dsound: Fix angle to sound source calculation.

This commit is contained in:
Stas Cymbalov 2015-03-22 18:22:49 +03:00 committed by Alexandre Julliard
parent f991b70de4
commit c1c108f58c
1 changed files with 14 additions and 11 deletions

View File

@ -112,7 +112,6 @@ static inline D3DVALUE AngleBetweenVectorsRad (const D3DVECTOR *a, const D3DVECT
cos = product/(la*lb);
angle = acos(cos);
if (cos < 0.0f) { angle -= M_PI; }
TRACE("angle between (%f,%f,%f) and (%f,%f,%f) = %f radians (%f degrees)\n", a->x, a->y, a->z, b->x,
b->y, b->z, angle, RadToDeg(angle));
return angle;
@ -264,16 +263,20 @@ void DSOUND_Calc3DBuffer(IDirectSoundBufferImpl *dsb)
else
{
vLeft = VectorProduct(&dsb->device->ds3dl.vOrientFront, &dsb->device->ds3dl.vOrientTop);
flAngle = AngleBetweenVectorsRad(&dsb->device->ds3dl.vOrientFront, &vDistance);
flAngle2 = AngleBetweenVectorsRad(&vLeft, &vDistance);
/* AngleBetweenVectorsRad performs a dot product, which gives us the cosine of the angle
* between two vectors. Unfortunately, because cos(theta) = cos(-theta), we've no idea from
* this whether the sound is to our left or to our right. We have to perform another dot
* product, with a vector at right angles to the initial one, to get the correct angle.
* The angle should be between -180 degrees and 180 degrees. */
if (flAngle < 0.0f) { flAngle += M_PI; }
if (flAngle2 > 0.0f) { flAngle = -flAngle; }
/* To calculate angle to sound source we need to:
* 1) Get angle between vDistance and a plane on which angle to sound source should be 0.
* Such a plane is given by vectors vOrientFront and vOrientTop, and angle between vector
* and a plane equals to M_PI_2 - angle between vector and normal to this plane (vLeft in this case).
* 2) Determine if the source is behind or in front of us by calculating angle between vDistance
* and vOrientFront.
*/
flAngle = AngleBetweenVectorsRad(&vLeft, &vDistance);
flAngle2 = AngleBetweenVectorsRad(&dsb->device->ds3dl.vOrientFront, &vDistance);
if (flAngle2 > M_PI_2)
flAngle = -flAngle;
flAngle -= M_PI_2;
if (flAngle < -M_PI)
flAngle += 2*M_PI;
}
TRACE("panning: Angle = %f rad, lPan = %d\n", flAngle, dsb->volpan.lPan);