rsaenh: Declare some functions static.
This commit is contained in:
parent
cbaa2e5bd7
commit
149ee9bf3b
|
@ -232,6 +232,28 @@ mp_zero (mp_int * a)
|
|||
memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
|
||||
}
|
||||
|
||||
/* b = |a|
|
||||
*
|
||||
* Simple function copies the input and fixes the sign to positive
|
||||
*/
|
||||
static int
|
||||
mp_abs (const mp_int * a, mp_int * b)
|
||||
{
|
||||
int res;
|
||||
|
||||
/* copy a to b */
|
||||
if (a != b) {
|
||||
if ((res = mp_copy (a, b)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* force the sign of b to positive */
|
||||
b->sign = MP_ZPOS;
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* computes the modular inverse via binary extended euclidean algorithm,
|
||||
* that is c = 1/a mod b
|
||||
*
|
||||
|
@ -793,7 +815,7 @@ static int fast_s_mp_sqr (const mp_int * a, mp_int * b)
|
|||
* Simple algorithm which zeroes the int, grows it then just sets one bit
|
||||
* as required.
|
||||
*/
|
||||
int
|
||||
static int
|
||||
mp_2expt (mp_int * a, int b)
|
||||
{
|
||||
int res;
|
||||
|
@ -815,28 +837,6 @@ mp_2expt (mp_int * a, int b)
|
|||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* b = |a|
|
||||
*
|
||||
* Simple function copies the input and fixes the sign to positive
|
||||
*/
|
||||
int
|
||||
mp_abs (const mp_int * a, mp_int * b)
|
||||
{
|
||||
int res;
|
||||
|
||||
/* copy a to b */
|
||||
if (a != b) {
|
||||
if ((res = mp_copy (a, b)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* force the sign of b to positive */
|
||||
b->sign = MP_ZPOS;
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* high level addition (handles signs) */
|
||||
int mp_add (mp_int * a, mp_int * b, mp_int * c)
|
||||
{
|
||||
|
@ -870,7 +870,7 @@ int mp_add (mp_int * a, mp_int * b, mp_int * c)
|
|||
|
||||
|
||||
/* single digit addition */
|
||||
int
|
||||
static int
|
||||
mp_add_d (mp_int * a, mp_digit b, mp_int * c)
|
||||
{
|
||||
int res, ix, oldused;
|
||||
|
@ -1205,6 +1205,57 @@ mp_mod_2d (const mp_int * a, int b, mp_int * c)
|
|||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* shift right a certain amount of digits */
|
||||
static void mp_rshd (mp_int * a, int b)
|
||||
{
|
||||
int x;
|
||||
|
||||
/* if b <= 0 then ignore it */
|
||||
if (b <= 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
/* if b > used then simply zero it and return */
|
||||
if (a->used <= b) {
|
||||
mp_zero (a);
|
||||
return;
|
||||
}
|
||||
|
||||
{
|
||||
register mp_digit *bottom, *top;
|
||||
|
||||
/* shift the digits down */
|
||||
|
||||
/* bottom */
|
||||
bottom = a->dp;
|
||||
|
||||
/* top [offset into digits] */
|
||||
top = a->dp + b;
|
||||
|
||||
/* this is implemented as a sliding window where
|
||||
* the window is b-digits long and digits from
|
||||
* the top of the window are copied to the bottom
|
||||
*
|
||||
* e.g.
|
||||
|
||||
b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
|
||||
/\ | ---->
|
||||
\-------------------/ ---->
|
||||
*/
|
||||
for (x = 0; x < (a->used - b); x++) {
|
||||
*bottom++ = *top++;
|
||||
}
|
||||
|
||||
/* zero the top digits */
|
||||
for (; x < a->used; x++) {
|
||||
*bottom++ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* remove excess digits */
|
||||
a->used -= b;
|
||||
}
|
||||
|
||||
/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
|
||||
static int mp_div_2d (const mp_int * a, int b, mp_int * c, mp_int * d)
|
||||
{
|
||||
|
@ -3096,7 +3147,7 @@ static const mp_digit __prime_tab[] = {
|
|||
*
|
||||
* sets result to 0 if not, 1 if yes
|
||||
*/
|
||||
int mp_prime_is_divisible (const mp_int * a, int *result)
|
||||
static int mp_prime_is_divisible (const mp_int * a, int *result)
|
||||
{
|
||||
int err, ix;
|
||||
mp_digit res;
|
||||
|
@ -3120,68 +3171,6 @@ int mp_prime_is_divisible (const mp_int * a, int *result)
|
|||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* performs a variable number of rounds of Miller-Rabin
|
||||
*
|
||||
* Probability of error after t rounds is no more than
|
||||
|
||||
*
|
||||
* Sets result to 1 if probably prime, 0 otherwise
|
||||
*/
|
||||
int mp_prime_is_prime (mp_int * a, int t, int *result)
|
||||
{
|
||||
mp_int b;
|
||||
int ix, err, res;
|
||||
|
||||
/* default to no */
|
||||
*result = MP_NO;
|
||||
|
||||
/* valid value of t? */
|
||||
if (t <= 0 || t > PRIME_SIZE) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* is the input equal to one of the primes in the table? */
|
||||
for (ix = 0; ix < PRIME_SIZE; ix++) {
|
||||
if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) {
|
||||
*result = 1;
|
||||
return MP_OKAY;
|
||||
}
|
||||
}
|
||||
|
||||
/* first perform trial division */
|
||||
if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* return if it was trivially divisible */
|
||||
if (res == MP_YES) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* now perform the miller-rabin rounds */
|
||||
if ((err = mp_init (&b)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
for (ix = 0; ix < t; ix++) {
|
||||
/* set the prime */
|
||||
mp_set (&b, __prime_tab[ix]);
|
||||
|
||||
if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
|
||||
goto __B;
|
||||
}
|
||||
|
||||
if (res == MP_NO) {
|
||||
goto __B;
|
||||
}
|
||||
}
|
||||
|
||||
/* passed the test */
|
||||
*result = MP_YES;
|
||||
__B:mp_clear (&b);
|
||||
return err;
|
||||
}
|
||||
|
||||
/* Miller-Rabin test of "a" to the base of "b" as described in
|
||||
* HAC pp. 139 Algorithm 4.24
|
||||
*
|
||||
|
@ -3189,7 +3178,7 @@ __B:mp_clear (&b);
|
|||
* Randomly the chance of error is no more than 1/4 and often
|
||||
* very much lower.
|
||||
*/
|
||||
int mp_prime_miller_rabin (mp_int * a, const mp_int * b, int *result)
|
||||
static int mp_prime_miller_rabin (mp_int * a, const mp_int * b, int *result)
|
||||
{
|
||||
mp_int n1, y, r;
|
||||
int s, j, err;
|
||||
|
@ -3264,6 +3253,68 @@ __N1:mp_clear (&n1);
|
|||
return err;
|
||||
}
|
||||
|
||||
/* performs a variable number of rounds of Miller-Rabin
|
||||
*
|
||||
* Probability of error after t rounds is no more than
|
||||
|
||||
*
|
||||
* Sets result to 1 if probably prime, 0 otherwise
|
||||
*/
|
||||
static int mp_prime_is_prime (mp_int * a, int t, int *result)
|
||||
{
|
||||
mp_int b;
|
||||
int ix, err, res;
|
||||
|
||||
/* default to no */
|
||||
*result = MP_NO;
|
||||
|
||||
/* valid value of t? */
|
||||
if (t <= 0 || t > PRIME_SIZE) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* is the input equal to one of the primes in the table? */
|
||||
for (ix = 0; ix < PRIME_SIZE; ix++) {
|
||||
if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) {
|
||||
*result = 1;
|
||||
return MP_OKAY;
|
||||
}
|
||||
}
|
||||
|
||||
/* first perform trial division */
|
||||
if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* return if it was trivially divisible */
|
||||
if (res == MP_YES) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* now perform the miller-rabin rounds */
|
||||
if ((err = mp_init (&b)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
for (ix = 0; ix < t; ix++) {
|
||||
/* set the prime */
|
||||
mp_set (&b, __prime_tab[ix]);
|
||||
|
||||
if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
|
||||
goto __B;
|
||||
}
|
||||
|
||||
if (res == MP_NO) {
|
||||
goto __B;
|
||||
}
|
||||
}
|
||||
|
||||
/* passed the test */
|
||||
*result = MP_YES;
|
||||
__B:mp_clear (&b);
|
||||
return err;
|
||||
}
|
||||
|
||||
static const struct {
|
||||
int k, t;
|
||||
} sizes[] = {
|
||||
|
@ -3574,57 +3625,6 @@ int mp_reduce_setup (mp_int * a, const mp_int * b)
|
|||
return mp_div (a, b, a, NULL);
|
||||
}
|
||||
|
||||
/* shift right a certain amount of digits */
|
||||
void mp_rshd (mp_int * a, int b)
|
||||
{
|
||||
int x;
|
||||
|
||||
/* if b <= 0 then ignore it */
|
||||
if (b <= 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
/* if b > used then simply zero it and return */
|
||||
if (a->used <= b) {
|
||||
mp_zero (a);
|
||||
return;
|
||||
}
|
||||
|
||||
{
|
||||
register mp_digit *bottom, *top;
|
||||
|
||||
/* shift the digits down */
|
||||
|
||||
/* bottom */
|
||||
bottom = a->dp;
|
||||
|
||||
/* top [offset into digits] */
|
||||
top = a->dp + b;
|
||||
|
||||
/* this is implemented as a sliding window where
|
||||
* the window is b-digits long and digits from
|
||||
* the top of the window are copied to the bottom
|
||||
*
|
||||
* e.g.
|
||||
|
||||
b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
|
||||
/\ | ---->
|
||||
\-------------------/ ---->
|
||||
*/
|
||||
for (x = 0; x < (a->used - b); x++) {
|
||||
*bottom++ = *top++;
|
||||
}
|
||||
|
||||
/* zero the top digits */
|
||||
for (; x < a->used; x++) {
|
||||
*bottom++ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* remove excess digits */
|
||||
a->used -= b;
|
||||
}
|
||||
|
||||
/* set to a digit */
|
||||
void mp_set (mp_int * a, mp_digit b)
|
||||
{
|
||||
|
|
|
@ -275,12 +275,6 @@ void mp_clamp(mp_int *a);
|
|||
|
||||
/* ---> digit manipulation <--- */
|
||||
|
||||
/* right shift by "b" digits */
|
||||
void mp_rshd(mp_int *a, int b);
|
||||
|
||||
/* computes a = 2**b */
|
||||
int mp_2expt(mp_int *a, int b);
|
||||
|
||||
/* Counts the number of lsbs which are zero before the first zero bit */
|
||||
int mp_cnt_lsb(const mp_int *a);
|
||||
|
||||
|
@ -304,9 +298,6 @@ int mp_and(mp_int *a, mp_int *b, mp_int *c);
|
|||
/* b = -a */
|
||||
int mp_neg(mp_int *a, mp_int *b);
|
||||
|
||||
/* b = |a| */
|
||||
int mp_abs(const mp_int *a, mp_int *b);
|
||||
|
||||
/* compare a to b */
|
||||
int mp_cmp(const mp_int *a, const mp_int *b);
|
||||
|
||||
|
@ -333,9 +324,6 @@ int mp_mod(const mp_int *a, mp_int *b, mp_int *c);
|
|||
/* compare against a single digit */
|
||||
int mp_cmp_d(const mp_int *a, mp_digit b);
|
||||
|
||||
/* c = a + b */
|
||||
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
|
||||
|
||||
/* c = a - b */
|
||||
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
|
||||
|
||||
|
@ -427,33 +415,16 @@ int mp_exptmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
|
|||
/* number of primes */
|
||||
#define PRIME_SIZE 256
|
||||
|
||||
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
|
||||
int mp_prime_is_divisible(const mp_int *a, int *result);
|
||||
|
||||
/* performs one Fermat test of "a" using base "b".
|
||||
* Sets result to 0 if composite or 1 if probable prime
|
||||
*/
|
||||
int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
|
||||
|
||||
/* performs one Miller-Rabin test of "a" using base "b".
|
||||
* Sets result to 0 if composite or 1 if probable prime
|
||||
*/
|
||||
int mp_prime_miller_rabin(mp_int *a, const mp_int *b, int *result);
|
||||
|
||||
/* This gives [for a given bit size] the number of trials required
|
||||
* such that Miller-Rabin gives a prob of failure lower than 2^-96
|
||||
*/
|
||||
int mp_prime_rabin_miller_trials(int size);
|
||||
|
||||
/* performs t rounds of Miller-Rabin on "a" using the first
|
||||
* t prime bases. Also performs an initial sieve of trial
|
||||
* division. Determines if "a" is prime with probability
|
||||
* of error no more than (1/4)**t.
|
||||
*
|
||||
* Sets result to 1 if probably prime, 0 otherwise
|
||||
*/
|
||||
int mp_prime_is_prime(mp_int *a, int t, int *result);
|
||||
|
||||
/* finds the next prime after the number "a" using "t" trials
|
||||
* of Miller-Rabin.
|
||||
*
|
||||
|
|
Loading…
Reference in New Issue