/* * cabextract.c * * Copyright 2000-2002 Stuart Caie * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Principal author: Stuart Caie * * Based on specification documents from Microsoft Corporation * Quantum decompression researched and implemented by Matthew Russoto * Huffman code adapted from unlzx by Dave Tritscher. * InfoZip team's INFLATE implementation adapted to MSZIP by Dirk Stoecker. * Major LZX fixes by Jae Jung. */ #include "config.h" #include #include #include #include "windef.h" #include "winbase.h" #include "winerror.h" #include "cabinet.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(cabinet); THOSE_ZIP_CONSTS; /* all the file IO is abstracted into these routines: * cabinet_(open|close|read|seek|skip|getoffset) * file_(open|close|write) */ /* try to open a cabinet file, returns success */ BOOL cabinet_open(struct cabinet *cab) { char *name = (char *)cab->filename; HANDLE fh; TRACE("(cab == ^%p)\n", cab); if ((fh = CreateFileA( name, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL )) == INVALID_HANDLE_VALUE) { ERR("Couldn't open %s\n", debugstr_a(name)); return FALSE; } /* seek to end of file and get the length */ if ((cab->filelen = SetFilePointer(fh, 0, NULL, FILE_END)) == INVALID_SET_FILE_POINTER) { if (GetLastError() != NO_ERROR) { ERR("Seek END failed: %s\n", debugstr_a(name)); CloseHandle(fh); return FALSE; } } /* return to the start of the file */ if (SetFilePointer(fh, 0, NULL, FILE_BEGIN) == INVALID_SET_FILE_POINTER) { ERR("Seek BEGIN failed: %s\n", debugstr_a(name)); CloseHandle(fh); return FALSE; } cab->fh = fh; return TRUE; } /******************************************************************* * cabinet_close (internal) * * close the file handle in a struct cabinet. */ void cabinet_close(struct cabinet *cab) { TRACE("(cab == ^%p)\n", cab); if (cab->fh) CloseHandle(cab->fh); cab->fh = 0; } /******************************************************* * ensure_filepath2 (internal) */ BOOL ensure_filepath2(char *path) { BOOL ret = TRUE; int len; char *new_path; new_path = HeapAlloc(GetProcessHeap(), 0, (strlen(path) + 1)); strcpy(new_path, path); while((len = strlen(new_path)) && new_path[len - 1] == '\\') new_path[len - 1] = 0; TRACE("About to try to create directory %s\n", debugstr_a(new_path)); while(!CreateDirectoryA(new_path, NULL)) { char *slash; DWORD last_error = GetLastError(); if(last_error == ERROR_ALREADY_EXISTS) break; if(last_error != ERROR_PATH_NOT_FOUND) { ret = FALSE; break; } if(!(slash = strrchr(new_path, '\\'))) { ret = FALSE; break; } len = slash - new_path; new_path[len] = 0; if(! ensure_filepath2(new_path)) { ret = FALSE; break; } new_path[len] = '\\'; TRACE("New path in next iteration: %s\n", debugstr_a(new_path)); } HeapFree(GetProcessHeap(), 0, new_path); return ret; } /********************************************************************** * ensure_filepath (internal) * * ensure_filepath("a\b\c\d.txt") ensures a, a\b and a\b\c exist as dirs */ BOOL ensure_filepath(char *path) { char new_path[MAX_PATH]; int len, i, lastslashpos = -1; TRACE("(path == %s)\n", debugstr_a(path)); strcpy(new_path, path); /* remove trailing slashes (shouldn't need to but wth...) */ while ((len = strlen(new_path)) && new_path[len - 1] == '\\') new_path[len - 1] = 0; /* find the position of the last '\\' */ for (i=0; i 0) { new_path[lastslashpos] = 0; /* may be trailing slashes but ensure_filepath2 will chop them */ return ensure_filepath2(new_path); } else return TRUE; /* ? */ } /******************************************************************* * file_open (internal) * * opens a file for output, returns success */ BOOL file_open(struct cab_file *fi, BOOL lower, LPCSTR dir) { char c, *s, *d, *name; BOOL ok = FALSE; TRACE("(fi == ^%p, lower == %s, dir == %s)\n", fi, lower ? "TRUE" : "FALSE", debugstr_a(dir)); if (!(name = malloc(strlen(fi->filename) + (dir ? strlen(dir) : 0) + 2))) { ERR("out of memory!\n"); return FALSE; } /* start with blank name */ *name = 0; /* add output directory if needed */ if (dir) { strcpy(name, dir); strcat(name, "\\"); } /* remove leading slashes */ s = (char *) fi->filename; while (*s == '\\') s++; /* copy from fi->filename to new name. * lowercases characters if needed. */ d = &name[strlen(name)]; do { c = *s++; *d++ = (lower ? tolower((unsigned char) c) : c); } while (c); /* create directories if needed, attempt to write file */ if (ensure_filepath(name)) { fi->fh = CreateFileA(name, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0); if (fi->fh != INVALID_HANDLE_VALUE) ok = TRUE; else { ERR("CreateFileA returned INVALID_HANDLE_VALUE\n"); fi->fh = 0; } } else ERR("Couldn't ensure filepath for %s\n", debugstr_a(name)); if (!ok) { ERR("Couldn't open file %s for writing\n", debugstr_a(name)); } /* as full filename is no longer needed, free it */ free(name); return ok; } /******************************************************** * close_file (internal) * * closes a completed file */ void file_close(struct cab_file *fi) { TRACE("(fi == ^%p)\n", fi); if (fi->fh) { CloseHandle(fi->fh); } fi->fh = 0; } /****************************************************************** * file_write (internal) * * writes from buf to a file specified as a cab_file struct. * returns success/failure */ BOOL file_write(struct cab_file *fi, cab_UBYTE *buf, cab_off_t length) { DWORD bytes_written; TRACE("(fi == ^%p, buf == ^%p, length == %u)\n", fi, buf, length); if ((!WriteFile( fi->fh, (LPCVOID) buf, length, &bytes_written, FALSE) || (bytes_written != length))) { ERR("Error writing file: %s\n", debugstr_a(fi->filename)); return FALSE; } return TRUE; } /******************************************************************* * cabinet_skip (internal) * * advance the file pointer associated with the cab structure * by distance bytes */ void cabinet_skip(struct cabinet *cab, cab_off_t distance) { TRACE("(cab == ^%p, distance == %u)\n", cab, distance); if (SetFilePointer(cab->fh, distance, NULL, FILE_CURRENT) == INVALID_SET_FILE_POINTER) { if (distance != INVALID_SET_FILE_POINTER) ERR("%s\n", debugstr_a((char *) cab->filename)); } } /******************************************************************* * cabinet_seek (internal) * * seek to the specified absolute offset in a cab */ void cabinet_seek(struct cabinet *cab, cab_off_t offset) { TRACE("(cab == ^%p, offset == %u)\n", cab, offset); if (SetFilePointer(cab->fh, offset, NULL, FILE_BEGIN) != offset) ERR("%s seek failure\n", debugstr_a((char *)cab->filename)); } /******************************************************************* * cabinet_getoffset (internal) * * returns the file pointer position of a cab */ cab_off_t cabinet_getoffset(struct cabinet *cab) { return SetFilePointer(cab->fh, 0, NULL, FILE_CURRENT); } /******************************************************************* * cabinet_read (internal) * * read data from a cabinet, returns success */ BOOL cabinet_read(struct cabinet *cab, cab_UBYTE *buf, cab_off_t length) { DWORD bytes_read; cab_off_t avail = cab->filelen - cabinet_getoffset(cab); TRACE("(cab == ^%p, buf == ^%p, length == %u)\n", cab, buf, length); if (length > avail) { WARN("%s: WARNING; cabinet is truncated\n", debugstr_a((char *)cab->filename)); length = avail; } if (! ReadFile( cab->fh, (LPVOID) buf, length, &bytes_read, NULL )) { ERR("%s read error\n", debugstr_a((char *) cab->filename)); return FALSE; } else if (bytes_read != length) { ERR("%s read size mismatch\n", debugstr_a((char *) cab->filename)); return FALSE; } return TRUE; } /********************************************************************** * cabinet_read_string (internal) * * allocate and read an aribitrarily long string from the cabinet */ char *cabinet_read_string(struct cabinet *cab) { cab_off_t len=256, base = cabinet_getoffset(cab), maxlen = cab->filelen - base; BOOL ok = FALSE; int i; cab_UBYTE *buf = NULL; TRACE("(cab == ^%p)\n", cab); do { if (len > maxlen) len = maxlen; if (!(buf = realloc(buf, (size_t) len))) break; if (!cabinet_read(cab, buf, (size_t) len)) break; /* search for a null terminator in what we've just read */ for (i=0; i < len; i++) { if (!buf[i]) {ok=TRUE; break;} } if (!ok) { if (len == maxlen) { ERR("%s: WARNING; cabinet is truncated\n", debugstr_a((char *) cab->filename)); break; } len += 256; cabinet_seek(cab, base); } } while (!ok); if (!ok) { if (buf) free(buf); else ERR("out of memory!\n"); return NULL; } /* otherwise, set the stream to just after the string and return */ cabinet_seek(cab, base + ((cab_off_t) strlen((char *) buf)) + 1); return (char *) buf; } /****************************************************************** * cabinet_read_entries (internal) * * reads the header and all folder and file entries in this cabinet */ BOOL cabinet_read_entries(struct cabinet *cab) { int num_folders, num_files, header_resv, folder_resv = 0, i; struct cab_folder *fol, *linkfol = NULL; struct cab_file *file, *linkfile = NULL; cab_off_t base_offset; cab_UBYTE buf[64]; TRACE("(cab == ^%p)\n", cab); /* read in the CFHEADER */ base_offset = cabinet_getoffset(cab); if (!cabinet_read(cab, buf, cfhead_SIZEOF)) { return FALSE; } /* check basic MSCF signature */ if (EndGetI32(buf+cfhead_Signature) != 0x4643534d) { ERR("%s: not a Microsoft cabinet file\n", debugstr_a((char *) cab->filename)); return FALSE; } /* get the number of folders */ num_folders = EndGetI16(buf+cfhead_NumFolders); if (num_folders == 0) { ERR("%s: no folders in cabinet\n", debugstr_a((char *) cab->filename)); return FALSE; } /* get the number of files */ num_files = EndGetI16(buf+cfhead_NumFiles); if (num_files == 0) { ERR("%s: no files in cabinet\n", debugstr_a((char *) cab->filename)); return FALSE; } /* just check the header revision */ if ((buf[cfhead_MajorVersion] > 1) || (buf[cfhead_MajorVersion] == 1 && buf[cfhead_MinorVersion] > 3)) { WARN("%s: WARNING; cabinet format version > 1.3\n", debugstr_a((char *) cab->filename)); } /* read the reserved-sizes part of header, if present */ cab->flags = EndGetI16(buf+cfhead_Flags); if (cab->flags & cfheadRESERVE_PRESENT) { if (!cabinet_read(cab, buf, cfheadext_SIZEOF)) return FALSE; header_resv = EndGetI16(buf+cfheadext_HeaderReserved); folder_resv = buf[cfheadext_FolderReserved]; cab->block_resv = buf[cfheadext_DataReserved]; if (header_resv > 60000) { WARN("%s: WARNING; header reserved space > 60000\n", debugstr_a((char *) cab->filename)); } /* skip the reserved header */ if (header_resv) if (SetFilePointer(cab->fh, (cab_off_t) header_resv, NULL, FILE_CURRENT) == INVALID_SET_FILE_POINTER) ERR("seek failure: %s\n", debugstr_a((char *) cab->filename)); } if (cab->flags & cfheadPREV_CABINET) { cab->prevname = cabinet_read_string(cab); if (!cab->prevname) return FALSE; cab->previnfo = cabinet_read_string(cab); } if (cab->flags & cfheadNEXT_CABINET) { cab->nextname = cabinet_read_string(cab); if (!cab->nextname) return FALSE; cab->nextinfo = cabinet_read_string(cab); } /* read folders */ for (i = 0; i < num_folders; i++) { if (!cabinet_read(cab, buf, cffold_SIZEOF)) return FALSE; if (folder_resv) cabinet_skip(cab, folder_resv); fol = (struct cab_folder *) calloc(1, sizeof(struct cab_folder)); if (!fol) { ERR("out of memory!\n"); return FALSE; } fol->cab[0] = cab; fol->offset[0] = base_offset + (cab_off_t) EndGetI32(buf+cffold_DataOffset); fol->num_blocks = EndGetI16(buf+cffold_NumBlocks); fol->comp_type = EndGetI16(buf+cffold_CompType); if (!linkfol) cab->folders = fol; else linkfol->next = fol; linkfol = fol; } /* read files */ for (i = 0; i < num_files; i++) { if (!cabinet_read(cab, buf, cffile_SIZEOF)) return FALSE; file = (struct cab_file *) calloc(1, sizeof(struct cab_file)); if (!file) { ERR("out of memory!\n"); return FALSE; } file->length = EndGetI32(buf+cffile_UncompressedSize); file->offset = EndGetI32(buf+cffile_FolderOffset); file->index = EndGetI16(buf+cffile_FolderIndex); file->time = EndGetI16(buf+cffile_Time); file->date = EndGetI16(buf+cffile_Date); file->attribs = EndGetI16(buf+cffile_Attribs); file->filename = cabinet_read_string(cab); if (!file->filename) { free(file); return FALSE; } if (!linkfile) cab->files = file; else linkfile->next = file; linkfile = file; } return TRUE; } /*********************************************************** * load_cab_offset (internal) * * validates and reads file entries from a cabinet at offset [offset] in * file [name]. Returns a cabinet structure if successful, or NULL * otherwise. */ struct cabinet *load_cab_offset(LPCSTR name, cab_off_t offset) { struct cabinet *cab = (struct cabinet *) calloc(1, sizeof(struct cabinet)); int ok; TRACE("(name == %s, offset == %u)\n", debugstr_a((char *) name), offset); if (!cab) return NULL; cab->filename = name; if ((ok = cabinet_open(cab))) { cabinet_seek(cab, offset); ok = cabinet_read_entries(cab); cabinet_close(cab); } if (ok) return cab; free(cab); return NULL; } /* MSZIP decruncher */ /* Dirk Stoecker wrote the ZIP decoder, based on the InfoZip deflate code */ /******************************************************** * Ziphuft_free (internal) */ void Ziphuft_free(struct Ziphuft *t) { register struct Ziphuft *p, *q; /* Go through linked list, freeing from the allocated (t[-1]) address. */ p = t; while (p != (struct Ziphuft *)NULL) { q = (--p)->v.t; free(p); p = q; } } /********************************************************* * Ziphuft_build (internal) */ cab_LONG Ziphuft_build(cab_ULONG *b, cab_ULONG n, cab_ULONG s, cab_UWORD *d, cab_UWORD *e, struct Ziphuft **t, cab_LONG *m, cab_decomp_state *decomp_state) { cab_ULONG a; /* counter for codes of length k */ cab_ULONG el; /* length of EOB code (value 256) */ cab_ULONG f; /* i repeats in table every f entries */ cab_LONG g; /* maximum code length */ cab_LONG h; /* table level */ register cab_ULONG i; /* counter, current code */ register cab_ULONG j; /* counter */ register cab_LONG k; /* number of bits in current code */ cab_LONG *l; /* stack of bits per table */ register cab_ULONG *p; /* pointer into ZIP(c)[],ZIP(b)[],ZIP(v)[] */ register struct Ziphuft *q; /* points to current table */ struct Ziphuft r; /* table entry for structure assignment */ register cab_LONG w; /* bits before this table == (l * h) */ cab_ULONG *xp; /* pointer into x */ cab_LONG y; /* number of dummy codes added */ cab_ULONG z; /* number of entries in current table */ l = ZIP(lx)+1; /* Generate counts for each bit length */ el = n > 256 ? b[256] : ZIPBMAX; /* set length of EOB code, if any */ for(i = 0; i < ZIPBMAX+1; ++i) ZIP(c)[i] = 0; p = b; i = n; do { ZIP(c)[*p]++; p++; /* assume all entries <= ZIPBMAX */ } while (--i); if (ZIP(c)[0] == n) /* null input--all zero length codes */ { *t = (struct Ziphuft *)NULL; *m = 0; return 0; } /* Find minimum and maximum length, bound *m by those */ for (j = 1; j <= ZIPBMAX; j++) if (ZIP(c)[j]) break; k = j; /* minimum code length */ if ((cab_ULONG)*m < j) *m = j; for (i = ZIPBMAX; i; i--) if (ZIP(c)[i]) break; g = i; /* maximum code length */ if ((cab_ULONG)*m > i) *m = i; /* Adjust last length count to fill out codes, if needed */ for (y = 1 << j; j < i; j++, y <<= 1) if ((y -= ZIP(c)[j]) < 0) return 2; /* bad input: more codes than bits */ if ((y -= ZIP(c)[i]) < 0) return 2; ZIP(c)[i] += y; /* Generate starting offsets LONGo the value table for each length */ ZIP(x)[1] = j = 0; p = ZIP(c) + 1; xp = ZIP(x) + 2; while (--i) { /* note that i == g from above */ *xp++ = (j += *p++); } /* Make a table of values in order of bit lengths */ p = b; i = 0; do{ if ((j = *p++) != 0) ZIP(v)[ZIP(x)[j]++] = i; } while (++i < n); /* Generate the Huffman codes and for each, make the table entries */ ZIP(x)[0] = i = 0; /* first Huffman code is zero */ p = ZIP(v); /* grab values in bit order */ h = -1; /* no tables yet--level -1 */ w = l[-1] = 0; /* no bits decoded yet */ ZIP(u)[0] = (struct Ziphuft *)NULL; /* just to keep compilers happy */ q = (struct Ziphuft *)NULL; /* ditto */ z = 0; /* ditto */ /* go through the bit lengths (k already is bits in shortest code) */ for (; k <= g; k++) { a = ZIP(c)[k]; while (a--) { /* here i is the Huffman code of length k bits for value *p */ /* make tables up to required level */ while (k > w + l[h]) { w += l[h++]; /* add bits already decoded */ /* compute minimum size table less than or equal to *m bits */ z = (z = g - w) > (cab_ULONG)*m ? *m : z; /* upper limit */ if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ { /* too few codes for k-w bit table */ f -= a + 1; /* deduct codes from patterns left */ xp = ZIP(c) + k; while (++j < z) /* try smaller tables up to z bits */ { if ((f <<= 1) <= *++xp) break; /* enough codes to use up j bits */ f -= *xp; /* else deduct codes from patterns */ } } if ((cab_ULONG)w + j > el && (cab_ULONG)w < el) j = el - w; /* make EOB code end at table */ z = 1 << j; /* table entries for j-bit table */ l[h] = j; /* set table size in stack */ /* allocate and link in new table */ if (!(q = (struct Ziphuft *) malloc((z + 1)*sizeof(struct Ziphuft)))) { if(h) Ziphuft_free(ZIP(u)[0]); return 3; /* not enough memory */ } *t = q + 1; /* link to list for Ziphuft_free() */ *(t = &(q->v.t)) = (struct Ziphuft *)NULL; ZIP(u)[h] = ++q; /* table starts after link */ /* connect to last table, if there is one */ if (h) { ZIP(x)[h] = i; /* save pattern for backing up */ r.b = (cab_UBYTE)l[h-1]; /* bits to dump before this table */ r.e = (cab_UBYTE)(16 + j); /* bits in this table */ r.v.t = q; /* pointer to this table */ j = (i & ((1 << w) - 1)) >> (w - l[h-1]); ZIP(u)[h-1][j] = r; /* connect to last table */ } } /* set up table entry in r */ r.b = (cab_UBYTE)(k - w); if (p >= ZIP(v) + n) r.e = 99; /* out of values--invalid code */ else if (*p < s) { r.e = (cab_UBYTE)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ r.v.n = *p++; /* simple code is just the value */ } else { r.e = (cab_UBYTE)e[*p - s]; /* non-simple--look up in lists */ r.v.n = d[*p++ - s]; } /* fill code-like entries with r */ f = 1 << (k - w); for (j = i >> w; j < z; j += f) q[j] = r; /* backwards increment the k-bit code i */ for (j = 1 << (k - 1); i & j; j >>= 1) i ^= j; i ^= j; /* backup over finished tables */ while ((i & ((1 << w) - 1)) != ZIP(x)[h]) w -= l[--h]; /* don't need to update q */ } } /* return actual size of base table */ *m = l[0]; /* Return true (1) if we were given an incomplete table */ return y != 0 && g != 1; } /********************************************************* * Zipinflate_codes (internal) */ cab_LONG Zipinflate_codes(struct Ziphuft *tl, struct Ziphuft *td, cab_LONG bl, cab_LONG bd, cab_decomp_state *decomp_state) { register cab_ULONG e; /* table entry flag/number of extra bits */ cab_ULONG n, d; /* length and index for copy */ cab_ULONG w; /* current window position */ struct Ziphuft *t; /* pointer to table entry */ cab_ULONG ml, md; /* masks for bl and bd bits */ register cab_ULONG b; /* bit buffer */ register cab_ULONG k; /* number of bits in bit buffer */ /* make local copies of globals */ b = ZIP(bb); /* initialize bit buffer */ k = ZIP(bk); w = ZIP(window_posn); /* initialize window position */ /* inflate the coded data */ ml = Zipmask[bl]; /* precompute masks for speed */ md = Zipmask[bd]; for(;;) { ZIPNEEDBITS((cab_ULONG)bl) if((e = (t = tl + ((cab_ULONG)b & ml))->e) > 16) do { if (e == 99) return 1; ZIPDUMPBITS(t->b) e -= 16; ZIPNEEDBITS(e) } while ((e = (t = t->v.t + ((cab_ULONG)b & Zipmask[e]))->e) > 16); ZIPDUMPBITS(t->b) if (e == 16) /* then it's a literal */ CAB(outbuf)[w++] = (cab_UBYTE)t->v.n; else /* it's an EOB or a length */ { /* exit if end of block */ if(e == 15) break; /* get length of block to copy */ ZIPNEEDBITS(e) n = t->v.n + ((cab_ULONG)b & Zipmask[e]); ZIPDUMPBITS(e); /* decode distance of block to copy */ ZIPNEEDBITS((cab_ULONG)bd) if ((e = (t = td + ((cab_ULONG)b & md))->e) > 16) do { if (e == 99) return 1; ZIPDUMPBITS(t->b) e -= 16; ZIPNEEDBITS(e) } while ((e = (t = t->v.t + ((cab_ULONG)b & Zipmask[e]))->e) > 16); ZIPDUMPBITS(t->b) ZIPNEEDBITS(e) d = w - t->v.n - ((cab_ULONG)b & Zipmask[e]); ZIPDUMPBITS(e) do { n -= (e = (e = ZIPWSIZE - ((d &= ZIPWSIZE-1) > w ? d : w)) > n ?n:e); do { CAB(outbuf)[w++] = CAB(outbuf)[d++]; } while (--e); } while (n); } } /* restore the globals from the locals */ ZIP(window_posn) = w; /* restore global window pointer */ ZIP(bb) = b; /* restore global bit buffer */ ZIP(bk) = k; /* done */ return 0; } /*********************************************************** * Zipinflate_stored (internal) */ cab_LONG Zipinflate_stored(cab_decomp_state *decomp_state) /* "decompress" an inflated type 0 (stored) block. */ { cab_ULONG n; /* number of bytes in block */ cab_ULONG w; /* current window position */ register cab_ULONG b; /* bit buffer */ register cab_ULONG k; /* number of bits in bit buffer */ /* make local copies of globals */ b = ZIP(bb); /* initialize bit buffer */ k = ZIP(bk); w = ZIP(window_posn); /* initialize window position */ /* go to byte boundary */ n = k & 7; ZIPDUMPBITS(n); /* get the length and its complement */ ZIPNEEDBITS(16) n = ((cab_ULONG)b & 0xffff); ZIPDUMPBITS(16) ZIPNEEDBITS(16) if (n != (cab_ULONG)((~b) & 0xffff)) return 1; /* error in compressed data */ ZIPDUMPBITS(16) /* read and output the compressed data */ while(n--) { ZIPNEEDBITS(8) CAB(outbuf)[w++] = (cab_UBYTE)b; ZIPDUMPBITS(8) } /* restore the globals from the locals */ ZIP(window_posn) = w; /* restore global window pointer */ ZIP(bb) = b; /* restore global bit buffer */ ZIP(bk) = k; return 0; } /****************************************************** * Zipinflate_fixed (internal) */ cab_LONG Zipinflate_fixed(cab_decomp_state *decomp_state) { struct Ziphuft *fixed_tl; struct Ziphuft *fixed_td; cab_LONG fixed_bl, fixed_bd; cab_LONG i; /* temporary variable */ cab_ULONG *l; l = ZIP(ll); /* literal table */ for(i = 0; i < 144; i++) l[i] = 8; for(; i < 256; i++) l[i] = 9; for(; i < 280; i++) l[i] = 7; for(; i < 288; i++) /* make a complete, but wrong code set */ l[i] = 8; fixed_bl = 7; if((i = Ziphuft_build(l, 288, 257, (cab_UWORD *) Zipcplens, (cab_UWORD *) Zipcplext, &fixed_tl, &fixed_bl, decomp_state))) return i; /* distance table */ for(i = 0; i < 30; i++) /* make an incomplete code set */ l[i] = 5; fixed_bd = 5; if((i = Ziphuft_build(l, 30, 0, (cab_UWORD *) Zipcpdist, (cab_UWORD *) Zipcpdext, &fixed_td, &fixed_bd, decomp_state)) > 1) { Ziphuft_free(fixed_tl); return i; } /* decompress until an end-of-block code */ i = Zipinflate_codes(fixed_tl, fixed_td, fixed_bl, fixed_bd, decomp_state); Ziphuft_free(fixed_td); Ziphuft_free(fixed_tl); return i; } /************************************************************** * Zipinflate_dynamic (internal) */ cab_LONG Zipinflate_dynamic(cab_decomp_state *decomp_state) /* decompress an inflated type 2 (dynamic Huffman codes) block. */ { cab_LONG i; /* temporary variables */ cab_ULONG j; cab_ULONG *ll; cab_ULONG l; /* last length */ cab_ULONG m; /* mask for bit lengths table */ cab_ULONG n; /* number of lengths to get */ struct Ziphuft *tl; /* literal/length code table */ struct Ziphuft *td; /* distance code table */ cab_LONG bl; /* lookup bits for tl */ cab_LONG bd; /* lookup bits for td */ cab_ULONG nb; /* number of bit length codes */ cab_ULONG nl; /* number of literal/length codes */ cab_ULONG nd; /* number of distance codes */ register cab_ULONG b; /* bit buffer */ register cab_ULONG k; /* number of bits in bit buffer */ /* make local bit buffer */ b = ZIP(bb); k = ZIP(bk); ll = ZIP(ll); /* read in table lengths */ ZIPNEEDBITS(5) nl = 257 + ((cab_ULONG)b & 0x1f); /* number of literal/length codes */ ZIPDUMPBITS(5) ZIPNEEDBITS(5) nd = 1 + ((cab_ULONG)b & 0x1f); /* number of distance codes */ ZIPDUMPBITS(5) ZIPNEEDBITS(4) nb = 4 + ((cab_ULONG)b & 0xf); /* number of bit length codes */ ZIPDUMPBITS(4) if(nl > 288 || nd > 32) return 1; /* bad lengths */ /* read in bit-length-code lengths */ for(j = 0; j < nb; j++) { ZIPNEEDBITS(3) ll[Zipborder[j]] = (cab_ULONG)b & 7; ZIPDUMPBITS(3) } for(; j < 19; j++) ll[Zipborder[j]] = 0; /* build decoding table for trees--single level, 7 bit lookup */ bl = 7; if((i = Ziphuft_build(ll, 19, 19, NULL, NULL, &tl, &bl, decomp_state)) != 0) { if(i == 1) Ziphuft_free(tl); return i; /* incomplete code set */ } /* read in literal and distance code lengths */ n = nl + nd; m = Zipmask[bl]; i = l = 0; while((cab_ULONG)i < n) { ZIPNEEDBITS((cab_ULONG)bl) j = (td = tl + ((cab_ULONG)b & m))->b; ZIPDUMPBITS(j) j = td->v.n; if (j < 16) /* length of code in bits (0..15) */ ll[i++] = l = j; /* save last length in l */ else if (j == 16) /* repeat last length 3 to 6 times */ { ZIPNEEDBITS(2) j = 3 + ((cab_ULONG)b & 3); ZIPDUMPBITS(2) if((cab_ULONG)i + j > n) return 1; while (j--) ll[i++] = l; } else if (j == 17) /* 3 to 10 zero length codes */ { ZIPNEEDBITS(3) j = 3 + ((cab_ULONG)b & 7); ZIPDUMPBITS(3) if ((cab_ULONG)i + j > n) return 1; while (j--) ll[i++] = 0; l = 0; } else /* j == 18: 11 to 138 zero length codes */ { ZIPNEEDBITS(7) j = 11 + ((cab_ULONG)b & 0x7f); ZIPDUMPBITS(7) if ((cab_ULONG)i + j > n) return 1; while (j--) ll[i++] = 0; l = 0; } } /* free decoding table for trees */ Ziphuft_free(tl); /* restore the global bit buffer */ ZIP(bb) = b; ZIP(bk) = k; /* build the decoding tables for literal/length and distance codes */ bl = ZIPLBITS; if((i = Ziphuft_build(ll, nl, 257, (cab_UWORD *) Zipcplens, (cab_UWORD *) Zipcplext, &tl, &bl, decomp_state)) != 0) { if(i == 1) Ziphuft_free(tl); return i; /* incomplete code set */ } bd = ZIPDBITS; Ziphuft_build(ll + nl, nd, 0, (cab_UWORD *) Zipcpdist, (cab_UWORD *) Zipcpdext, &td, &bd, decomp_state); /* decompress until an end-of-block code */ if(Zipinflate_codes(tl, td, bl, bd, decomp_state)) return 1; /* free the decoding tables, return */ Ziphuft_free(tl); Ziphuft_free(td); return 0; } /***************************************************** * Zipinflate_block (internal) */ cab_LONG Zipinflate_block(cab_LONG *e, cab_decomp_state *decomp_state) /* e == last block flag */ { /* decompress an inflated block */ cab_ULONG t; /* block type */ register cab_ULONG b; /* bit buffer */ register cab_ULONG k; /* number of bits in bit buffer */ /* make local bit buffer */ b = ZIP(bb); k = ZIP(bk); /* read in last block bit */ ZIPNEEDBITS(1) *e = (cab_LONG)b & 1; ZIPDUMPBITS(1) /* read in block type */ ZIPNEEDBITS(2) t = (cab_ULONG)b & 3; ZIPDUMPBITS(2) /* restore the global bit buffer */ ZIP(bb) = b; ZIP(bk) = k; /* inflate that block type */ if(t == 2) return Zipinflate_dynamic(decomp_state); if(t == 0) return Zipinflate_stored(decomp_state); if(t == 1) return Zipinflate_fixed(decomp_state); /* bad block type */ return 2; } /**************************************************** * ZIPdecompress (internal) */ int ZIPdecompress(int inlen, int outlen, cab_decomp_state *decomp_state) { cab_LONG e; /* last block flag */ TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen); ZIP(inpos) = CAB(inbuf); ZIP(bb) = ZIP(bk) = ZIP(window_posn) = 0; if(outlen > ZIPWSIZE) return DECR_DATAFORMAT; /* CK = Chris Kirmse, official Microsoft purloiner */ if(ZIP(inpos)[0] != 0x43 || ZIP(inpos)[1] != 0x4B) return DECR_ILLEGALDATA; ZIP(inpos) += 2; do { if(Zipinflate_block(&e, decomp_state)) return DECR_ILLEGALDATA; } while(!e); /* return success */ return DECR_OK; } /* Quantum decruncher */ /* This decruncher was researched and implemented by Matthew Russoto. */ /* It has since been tidied up by Stuart Caie */ /****************************************************************** * QTMinitmodel (internal) * * Initialise a model which decodes symbols from [s] to [s]+[n]-1 */ void QTMinitmodel(struct QTMmodel *m, struct QTMmodelsym *sym, int n, int s) { int i; m->shiftsleft = 4; m->entries = n; m->syms = sym; memset(m->tabloc, 0xFF, sizeof(m->tabloc)); /* clear out look-up table */ for (i = 0; i < n; i++) { m->tabloc[i+s] = i; /* set up a look-up entry for symbol */ m->syms[i].sym = i+s; /* actual symbol */ m->syms[i].cumfreq = n-i; /* current frequency of that symbol */ } m->syms[n].cumfreq = 0; } /****************************************************************** * QTMinit (internal) */ int QTMinit(int window, int level, cab_decomp_state *decomp_state) { int wndsize = 1 << window, msz = window * 2, i; cab_ULONG j; /* QTM supports window sizes of 2^10 (1Kb) through 2^21 (2Mb) */ /* if a previously allocated window is big enough, keep it */ if (window < 10 || window > 21) return DECR_DATAFORMAT; if (QTM(actual_size) < wndsize) { if (QTM(window)) free(QTM(window)); QTM(window) = NULL; } if (!QTM(window)) { if (!(QTM(window) = malloc(wndsize))) return DECR_NOMEMORY; QTM(actual_size) = wndsize; } QTM(window_size) = wndsize; QTM(window_posn) = 0; /* initialise static slot/extrabits tables */ for (i = 0, j = 0; i < 27; i++) { CAB(q_length_extra)[i] = (i == 26) ? 0 : (i < 2 ? 0 : i - 2) >> 2; CAB(q_length_base)[i] = j; j += 1 << ((i == 26) ? 5 : CAB(q_length_extra)[i]); } for (i = 0, j = 0; i < 42; i++) { CAB(q_extra_bits)[i] = (i < 2 ? 0 : i-2) >> 1; CAB(q_position_base)[i] = j; j += 1 << CAB(q_extra_bits)[i]; } /* initialise arithmetic coding models */ QTMinitmodel(&QTM(model7), &QTM(m7sym)[0], 7, 0); QTMinitmodel(&QTM(model00), &QTM(m00sym)[0], 0x40, 0x00); QTMinitmodel(&QTM(model40), &QTM(m40sym)[0], 0x40, 0x40); QTMinitmodel(&QTM(model80), &QTM(m80sym)[0], 0x40, 0x80); QTMinitmodel(&QTM(modelC0), &QTM(mC0sym)[0], 0x40, 0xC0); /* model 4 depends on table size, ranges from 20 to 24 */ QTMinitmodel(&QTM(model4), &QTM(m4sym)[0], (msz < 24) ? msz : 24, 0); /* model 5 depends on table size, ranges from 20 to 36 */ QTMinitmodel(&QTM(model5), &QTM(m5sym)[0], (msz < 36) ? msz : 36, 0); /* model 6pos depends on table size, ranges from 20 to 42 */ QTMinitmodel(&QTM(model6pos), &QTM(m6psym)[0], msz, 0); QTMinitmodel(&QTM(model6len), &QTM(m6lsym)[0], 27, 0); return DECR_OK; } /**************************************************************** * QTMupdatemodel (internal) */ void QTMupdatemodel(struct QTMmodel *model, int sym) { struct QTMmodelsym temp; int i, j; for (i = 0; i < sym; i++) model->syms[i].cumfreq += 8; if (model->syms[0].cumfreq > 3800) { if (--model->shiftsleft) { for (i = model->entries - 1; i >= 0; i--) { /* -1, not -2; the 0 entry saves this */ model->syms[i].cumfreq >>= 1; if (model->syms[i].cumfreq <= model->syms[i+1].cumfreq) { model->syms[i].cumfreq = model->syms[i+1].cumfreq + 1; } } } else { model->shiftsleft = 50; for (i = 0; i < model->entries ; i++) { /* no -1, want to include the 0 entry */ /* this converts cumfreqs into frequencies, then shifts right */ model->syms[i].cumfreq -= model->syms[i+1].cumfreq; model->syms[i].cumfreq++; /* avoid losing things entirely */ model->syms[i].cumfreq >>= 1; } /* now sort by frequencies, decreasing order -- this must be an * inplace selection sort, or a sort with the same (in)stability * characteristics */ for (i = 0; i < model->entries - 1; i++) { for (j = i + 1; j < model->entries; j++) { if (model->syms[i].cumfreq < model->syms[j].cumfreq) { temp = model->syms[i]; model->syms[i] = model->syms[j]; model->syms[j] = temp; } } } /* then convert frequencies back to cumfreq */ for (i = model->entries - 1; i >= 0; i--) { model->syms[i].cumfreq += model->syms[i+1].cumfreq; } /* then update the other part of the table */ for (i = 0; i < model->entries; i++) { model->tabloc[model->syms[i].sym] = i; } } } } /******************************************************************* * QTMdecompress (internal) */ int QTMdecompress(int inlen, int outlen, cab_decomp_state *decomp_state) { cab_UBYTE *inpos = CAB(inbuf); cab_UBYTE *window = QTM(window); cab_UBYTE *runsrc, *rundest; cab_ULONG window_posn = QTM(window_posn); cab_ULONG window_size = QTM(window_size); /* used by bitstream macros */ register int bitsleft, bitrun, bitsneed; register cab_ULONG bitbuf; /* used by GET_SYMBOL */ cab_ULONG range; cab_UWORD symf; int i; int extra, togo = outlen, match_length = 0, copy_length; cab_UBYTE selector, sym; cab_ULONG match_offset = 0; cab_UWORD H = 0xFFFF, L = 0, C; TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen); /* read initial value of C */ Q_INIT_BITSTREAM; Q_READ_BITS(C, 16); /* apply 2^x-1 mask */ window_posn &= window_size - 1; /* runs can't straddle the window wraparound */ if ((window_posn + togo) > window_size) { TRACE("straddled run\n"); return DECR_DATAFORMAT; } while (togo > 0) { GET_SYMBOL(model7, selector); switch (selector) { case 0: GET_SYMBOL(model00, sym); window[window_posn++] = sym; togo--; break; case 1: GET_SYMBOL(model40, sym); window[window_posn++] = sym; togo--; break; case 2: GET_SYMBOL(model80, sym); window[window_posn++] = sym; togo--; break; case 3: GET_SYMBOL(modelC0, sym); window[window_posn++] = sym; togo--; break; case 4: /* selector 4 = fixed length of 3 */ GET_SYMBOL(model4, sym); Q_READ_BITS(extra, CAB(q_extra_bits)[sym]); match_offset = CAB(q_position_base)[sym] + extra + 1; match_length = 3; break; case 5: /* selector 5 = fixed length of 4 */ GET_SYMBOL(model5, sym); Q_READ_BITS(extra, CAB(q_extra_bits)[sym]); match_offset = CAB(q_position_base)[sym] + extra + 1; match_length = 4; break; case 6: /* selector 6 = variable length */ GET_SYMBOL(model6len, sym); Q_READ_BITS(extra, CAB(q_length_extra)[sym]); match_length = CAB(q_length_base)[sym] + extra + 5; GET_SYMBOL(model6pos, sym); Q_READ_BITS(extra, CAB(q_extra_bits)[sym]); match_offset = CAB(q_position_base)[sym] + extra + 1; break; default: TRACE("Selector is bogus\n"); return DECR_ILLEGALDATA; } /* if this is a match */ if (selector >= 4) { rundest = window + window_posn; togo -= match_length; /* copy any wrapped around source data */ if (window_posn >= match_offset) { /* no wrap */ runsrc = rundest - match_offset; } else { runsrc = rundest + (window_size - match_offset); copy_length = match_offset - window_posn; if (copy_length < match_length) { match_length -= copy_length; window_posn += copy_length; while (copy_length-- > 0) *rundest++ = *runsrc++; runsrc = window; } } window_posn += match_length; /* copy match data - no worries about destination wraps */ while (match_length-- > 0) *rundest++ = *runsrc++; } } /* while (togo > 0) */ if (togo != 0) { TRACE("Frame overflow, this_run = %d\n", togo); return DECR_ILLEGALDATA; } memcpy(CAB(outbuf), window + ((!window_posn) ? window_size : window_posn) - outlen, outlen); QTM(window_posn) = window_posn; return DECR_OK; } /* LZX decruncher */ /* Microsoft's LZX document and their implementation of the * com.ms.util.cab Java package do not concur. * * In the LZX document, there is a table showing the correlation between * window size and the number of position slots. It states that the 1MB * window = 40 slots and the 2MB window = 42 slots. In the implementation, * 1MB = 42 slots, 2MB = 50 slots. The actual calculation is 'find the * first slot whose position base is equal to or more than the required * window size'. This would explain why other tables in the document refer * to 50 slots rather than 42. * * The constant NUM_PRIMARY_LENGTHS used in the decompression pseudocode * is not defined in the specification. * * The LZX document does not state the uncompressed block has an * uncompressed length field. Where does this length field come from, so * we can know how large the block is? The implementation has it as the 24 * bits following after the 3 blocktype bits, before the alignment * padding. * * The LZX document states that aligned offset blocks have their aligned * offset huffman tree AFTER the main and length trees. The implementation * suggests that the aligned offset tree is BEFORE the main and length * trees. * * The LZX document decoding algorithm states that, in an aligned offset * block, if an extra_bits value is 1, 2 or 3, then that number of bits * should be read and the result added to the match offset. This is * correct for 1 and 2, but not 3, where just a huffman symbol (using the * aligned tree) should be read. * * Regarding the E8 preprocessing, the LZX document states 'No translation * may be performed on the last 6 bytes of the input block'. This is * correct. However, the pseudocode provided checks for the *E8 leader* * up to the last 6 bytes. If the leader appears between -10 and -7 bytes * from the end, this would cause the next four bytes to be modified, at * least one of which would be in the last 6 bytes, which is not allowed * according to the spec. * * The specification states that the huffman trees must always contain at * least one element. However, many CAB files contain blocks where the * length tree is completely empty (because there are no matches), and * this is expected to succeed. */ /* LZX uses what it calls 'position slots' to represent match offsets. * What this means is that a small 'position slot' number and a small * offset from that slot are encoded instead of one large offset for * every match. * - lzx_position_base is an index to the position slot bases * - lzx_extra_bits states how many bits of offset-from-base data is needed. */ /************************************************************ * LZXinit (internal) */ int LZXinit(int window, cab_decomp_state *decomp_state) { cab_ULONG wndsize = 1 << window; int i, j, posn_slots; /* LZX supports window sizes of 2^15 (32Kb) through 2^21 (2Mb) */ /* if a previously allocated window is big enough, keep it */ if (window < 15 || window > 21) return DECR_DATAFORMAT; if (LZX(actual_size) < wndsize) { if (LZX(window)) free(LZX(window)); LZX(window) = NULL; } if (!LZX(window)) { if (!(LZX(window) = malloc(wndsize))) return DECR_NOMEMORY; LZX(actual_size) = wndsize; } LZX(window_size) = wndsize; /* initialise static tables */ for (i=0, j=0; i <= 50; i += 2) { CAB(extra_bits)[i] = CAB(extra_bits)[i+1] = j; /* 0,0,0,0,1,1,2,2,3,3... */ if ((i != 0) && (j < 17)) j++; /* 0,0,1,2,3,4...15,16,17,17,17,17... */ } for (i=0, j=0; i <= 50; i++) { CAB(lzx_position_base)[i] = j; /* 0,1,2,3,4,6,8,12,16,24,32,... */ j += 1 << CAB(extra_bits)[i]; /* 1,1,1,1,2,2,4,4,8,8,16,16,32,32,... */ } /* calculate required position slots */ if (window == 20) posn_slots = 42; else if (window == 21) posn_slots = 50; else posn_slots = window << 1; /*posn_slots=i=0; while (i < wndsize) i += 1 << CAB(extra_bits)[posn_slots++]; */ LZX(R0) = LZX(R1) = LZX(R2) = 1; LZX(main_elements) = LZX_NUM_CHARS + (posn_slots << 3); LZX(header_read) = 0; LZX(frames_read) = 0; LZX(block_remaining) = 0; LZX(block_type) = LZX_BLOCKTYPE_INVALID; LZX(intel_curpos) = 0; LZX(intel_started) = 0; LZX(window_posn) = 0; /* initialise tables to 0 (because deltas will be applied to them) */ for (i = 0; i < LZX_MAINTREE_MAXSYMBOLS; i++) LZX(MAINTREE_len)[i] = 0; for (i = 0; i < LZX_LENGTH_MAXSYMBOLS; i++) LZX(LENGTH_len)[i] = 0; return DECR_OK; } /************************************************************************* * make_decode_table (internal) * * This function was coded by David Tritscher. It builds a fast huffman * decoding table out of just a canonical huffman code lengths table. * * PARAMS * nsyms: total number of symbols in this huffman tree. * nbits: any symbols with a code length of nbits or less can be decoded * in one lookup of the table. * length: A table to get code lengths from [0 to syms-1] * table: The table to fill up with decoded symbols and pointers. * * RETURNS * OK: 0 * error: 1 */ int make_decode_table(cab_ULONG nsyms, cab_ULONG nbits, cab_UBYTE *length, cab_UWORD *table) { register cab_UWORD sym; register cab_ULONG leaf; register cab_UBYTE bit_num = 1; cab_ULONG fill; cab_ULONG pos = 0; /* the current position in the decode table */ cab_ULONG table_mask = 1 << nbits; cab_ULONG bit_mask = table_mask >> 1; /* don't do 0 length codes */ cab_ULONG next_symbol = bit_mask; /* base of allocation for long codes */ /* fill entries for codes short enough for a direct mapping */ while (bit_num <= nbits) { for (sym = 0; sym < nsyms; sym++) { if (length[sym] == bit_num) { leaf = pos; if((pos += bit_mask) > table_mask) return 1; /* table overrun */ /* fill all possible lookups of this symbol with the symbol itself */ fill = bit_mask; while (fill-- > 0) table[leaf++] = sym; } } bit_mask >>= 1; bit_num++; } /* if there are any codes longer than nbits */ if (pos != table_mask) { /* clear the remainder of the table */ for (sym = pos; sym < table_mask; sym++) table[sym] = 0; /* give ourselves room for codes to grow by up to 16 more bits */ pos <<= 16; table_mask <<= 16; bit_mask = 1 << 15; while (bit_num <= 16) { for (sym = 0; sym < nsyms; sym++) { if (length[sym] == bit_num) { leaf = pos >> 16; for (fill = 0; fill < bit_num - nbits; fill++) { /* if this path hasn't been taken yet, 'allocate' two entries */ if (table[leaf] == 0) { table[(next_symbol << 1)] = 0; table[(next_symbol << 1) + 1] = 0; table[leaf] = next_symbol++; } /* follow the path and select either left or right for next bit */ leaf = table[leaf] << 1; if ((pos >> (15-fill)) & 1) leaf++; } table[leaf] = sym; if ((pos += bit_mask) > table_mask) return 1; /* table overflow */ } } bit_mask >>= 1; bit_num++; } } /* full table? */ if (pos == table_mask) return 0; /* either erroneous table, or all elements are 0 - let's find out. */ for (sym = 0; sym < nsyms; sym++) if (length[sym]) return 1; return 0; } /************************************************************ * lzx_read_lens (internal) */ int lzx_read_lens(cab_UBYTE *lens, cab_ULONG first, cab_ULONG last, struct lzx_bits *lb, cab_decomp_state *decomp_state) { cab_ULONG i,j, x,y; int z; register cab_ULONG bitbuf = lb->bb; register int bitsleft = lb->bl; cab_UBYTE *inpos = lb->ip; cab_UWORD *hufftbl; for (x = 0; x < 20; x++) { READ_BITS(y, 4); LENTABLE(PRETREE)[x] = y; } BUILD_TABLE(PRETREE); for (x = first; x < last; ) { READ_HUFFSYM(PRETREE, z); if (z == 17) { READ_BITS(y, 4); y += 4; while (y--) lens[x++] = 0; } else if (z == 18) { READ_BITS(y, 5); y += 20; while (y--) lens[x++] = 0; } else if (z == 19) { READ_BITS(y, 1); y += 4; READ_HUFFSYM(PRETREE, z); z = lens[x] - z; if (z < 0) z += 17; while (y--) lens[x++] = z; } else { z = lens[x] - z; if (z < 0) z += 17; lens[x++] = z; } } lb->bb = bitbuf; lb->bl = bitsleft; lb->ip = inpos; return 0; } /******************************************************* * LZXdecompress (internal) */ int LZXdecompress(int inlen, int outlen, cab_decomp_state *decomp_state) { cab_UBYTE *inpos = CAB(inbuf); cab_UBYTE *endinp = inpos + inlen; cab_UBYTE *window = LZX(window); cab_UBYTE *runsrc, *rundest; cab_UWORD *hufftbl; /* used in READ_HUFFSYM macro as chosen decoding table */ cab_ULONG window_posn = LZX(window_posn); cab_ULONG window_size = LZX(window_size); cab_ULONG R0 = LZX(R0); cab_ULONG R1 = LZX(R1); cab_ULONG R2 = LZX(R2); register cab_ULONG bitbuf; register int bitsleft; cab_ULONG match_offset, i,j,k; /* ijk used in READ_HUFFSYM macro */ struct lzx_bits lb; /* used in READ_LENGTHS macro */ int togo = outlen, this_run, main_element, aligned_bits; int match_length, copy_length, length_footer, extra, verbatim_bits; TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen); INIT_BITSTREAM; /* read header if necessary */ if (!LZX(header_read)) { i = j = 0; READ_BITS(k, 1); if (k) { READ_BITS(i,16); READ_BITS(j,16); } LZX(intel_filesize) = (i << 16) | j; /* or 0 if not encoded */ LZX(header_read) = 1; } /* main decoding loop */ while (togo > 0) { /* last block finished, new block expected */ if (LZX(block_remaining) == 0) { if (LZX(block_type) == LZX_BLOCKTYPE_UNCOMPRESSED) { if (LZX(block_length) & 1) inpos++; /* realign bitstream to word */ INIT_BITSTREAM; } READ_BITS(LZX(block_type), 3); READ_BITS(i, 16); READ_BITS(j, 8); LZX(block_remaining) = LZX(block_length) = (i << 8) | j; switch (LZX(block_type)) { case LZX_BLOCKTYPE_ALIGNED: for (i = 0; i < 8; i++) { READ_BITS(j, 3); LENTABLE(ALIGNED)[i] = j; } BUILD_TABLE(ALIGNED); /* rest of aligned header is same as verbatim */ case LZX_BLOCKTYPE_VERBATIM: READ_LENGTHS(MAINTREE, 0, 256, lzx_read_lens); READ_LENGTHS(MAINTREE, 256, LZX(main_elements), lzx_read_lens); BUILD_TABLE(MAINTREE); if (LENTABLE(MAINTREE)[0xE8] != 0) LZX(intel_started) = 1; READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS, lzx_read_lens); BUILD_TABLE(LENGTH); break; case LZX_BLOCKTYPE_UNCOMPRESSED: LZX(intel_started) = 1; /* because we can't assume otherwise */ ENSURE_BITS(16); /* get up to 16 pad bits into the buffer */ if (bitsleft > 16) inpos -= 2; /* and align the bitstream! */ R0 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; R1 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; R2 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4; break; default: return DECR_ILLEGALDATA; } } /* buffer exhaustion check */ if (inpos > endinp) { /* it's possible to have a file where the next run is less than * 16 bits in size. In this case, the READ_HUFFSYM() macro used * in building the tables will exhaust the buffer, so we should * allow for this, but not allow those accidentally read bits to * be used (so we check that there are at least 16 bits * remaining - in this boundary case they aren't really part of * the compressed data) */ if (inpos > (endinp+2) || bitsleft < 16) return DECR_ILLEGALDATA; } while ((this_run = LZX(block_remaining)) > 0 && togo > 0) { if (this_run > togo) this_run = togo; togo -= this_run; LZX(block_remaining) -= this_run; /* apply 2^x-1 mask */ window_posn &= window_size - 1; /* runs can't straddle the window wraparound */ if ((window_posn + this_run) > window_size) return DECR_DATAFORMAT; switch (LZX(block_type)) { case LZX_BLOCKTYPE_VERBATIM: while (this_run > 0) { READ_HUFFSYM(MAINTREE, main_element); if (main_element < LZX_NUM_CHARS) { /* literal: 0 to LZX_NUM_CHARS-1 */ window[window_posn++] = main_element; this_run--; } else { /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */ main_element -= LZX_NUM_CHARS; match_length = main_element & LZX_NUM_PRIMARY_LENGTHS; if (match_length == LZX_NUM_PRIMARY_LENGTHS) { READ_HUFFSYM(LENGTH, length_footer); match_length += length_footer; } match_length += LZX_MIN_MATCH; match_offset = main_element >> 3; if (match_offset > 2) { /* not repeated offset */ if (match_offset != 3) { extra = CAB(extra_bits)[match_offset]; READ_BITS(verbatim_bits, extra); match_offset = CAB(lzx_position_base)[match_offset] - 2 + verbatim_bits; } else { match_offset = 1; } /* update repeated offset LRU queue */ R2 = R1; R1 = R0; R0 = match_offset; } else if (match_offset == 0) { match_offset = R0; } else if (match_offset == 1) { match_offset = R1; R1 = R0; R0 = match_offset; } else /* match_offset == 2 */ { match_offset = R2; R2 = R0; R0 = match_offset; } rundest = window + window_posn; this_run -= match_length; /* copy any wrapped around source data */ if (window_posn >= match_offset) { /* no wrap */ runsrc = rundest - match_offset; } else { runsrc = rundest + (window_size - match_offset); copy_length = match_offset - window_posn; if (copy_length < match_length) { match_length -= copy_length; window_posn += copy_length; while (copy_length-- > 0) *rundest++ = *runsrc++; runsrc = window; } } window_posn += match_length; /* copy match data - no worries about destination wraps */ while (match_length-- > 0) *rundest++ = *runsrc++; } } break; case LZX_BLOCKTYPE_ALIGNED: while (this_run > 0) { READ_HUFFSYM(MAINTREE, main_element); if (main_element < LZX_NUM_CHARS) { /* literal: 0 to LZX_NUM_CHARS-1 */ window[window_posn++] = main_element; this_run--; } else { /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */ main_element -= LZX_NUM_CHARS; match_length = main_element & LZX_NUM_PRIMARY_LENGTHS; if (match_length == LZX_NUM_PRIMARY_LENGTHS) { READ_HUFFSYM(LENGTH, length_footer); match_length += length_footer; } match_length += LZX_MIN_MATCH; match_offset = main_element >> 3; if (match_offset > 2) { /* not repeated offset */ extra = CAB(extra_bits)[match_offset]; match_offset = CAB(lzx_position_base)[match_offset] - 2; if (extra > 3) { /* verbatim and aligned bits */ extra -= 3; READ_BITS(verbatim_bits, extra); match_offset += (verbatim_bits << 3); READ_HUFFSYM(ALIGNED, aligned_bits); match_offset += aligned_bits; } else if (extra == 3) { /* aligned bits only */ READ_HUFFSYM(ALIGNED, aligned_bits); match_offset += aligned_bits; } else if (extra > 0) { /* extra==1, extra==2 */ /* verbatim bits only */ READ_BITS(verbatim_bits, extra); match_offset += verbatim_bits; } else /* extra == 0 */ { /* ??? */ match_offset = 1; } /* update repeated offset LRU queue */ R2 = R1; R1 = R0; R0 = match_offset; } else if (match_offset == 0) { match_offset = R0; } else if (match_offset == 1) { match_offset = R1; R1 = R0; R0 = match_offset; } else /* match_offset == 2 */ { match_offset = R2; R2 = R0; R0 = match_offset; } rundest = window + window_posn; this_run -= match_length; /* copy any wrapped around source data */ if (window_posn >= match_offset) { /* no wrap */ runsrc = rundest - match_offset; } else { runsrc = rundest + (window_size - match_offset); copy_length = match_offset - window_posn; if (copy_length < match_length) { match_length -= copy_length; window_posn += copy_length; while (copy_length-- > 0) *rundest++ = *runsrc++; runsrc = window; } } window_posn += match_length; /* copy match data - no worries about destination wraps */ while (match_length-- > 0) *rundest++ = *runsrc++; } } break; case LZX_BLOCKTYPE_UNCOMPRESSED: if ((inpos + this_run) > endinp) return DECR_ILLEGALDATA; memcpy(window + window_posn, inpos, (size_t) this_run); inpos += this_run; window_posn += this_run; break; default: return DECR_ILLEGALDATA; /* might as well */ } } } if (togo != 0) return DECR_ILLEGALDATA; memcpy(CAB(outbuf), window + ((!window_posn) ? window_size : window_posn) - outlen, (size_t) outlen); LZX(window_posn) = window_posn; LZX(R0) = R0; LZX(R1) = R1; LZX(R2) = R2; /* intel E8 decoding */ if ((LZX(frames_read)++ < 32768) && LZX(intel_filesize) != 0) { if (outlen <= 6 || !LZX(intel_started)) { LZX(intel_curpos) += outlen; } else { cab_UBYTE *data = CAB(outbuf); cab_UBYTE *dataend = data + outlen - 10; cab_LONG curpos = LZX(intel_curpos); cab_LONG filesize = LZX(intel_filesize); cab_LONG abs_off, rel_off; LZX(intel_curpos) = curpos + outlen; while (data < dataend) { if (*data++ != 0xE8) { curpos++; continue; } abs_off = data[0] | (data[1]<<8) | (data[2]<<16) | (data[3]<<24); if ((abs_off >= -curpos) && (abs_off < filesize)) { rel_off = (abs_off >= 0) ? abs_off - curpos : abs_off + filesize; data[0] = (cab_UBYTE) rel_off; data[1] = (cab_UBYTE) (rel_off >> 8); data[2] = (cab_UBYTE) (rel_off >> 16); data[3] = (cab_UBYTE) (rel_off >> 24); } data += 4; curpos += 5; } } } return DECR_OK; } /********************************************************* * find_cabs_in_file (internal) */ struct cabinet *find_cabs_in_file(LPCSTR name, cab_UBYTE search_buf[]) { struct cabinet *cab, *cab2, *firstcab = NULL, *linkcab = NULL; cab_UBYTE *pstart = &search_buf[0], *pend, *p; cab_off_t offset, caboff, cablen = 0, foffset = 0, filelen, length; int state = 0, found = 0, ok = 0; TRACE("(name == %s)\n", debugstr_a((char *) name)); /* open the file and search for cabinet headers */ if ((cab = (struct cabinet *) calloc(1, sizeof(struct cabinet)))) { cab->filename = name; if (cabinet_open(cab)) { filelen = cab->filelen; for (offset = 0; (offset < filelen); offset += length) { /* search length is either the full length of the search buffer, * or the amount of data remaining to the end of the file, * whichever is less. */ length = filelen - offset; if (length > CAB_SEARCH_SIZE) length = CAB_SEARCH_SIZE; /* fill the search buffer with data from disk */ if (!cabinet_read(cab, search_buf, length)) break; /* read through the entire buffer. */ p = pstart; pend = &search_buf[length]; while (p < pend) { switch (state) { /* starting state */ case 0: /* we spend most of our time in this while loop, looking for * a leading 'M' of the 'MSCF' signature */ while (*p++ != 0x4D && p < pend); if (p < pend) state = 1; /* if we found tht 'M', advance state */ break; /* verify that the next 3 bytes are 'S', 'C' and 'F' */ case 1: state = (*p++ == 0x53) ? 2 : 0; break; case 2: state = (*p++ == 0x43) ? 3 : 0; break; case 3: state = (*p++ == 0x46) ? 4 : 0; break; /* we don't care about bytes 4-7 */ /* bytes 8-11 are the overall length of the cabinet */ case 8: cablen = *p++; state++; break; case 9: cablen |= *p++ << 8; state++; break; case 10: cablen |= *p++ << 16; state++; break; case 11: cablen |= *p++ << 24; state++; break; /* we don't care about bytes 12-15 */ /* bytes 16-19 are the offset within the cabinet of the filedata */ case 16: foffset = *p++; state++; break; case 17: foffset |= *p++ << 8; state++; break; case 18: foffset |= *p++ << 16; state++; break; case 19: foffset |= *p++ << 24; /* now we have received 20 bytes of potential cab header. */ /* work out the offset in the file of this potential cabinet */ caboff = offset + (p-pstart) - 20; /* check that the files offset is less than the alleged length * of the cabinet, and that the offset + the alleged length are * 'roughly' within the end of overall file length */ if ((foffset < cablen) && ((caboff + foffset) < (filelen + 32)) && ((caboff + cablen) < (filelen + 32)) ) { /* found a potential result - try loading it */ found++; cab2 = load_cab_offset(name, caboff); if (cab2) { /* success */ ok++; /* cause the search to restart after this cab's data. */ offset = caboff + cablen; if (offset < cab->filelen) cabinet_seek(cab, offset); length = 0; p = pend; /* link the cab into the list */ if (linkcab == NULL) firstcab = cab2; else linkcab->next = cab2; linkcab = cab2; } } state = 0; break; default: p++, state++; break; } } } cabinet_close(cab); } free(cab); } /* if there were cabinets that were found but are not ok, point this out */ if (found > ok) { WARN("%s: found %d bad cabinets\n", debugstr_a(name), found-ok); } /* if no cabinets were found, let the user know */ if (!firstcab) { WARN("%s: not a Microsoft cabinet file.\n", debugstr_a(name)); } return firstcab; } /*********************************************************************** * find_cabinet_file (internal) * * tries to find *cabname, from the directory path of origcab, correcting the * case of *cabname if necessary, If found, writes back to *cabname. */ void find_cabinet_file(char **cabname, LPCSTR origcab) { char *tail, *cab, *name, *nextpart, nametmp[MAX_PATH], *filepart; int found = 0; TRACE("(*cabname == ^%p, origcab == %s)\n", cabname ? *cabname : NULL, debugstr_a(origcab)); /* ensure we have a cabinet name at all */ if (!(name = *cabname)) { WARN("no cabinet name at all\n"); } /* find if there's a directory path in the origcab */ tail = origcab ? max(strrchr(origcab, '/'), strrchr(origcab, '\\')) : NULL; if ((cab = (char *) malloc(MAX_PATH))) { /* add the directory path from the original cabinet name */ if (tail) { memcpy(cab, origcab, tail - origcab); cab[tail - origcab] = '\0'; } else { /* default directory path of '.' */ cab[0] = '.'; cab[1] = '\0'; } do { TRACE("trying cab == %s\n", debugstr_a(cab)); /* we don't want null cabinet filenames */ if (name[0] == '\0') { WARN("null cab name\n"); break; } /* if there is a directory component in the cabinet name, * look for that alone first */ nextpart = strchr(name, '\\'); if (nextpart) *nextpart = '\0'; found = SearchPathA(cab, name, NULL, MAX_PATH, nametmp, &filepart); /* if the component was not found, look for it in the current dir */ if (!found) { found = SearchPathA(".", name, NULL, MAX_PATH, nametmp, &filepart); } if (found) TRACE("found: %s\n", debugstr_a(nametmp)); else TRACE("not found.\n"); /* restore the real name and skip to the next directory component * or actual cabinet name */ if (nextpart) *nextpart = '\\', name = &nextpart[1]; /* while there is another directory component, and while we * successfully found the current component */ } while (nextpart && found); /* if we found the cabinet, change the next cabinet's name. * otherwise, pretend nothing happened */ if (found) { free((void *) *cabname); *cabname = cab; strncpy(cab, nametmp, found+1); TRACE("result: %s\n", debugstr_a(cab)); } else { free((void *) cab); TRACE("result: nothing\n"); } } } /************************************************************************ * process_files (internal) * * this does the tricky job of running through every file in the cabinet, * including spanning cabinets, and working out which file is in which * folder in which cabinet. It also throws out the duplicate file entries * that appear in spanning cabinets. There is memory leakage here because * those entries are not freed. See the XAD CAB client (function CAB_GetInfo * in CAB.c) for an implementation of this that correctly frees the discarded * file entries. */ struct cab_file *process_files(struct cabinet *basecab) { struct cabinet *cab; struct cab_file *outfi = NULL, *linkfi = NULL, *nextfi, *fi, *cfi; struct cab_folder *fol, *firstfol, *lastfol = NULL, *predfol; int i, mergeok; FIXME("(basecab == ^%p): Memory leak.\n", basecab); for (cab = basecab; cab; cab = cab->nextcab) { /* firstfol = first folder in this cabinet */ /* lastfol = last folder in this cabinet */ /* predfol = last folder in previous cabinet (or NULL if first cabinet) */ predfol = lastfol; firstfol = cab->folders; for (lastfol = firstfol; lastfol->next;) lastfol = lastfol->next; mergeok = 1; for (fi = cab->files; fi; fi = nextfi) { i = fi->index; nextfi = fi->next; if (i < cffileCONTINUED_FROM_PREV) { for (fol = firstfol; fol && i--; ) fol = fol->next; fi->folder = fol; /* NULL if an invalid folder index */ } else { /* folder merging */ if (i == cffileCONTINUED_TO_NEXT || i == cffileCONTINUED_PREV_AND_NEXT) { if (cab->nextcab && !lastfol->contfile) lastfol->contfile = fi; } if (i == cffileCONTINUED_FROM_PREV || i == cffileCONTINUED_PREV_AND_NEXT) { /* these files are to be continued in yet another * cabinet, don't merge them in just yet */ if (i == cffileCONTINUED_PREV_AND_NEXT) mergeok = 0; /* only merge once per cabinet */ if (predfol) { if ((cfi = predfol->contfile) && (cfi->offset == fi->offset) && (cfi->length == fi->length) && (strcmp(cfi->filename, fi->filename) == 0) && (predfol->comp_type == firstfol->comp_type)) { /* increase the number of splits */ if ((i = ++(predfol->num_splits)) > CAB_SPLITMAX) { mergeok = 0; ERR("%s: internal error: CAB_SPLITMAX exceeded. please report this to wine-devel@winehq.org)\n", debugstr_a(basecab->filename)); } else { /* copy information across from the merged folder */ predfol->offset[i] = firstfol->offset[0]; predfol->cab[i] = firstfol->cab[0]; predfol->next = firstfol->next; predfol->contfile = firstfol->contfile; if (firstfol == lastfol) lastfol = predfol; firstfol = predfol; predfol = NULL; /* don't merge again within this cabinet */ } } else { /* if the folders won't merge, don't add their files */ mergeok = 0; } } if (mergeok) fi->folder = firstfol; } } if (fi->folder) { if (linkfi) linkfi->next = fi; else outfi = fi; linkfi = fi; } } /* for (fi= .. */ } /* for (cab= ...*/ return outfi; } /**************************************************************** * convertUTF (internal) * * translate UTF -> ASCII * * UTF translates two-byte unicode characters into 1, 2 or 3 bytes. * %000000000xxxxxxx -> %0xxxxxxx * %00000xxxxxyyyyyy -> %110xxxxx %10yyyyyy * %xxxxyyyyyyzzzzzz -> %1110xxxx %10yyyyyy %10zzzzzz * * Therefore, the inverse is as follows: * First char: * 0x00 - 0x7F = one byte char * 0x80 - 0xBF = invalid * 0xC0 - 0xDF = 2 byte char (next char only 0x80-0xBF is valid) * 0xE0 - 0xEF = 3 byte char (next 2 chars only 0x80-0xBF is valid) * 0xF0 - 0xFF = invalid * * FIXME: use a winapi to do this */ int convertUTF(cab_UBYTE *in) { cab_UBYTE c, *out = in, *end = in + strlen((char *) in) + 1; cab_ULONG x; do { /* read unicode character */ if ((c = *in++) < 0x80) x = c; else { if (c < 0xC0) return 0; else if (c < 0xE0) { x = (c & 0x1F) << 6; if ((c = *in++) < 0x80 || c > 0xBF) return 0; else x |= (c & 0x3F); } else if (c < 0xF0) { x = (c & 0xF) << 12; if ((c = *in++) < 0x80 || c > 0xBF) return 0; else x |= (c & 0x3F)<<6; if ((c = *in++) < 0x80 || c > 0xBF) return 0; else x |= (c & 0x3F); } else return 0; } /* terrible unicode -> ASCII conversion */ if (x > 127) x = '_'; if (in > end) return 0; /* just in case */ } while ((*out++ = (cab_UBYTE) x)); return 1; } /**************************************************** * NONEdecompress (internal) */ int NONEdecompress(int inlen, int outlen, cab_decomp_state *decomp_state) { if (inlen != outlen) return DECR_ILLEGALDATA; memcpy(CAB(outbuf), CAB(inbuf), (size_t) inlen); return DECR_OK; } /************************************************** * checksum (internal) */ cab_ULONG checksum(cab_UBYTE *data, cab_UWORD bytes, cab_ULONG csum) { int len; cab_ULONG ul = 0; for (len = bytes >> 2; len--; data += 4) { csum ^= ((data[0]) | (data[1]<<8) | (data[2]<<16) | (data[3]<<24)); } switch (bytes & 3) { case 3: ul |= *data++ << 16; case 2: ul |= *data++ << 8; case 1: ul |= *data; } csum ^= ul; return csum; } /********************************************************** * decompress (internal) */ int decompress(struct cab_file *fi, int savemode, int fix, cab_decomp_state *decomp_state) { cab_ULONG bytes = savemode ? fi->length : fi->offset - CAB(offset); struct cabinet *cab = CAB(current)->cab[CAB(split)]; cab_UBYTE buf[cfdata_SIZEOF], *data; cab_UWORD inlen, len, outlen, cando; cab_ULONG cksum; cab_LONG err; TRACE("(fi == ^%p, savemode == %d, fix == %d)\n", fi, savemode, fix); while (bytes > 0) { /* cando = the max number of bytes we can do */ cando = CAB(outlen); if (cando > bytes) cando = bytes; /* if cando != 0 */ if (cando && savemode) file_write(fi, CAB(outpos), cando); CAB(outpos) += cando; CAB(outlen) -= cando; bytes -= cando; if (!bytes) break; /* we only get here if we emptied the output buffer */ /* read data header + data */ inlen = outlen = 0; while (outlen == 0) { /* read the block header, skip the reserved part */ if (!cabinet_read(cab, buf, cfdata_SIZEOF)) return DECR_INPUT; cabinet_skip(cab, cab->block_resv); /* we shouldn't get blocks over CAB_INPUTMAX in size */ data = CAB(inbuf) + inlen; len = EndGetI16(buf+cfdata_CompressedSize); inlen += len; if (inlen > CAB_INPUTMAX) return DECR_INPUT; if (!cabinet_read(cab, data, len)) return DECR_INPUT; /* clear two bytes after read-in data */ data[len+1] = data[len+2] = 0; /* perform checksum test on the block (if one is stored) */ cksum = EndGetI32(buf+cfdata_CheckSum); if (cksum && cksum != checksum(buf+4, 4, checksum(data, len, 0))) { /* checksum is wrong */ if (fix && ((fi->folder->comp_type & cffoldCOMPTYPE_MASK) == cffoldCOMPTYPE_MSZIP)) { WARN("%s: checksum failed\n", debugstr_a(fi->filename)); } else { return DECR_CHECKSUM; } } /* outlen=0 means this block was part of a split block */ outlen = EndGetI16(buf+cfdata_UncompressedSize); if (outlen == 0) { cabinet_close(cab); cab = CAB(current)->cab[++CAB(split)]; if (!cabinet_open(cab)) return DECR_INPUT; cabinet_seek(cab, CAB(current)->offset[CAB(split)]); } } /* decompress block */ if ((err = CAB(decompress)(inlen, outlen, decomp_state))) { if (fix && ((fi->folder->comp_type & cffoldCOMPTYPE_MASK) == cffoldCOMPTYPE_MSZIP)) { ERR("%s: failed decrunching block\n", debugstr_a(fi->filename)); } else { return err; } } CAB(outlen) = outlen; CAB(outpos) = CAB(outbuf); } return DECR_OK; } /**************************************************************** * extract_file (internal) * * workhorse to extract a particular file from a cab */ void extract_file(struct cab_file *fi, int lower, int fix, LPCSTR dir, cab_decomp_state *decomp_state) { struct cab_folder *fol = fi->folder, *oldfol = CAB(current); cab_LONG err = DECR_OK; TRACE("(fi == ^%p, lower == %d, fix == %d, dir == %s)\n", fi, lower, fix, debugstr_a(dir)); /* is a change of folder needed? do we need to reset the current folder? */ if (fol != oldfol || fi->offset < CAB(offset)) { cab_UWORD comptype = fol->comp_type; int ct1 = comptype & cffoldCOMPTYPE_MASK; int ct2 = oldfol ? (oldfol->comp_type & cffoldCOMPTYPE_MASK) : 0; /* if the archiver has changed, call the old archiver's free() function */ if (ct1 != ct2) { switch (ct2) { case cffoldCOMPTYPE_LZX: if (LZX(window)) { free(LZX(window)); LZX(window) = NULL; } break; case cffoldCOMPTYPE_QUANTUM: if (QTM(window)) { free(QTM(window)); QTM(window) = NULL; } break; } } switch (ct1) { case cffoldCOMPTYPE_NONE: CAB(decompress) = NONEdecompress; break; case cffoldCOMPTYPE_MSZIP: CAB(decompress) = ZIPdecompress; break; case cffoldCOMPTYPE_QUANTUM: CAB(decompress) = QTMdecompress; err = QTMinit((comptype >> 8) & 0x1f, (comptype >> 4) & 0xF, decomp_state); break; case cffoldCOMPTYPE_LZX: CAB(decompress) = LZXdecompress; err = LZXinit((comptype >> 8) & 0x1f, decomp_state); break; default: err = DECR_DATAFORMAT; } if (err) goto exit_handler; /* initialisation OK, set current folder and reset offset */ if (oldfol) cabinet_close(oldfol->cab[CAB(split)]); if (!cabinet_open(fol->cab[0])) goto exit_handler; cabinet_seek(fol->cab[0], fol->offset[0]); CAB(current) = fol; CAB(offset) = 0; CAB(outlen) = 0; /* discard existing block */ CAB(split) = 0; } if (fi->offset > CAB(offset)) { /* decode bytes and send them to /dev/null */ if ((err = decompress(fi, 0, fix, decomp_state))) goto exit_handler; CAB(offset) = fi->offset; } if (!file_open(fi, lower, dir)) return; err = decompress(fi, 1, fix, decomp_state); if (err) CAB(current) = NULL; else CAB(offset) += fi->length; file_close(fi); exit_handler: if (err) { const char *errmsg; char *cabname; switch (err) { case DECR_NOMEMORY: errmsg = "out of memory!\n"; break; case DECR_ILLEGALDATA: errmsg = "%s: illegal or corrupt data\n"; break; case DECR_DATAFORMAT: errmsg = "%s: unsupported data format\n"; break; case DECR_CHECKSUM: errmsg = "%s: checksum error\n"; break; case DECR_INPUT: errmsg = "%s: input error\n"; break; case DECR_OUTPUT: errmsg = "%s: output error\n"; break; default: errmsg = "%s: unknown error (BUG)\n"; } if (CAB(current)) { cabname = (char *) (CAB(current)->cab[CAB(split)]->filename); } else { cabname = (char *) (fi->folder->cab[0]->filename); } ERR(errmsg, cabname); } } /********************************************************* * print_fileinfo (internal) */ void print_fileinfo(struct cab_file *fi) { int d = fi->date, t = fi->time; char *fname = NULL; if (fi->attribs & cffile_A_NAME_IS_UTF) { fname = malloc(strlen(fi->filename) + 1); if (fname) { strcpy(fname, fi->filename); convertUTF((cab_UBYTE *) fname); } } TRACE("%9u | %02d.%02d.%04d %02d:%02d:%02d | %s\n", fi->length, d & 0x1f, (d>>5) & 0xf, (d>>9) + 1980, t >> 11, (t>>5) & 0x3f, (t << 1) & 0x3e, fname ? fname : fi->filename ); if (fname) free(fname); } /**************************************************************************** * process_cabinet (internal) * * called to simply "extract" a cabinet file. Will find every cabinet file * in that file, search for every chained cabinet attached to those cabinets, * and will either extract the cabinets, or ? (call a callback?) * * PARAMS * cabname [I] name of the cabinet file to extract * dir [I] directory to extract to * fix [I] attempt to process broken cabinets * lower [I] ? (lower case something or other?) * dest [O] * * RETURNS * Success: TRUE * Failure: FALSE */ BOOL process_cabinet(LPCSTR cabname, LPCSTR dir, BOOL fix, BOOL lower, EXTRACTdest *dest) { struct cabinet *basecab, *cab, *cab1, *cab2; struct cab_file *filelist, *fi; struct ExtractFileList **destlistptr = &(dest->filelist); /* The first result of a search will be returned, and * the remaining results will be chained to it via the cab->next structure * member. */ cab_UBYTE search_buf[CAB_SEARCH_SIZE]; cab_decomp_state decomp_state_local; cab_decomp_state *decomp_state = &decomp_state_local; /* has the list-mode header been seen before? */ int viewhdr = 0; ZeroMemory(decomp_state, sizeof(cab_decomp_state)); TRACE("Extract %s\n", debugstr_a(cabname)); /* load the file requested */ basecab = find_cabs_in_file(cabname, search_buf); if (!basecab) return FALSE; /* iterate over all cabinets found in that file */ for (cab = basecab; cab; cab=cab->next) { /* bi-directionally load any spanning cabinets -- backwards */ for (cab1 = cab; cab1->flags & cfheadPREV_CABINET; cab1 = cab1->prevcab) { TRACE("%s: extends backwards to %s (%s)\n", debugstr_a(cabname), debugstr_a(cab1->prevname), debugstr_a(cab1->previnfo)); find_cabinet_file(&(cab1->prevname), cabname); if (!(cab1->prevcab = load_cab_offset(cab1->prevname, 0))) { ERR("%s: can't read previous cabinet %s\n", debugstr_a(cabname), debugstr_a(cab1->prevname)); break; } cab1->prevcab->nextcab = cab1; } /* bi-directionally load any spanning cabinets -- forwards */ for (cab2 = cab; cab2->flags & cfheadNEXT_CABINET; cab2 = cab2->nextcab) { TRACE("%s: extends to %s (%s)\n", debugstr_a(cabname), debugstr_a(cab2->nextname), debugstr_a(cab2->nextinfo)); find_cabinet_file(&(cab2->nextname), cabname); if (!(cab2->nextcab = load_cab_offset(cab2->nextname, 0))) { ERR("%s: can't read next cabinet %s\n", debugstr_a(cabname), debugstr_a(cab2->nextname)); break; } cab2->nextcab->prevcab = cab2; } filelist = process_files(cab1); CAB(current) = NULL; if (!viewhdr) { TRACE("File size | Date Time | Name\n"); TRACE("----------+---------------------+-------------\n"); viewhdr = 1; } for (fi = filelist; fi; fi = fi->next) { print_fileinfo(fi); dest->filecount++; } TRACE("Beginning Extraction...\n"); for (fi = filelist; fi; fi = fi->next) { TRACE(" extracting: %s\n", debugstr_a(fi->filename)); extract_file(fi, lower, fix, dir, decomp_state); sprintf(dest->lastfile, "%s%s%s", strlen(dest->directory) ? dest->directory : "", strlen(dest->directory) ? "\\": "", fi->filename); *destlistptr = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(struct ExtractFileList)); if(*destlistptr) { (*destlistptr)->unknown = TRUE; /* FIXME: were do we get the value? */ (*destlistptr)->filename = HeapAlloc(GetProcessHeap(), 0, ( strlen(fi->filename)+1)); if((*destlistptr)->filename) lstrcpyA((*destlistptr)->filename, fi->filename); destlistptr = &((*destlistptr)->next); } } } TRACE("Finished processing cabinet.\n"); return TRUE; }