5 * M_PI_4, FALSE); PATH_DoArcPart(pUpPath ,corners, theta + 5 * M_PI_4 , theta + 3 * M_PI_2, FALSE); break; } } /* Corpse of the path */ else { /* Compute angle */ INT previous, next; double xa, ya, xb, yb, xo, yo; double alpha, theta, miterWidth; DWORD _joint = joint; POINT pt; GdiPath *pInsidePath, *pOutsidePath; if(j > 0 && j < pStrokes[i]->numEntriesUsed - 1) { previous = j - 1; next = j + 1; } else if (j == 0) { previous = pStrokes[i]->numEntriesUsed - 1; next = j + 1; } else { previous = j - 1; next = 0; } xo = pStrokes[i]->pPoints[j].x; yo = pStrokes[i]->pPoints[j].y; xa = pStrokes[i]->pPoints[previous].x; ya = pStrokes[i]->pPoints[previous].y; xb = pStrokes[i]->pPoints[next].x; yb = pStrokes[i]->pPoints[next].y; theta = atan2( yo - ya, xo - xa ); alpha = atan2( yb - yo, xb - xo ) - theta; if (alpha > 0) alpha -= M_PI; else alpha += M_PI; if(_joint == PS_JOIN_MITER && dc->miterLimit < fabs(1 / sin(alpha/2))) { _joint = PS_JOIN_BEVEL; } if(alpha > 0) { pInsidePath = pUpPath; pOutsidePath = pDownPath; } else if(alpha < 0) { pInsidePath = pDownPath; pOutsidePath = pUpPath; } else { continue; } /* Inside angle points */ if(alpha > 0) { pt.x = xo - round( penWidthIn * cos(theta + M_PI_2) ); pt.y = yo - round( penWidthIn * sin(theta + M_PI_2) ); } else { pt.x = xo + round( penWidthIn * cos(theta + M_PI_2) ); pt.y = yo + round( penWidthIn * sin(theta + M_PI_2) ); } PATH_AddEntry(pInsidePath, &pt, PT_LINETO); if(alpha > 0) { pt.x = xo + round( penWidthIn * cos(M_PI_2 + alpha + theta) ); pt.y = yo + round( penWidthIn * sin(M_PI_2 + alpha + theta) ); } else { pt.x = xo - round( penWidthIn * cos(M_PI_2 + alpha + theta) ); pt.y = yo - round( penWidthIn * sin(M_PI_2 + alpha + theta) ); } PATH_AddEntry(pInsidePath, &pt, PT_LINETO); /* Outside angle point */ switch(_joint) { case PS_JOIN_MITER : miterWidth = fabs(penWidthOut / cos(M_PI_2 - fabs(alpha) / 2)); pt.x = xo + round( miterWidth * cos(theta + alpha / 2) ); pt.y = yo + round( miterWidth * sin(theta + alpha / 2) ); PATH_AddEntry(pOutsidePath, &pt, PT_LINETO); break; case PS_JOIN_BEVEL : if(alpha > 0) { pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) ); pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) ); } else { pt.x = xo - round( penWidthOut * cos(theta + M_PI_2) ); pt.y = yo - round( penWidthOut * sin(theta + M_PI_2) ); } PATH_AddEntry(pOutsidePath, &pt, PT_LINETO); if(alpha > 0) { pt.x = xo - round( penWidthOut * cos(M_PI_2 + alpha + theta) ); pt.y = yo - round( penWidthOut * sin(M_PI_2 + alpha + theta) ); } else { pt.x = xo + round( penWidthOut * cos(M_PI_2 + alpha + theta) ); pt.y = yo + round( penWidthOut * sin(M_PI_2 + alpha + theta) ); } PATH_AddEntry(pOutsidePath, &pt, PT_LINETO); break; case PS_JOIN_ROUND : default : if(alpha > 0) { pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) ); pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) ); } else { pt.x = xo - round( penWidthOut * cos(theta + M_PI_2) ); pt.y = yo - round( penWidthOut * sin(theta + M_PI_2) ); } PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO); pt.x = xo + round( penWidthOut * cos(theta + alpha / 2) ); pt.y = yo + round( penWidthOut * sin(theta + alpha / 2) ); PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO); if(alpha > 0) { pt.x = xo - round( penWidthOut * cos(M_PI_2 + alpha + theta) ); pt.y = yo - round( penWidthOut * sin(M_PI_2 + alpha + theta) ); } else { pt.x = xo + round( penWidthOut * cos(M_PI_2 + alpha + theta) ); pt.y = yo + round( penWidthOut * sin(M_PI_2 + alpha + theta) ); } PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO); break; } } } for(j = 0; j < pUpPath->numEntriesUsed; j++) { POINT pt; pt.x = pUpPath->pPoints[j].x; pt.y = pUpPath->pPoints[j].y; PATH_AddEntry(pNewPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO)); } for(j = 0; j < pDownPath->numEntriesUsed; j++) { POINT pt; pt.x = pDownPath->pPoints[pDownPath->numEntriesUsed - j - 1].x; pt.y = pDownPath->pPoints[pDownPath->numEntriesUsed - j - 1].y; PATH_AddEntry(pNewPath, &pt, ( (j == 0 && (pStrokes[i]->pFlags[pStrokes[i]->numEntriesUsed - 1] & PT_CLOSEFIGURE)) ? PT_MOVETO : PT_LINETO)); } PATH_DestroyGdiPath(pStrokes[i]); HeapFree(GetProcessHeap(), 0, pStrokes[i]); PATH_DestroyGdiPath(pUpPath); HeapFree(GetProcessHeap(), 0, pUpPath); PATH_DestroyGdiPath(pDownPath); HeapFree(GetProcessHeap(), 0, pDownPath); } HeapFree(GetProcessHeap(), 0, pStrokes); pNewPath->state = PATH_Closed; if (!(ret = PATH_AssignGdiPath(pPath, pNewPath))) ERR("Assign path failed\n"); PATH_DestroyGdiPath(pNewPath); HeapFree(GetProcessHeap(), 0, pNewPath); return ret; } /******************************************************************* * StrokeAndFillPath [GDI32.@] * * */ BOOL WINAPI StrokeAndFillPath(HDC hdc) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pStrokeAndFillPath ); ret = physdev->funcs->pStrokeAndFillPath( physdev ); release_dc_ptr( dc ); } return ret; } /******************************************************************* * StrokePath [GDI32.@] * * */ BOOL WINAPI StrokePath(HDC hdc) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pStrokePath ); ret = physdev->funcs->pStrokePath( physdev ); release_dc_ptr( dc ); } return ret; } /******************************************************************* * WidenPath [GDI32.@] * * */ BOOL WINAPI WidenPath(HDC hdc) { BOOL ret = FALSE; DC *dc = get_dc_ptr( hdc ); if (dc) { PHYSDEV physdev = GET_DC_PHYSDEV( dc, pWidenPath ); ret = physdev->funcs->pWidenPath( physdev ); release_dc_ptr( dc ); } return ret; } /*********************************************************************** * null driver fallback implementations */ BOOL nulldrv_BeginPath( PHYSDEV dev ) { DC *dc = get_nulldrv_dc( dev ); /* If path is already open, do nothing */ if (dc->path.state != PATH_Open) { PATH_EmptyPath(&dc->path); dc->path.newStroke = TRUE; dc->path.state = PATH_Open; } return TRUE; } BOOL nulldrv_EndPath( PHYSDEV dev ) { DC *dc = get_nulldrv_dc( dev ); if (dc->path.state != PATH_Open) { SetLastError( ERROR_CAN_NOT_COMPLETE ); return FALSE; } dc->path.state = PATH_Closed; return TRUE; } BOOL nulldrv_AbortPath( PHYSDEV dev ) { DC *dc = get_nulldrv_dc( dev ); PATH_EmptyPath( &dc->path ); return TRUE; } BOOL nulldrv_CloseFigure( PHYSDEV dev ) { DC *dc = get_nulldrv_dc( dev ); if (dc->path.state != PATH_Open) { SetLastError( ERROR_CAN_NOT_COMPLETE ); return FALSE; } /* Set PT_CLOSEFIGURE on the last entry and start a new stroke */ /* It is not necessary to draw a line, PT_CLOSEFIGURE is a virtual closing line itself */ if (dc->path.numEntriesUsed) { dc->path.pFlags[dc->path.numEntriesUsed - 1] |= PT_CLOSEFIGURE; dc->path.newStroke = TRUE; } return TRUE; } BOOL nulldrv_SelectClipPath( PHYSDEV dev, INT mode ) { BOOL ret; HRGN hrgn; DC *dc = get_nulldrv_dc( dev ); if (dc->path.state != PATH_Closed) { SetLastError( ERROR_CAN_NOT_COMPLETE ); return FALSE; } if (!PATH_PathToRegion( &dc->path, GetPolyFillMode(dev->hdc), &hrgn )) return FALSE; ret = ExtSelectClipRgn( dev->hdc, hrgn, mode ) != ERROR; if (ret) PATH_EmptyPath( &dc->path ); /* FIXME: Should this function delete the path even if it failed? */ DeleteObject( hrgn ); return ret; } BOOL nulldrv_FillPath( PHYSDEV dev ) { DC *dc = get_nulldrv_dc( dev ); if (dc->path.state != PATH_Closed) { SetLastError( ERROR_CAN_NOT_COMPLETE ); return FALSE; } if (!PATH_FillPath( dc, &dc->path )) return FALSE; /* FIXME: Should the path be emptied even if conversion failed? */ PATH_EmptyPath( &dc->path ); return TRUE; } BOOL nulldrv_StrokeAndFillPath( PHYSDEV dev ) { DC *dc = get_nulldrv_dc( dev ); if (dc->path.state != PATH_Closed) { SetLastError( ERROR_CAN_NOT_COMPLETE ); return FALSE; } if (!PATH_FillPath( dc, &dc->path )) return FALSE; if (!PATH_StrokePath( dc, &dc->path )) return FALSE; PATH_EmptyPath( &dc->path ); return TRUE; } BOOL nulldrv_StrokePath( PHYSDEV dev ) { DC *dc = get_nulldrv_dc( dev ); if (dc->path.state != PATH_Closed) { SetLastError( ERROR_CAN_NOT_COMPLETE ); return FALSE; } if (!PATH_StrokePath( dc, &dc->path )) return FALSE; PATH_EmptyPath( &dc->path ); return TRUE; } BOOL nulldrv_FlattenPath( PHYSDEV dev ) { DC *dc = get_nulldrv_dc( dev ); if (dc->path.state == PATH_Closed) { SetLastError( ERROR_CAN_NOT_COMPLETE ); return FALSE; } return PATH_FlattenPath( &dc->path ); } BOOL nulldrv_WidenPath( PHYSDEV dev ) { DC *dc = get_nulldrv_dc( dev ); if (dc->path.state == PATH_Open) { SetLastError( ERROR_CAN_NOT_COMPLETE ); return FALSE; } return PATH_WidenPath( dc ); }