libs: Import upstream code from gsm 1.0.19.

Signed-off-by: Alexandre Julliard <julliard@winehq.org>
This commit is contained in:
Alexandre Julliard 2021-10-20 11:45:59 +02:00
parent bca1b7f2fa
commit 116ea9cec4
23 changed files with 4386 additions and 0 deletions

24
configure vendored
View File

@ -709,6 +709,8 @@ LCMS2_PE_LIBS
LCMS2_PE_CFLAGS
JPEG_PE_LIBS
JPEG_PE_CFLAGS
GSM_PE_LIBS
GSM_PE_CFLAGS
EXCESS_PRECISION_CFLAGS
CROSSDEBUG
DELAYLOADFLAG
@ -1781,6 +1783,7 @@ enable_dmoguids
enable_dxerr8
enable_dxerr9
enable_dxguid
enable_gsm
enable_jpeg
enable_lcms2
enable_mfuuid
@ -1924,6 +1927,8 @@ CPP
OBJC
OBJCFLAGS
OBJCPP
GSM_PE_CFLAGS
GSM_PE_LIBS
JPEG_PE_CFLAGS
JPEG_PE_LIBS
LCMS2_PE_CFLAGS
@ -2707,6 +2712,9 @@ Some influential environment variables:
OBJC Objective C compiler command
OBJCFLAGS Objective C compiler flags
OBJCPP Objective C preprocessor
GSM_PE_CFLAGS
C compiler flags for the PE gsm, overriding the bundled version
GSM_PE_LIBS Linker flags for the PE gsm, overriding the bundled version
JPEG_PE_CFLAGS
C compiler flags for the PE jpeg, overriding the bundled version
JPEG_PE_LIBS
@ -10694,6 +10702,19 @@ esac
fi
if ${GSM_PE_CFLAGS:+false} :; then :
GSM_PE_CFLAGS="-I\$(top_srcdir)/libs/gsm/inc"
else
enable_gsm=no
fi
if ${GSM_PE_LIBS:+false} :; then :
GSM_PE_LIBS=gsm
else
enable_gsm=no
fi
$as_echo "$as_me:${as_lineno-$LINENO}: gsm cflags: $GSM_PE_CFLAGS" >&5
$as_echo "$as_me:${as_lineno-$LINENO}: gsm libs: $GSM_PE_LIBS" >&5
if ${JPEG_PE_CFLAGS:+false} :; then :
JPEG_PE_CFLAGS="-I\$(top_srcdir)/libs/jpeg"
else
@ -18995,6 +19016,8 @@ QUICKTIME_LIBS = $QUICKTIME_LIBS
CARBON_LIBS = $CARBON_LIBS
METAL_LIBS = $METAL_LIBS
EXCESS_PRECISION_CFLAGS = $EXCESS_PRECISION_CFLAGS
GSM_PE_CFLAGS = $GSM_PE_CFLAGS
GSM_PE_LIBS = $GSM_PE_LIBS
JPEG_PE_CFLAGS = $JPEG_PE_CFLAGS
JPEG_PE_LIBS = $JPEG_PE_LIBS
LCMS2_PE_CFLAGS = $LCMS2_PE_CFLAGS
@ -20291,6 +20314,7 @@ wine_fn_config_makefile libs/dmoguids enable_dmoguids
wine_fn_config_makefile libs/dxerr8 enable_dxerr8
wine_fn_config_makefile libs/dxerr9 enable_dxerr9
wine_fn_config_makefile libs/dxguid enable_dxguid
wine_fn_config_makefile libs/gsm enable_gsm
wine_fn_config_makefile libs/jpeg enable_jpeg
wine_fn_config_makefile libs/lcms2 enable_lcms2
wine_fn_config_makefile libs/mfuuid enable_mfuuid

View File

@ -1058,6 +1058,7 @@ WINE_NOTICE_WITH(mingw,[test "x$CROSSTARGET" = "x"],
dnl **** External libraries ****
WINE_EXTLIB_FLAGS(GSM, gsm, gsm, "-I\$(top_srcdir)/libs/gsm/inc")
WINE_EXTLIB_FLAGS(JPEG, jpeg, jpeg, "-I\$(top_srcdir)/libs/jpeg")
WINE_EXTLIB_FLAGS(LCMS2, lcms2, lcms2, "-I\$(top_srcdir)/libs/lcms2/include")
WINE_EXTLIB_FLAGS(PNG, png, "png \$(ZLIB_PE_LIBS)", "-I\$(top_srcdir)/libs/png")
@ -3714,6 +3715,7 @@ WINE_CONFIG_MAKEFILE(libs/dmoguids)
WINE_CONFIG_MAKEFILE(libs/dxerr8)
WINE_CONFIG_MAKEFILE(libs/dxerr9)
WINE_CONFIG_MAKEFILE(libs/dxguid)
WINE_CONFIG_MAKEFILE(libs/gsm)
WINE_CONFIG_MAKEFILE(libs/jpeg)
WINE_CONFIG_MAKEFILE(libs/lcms2)
WINE_CONFIG_MAKEFILE(libs/mfuuid)

35
libs/gsm/COPYRIGHT Normal file
View File

@ -0,0 +1,35 @@
Copyright 1992, 1993, 1994 by Jutta Degener and Carsten Bormann,
Technische Universitaet Berlin
Any use of this software is permitted provided that this notice is not
removed and that neither the authors nor the Technische Universitaet Berlin
are deemed to have made any representations as to the suitability of this
software for any purpose nor are held responsible for any defects of
this software. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
As a matter of courtesy, the authors request to be informed about uses
this software has found, about bugs in this software, and about any
improvements that may be of general interest.
Berlin, 28.11.1994
Jutta Degener
Carsten Bormann
oOo
Since the original terms of 15 years ago maybe do not make our
intentions completely clear given today's refined usage of the legal
terms, we append this additional permission:
Permission to use, copy, modify, and distribute this software
for any purpose with or without fee is hereby granted,
provided that this notice is not removed and that neither
the authors nor the Technische Universitaet Berlin are
deemed to have made any representations as to the suitability
of this software for any purpose nor are held responsible
for any defects of this software. THERE IS ABSOLUTELY NO
WARRANTY FOR THIS SOFTWARE.
Berkeley/Bremen, 05.04.2009
Jutta Degener
Carsten Bormann

19
libs/gsm/Makefile.in Normal file
View File

@ -0,0 +1,19 @@
EXTLIB = libgsm.a
EXTRAINCL = -I$(srcdir)/inc
C_SRCS = \
src/add.c \
src/code.c \
src/decode.c \
src/gsm_create.c \
src/gsm_decode.c \
src/gsm_destroy.c \
src/gsm_encode.c \
src/gsm_option.c \
src/gsm_print.c \
src/long_term.c \
src/lpc.c \
src/preprocess.c \
src/rpe.c \
src/short_term.c \
src/table.c

79
libs/gsm/inc/gsm.h Normal file
View File

@ -0,0 +1,79 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/*$Header: /home/kbs/jutta/src/gsm/gsm-1.0/inc/RCS/gsm.h,v 1.11 1996/07/05 18:02:56 jutta Exp $*/
#ifndef GSM_H
#define GSM_H
#ifdef __cplusplus
extern "C" {
#endif
#ifdef __cplusplus
# define NeedFunctionPrototypes 1
#endif
#if __STDC__
# define NeedFunctionPrototypes 1
#endif
#ifdef _NO_PROTO
# undef NeedFunctionPrototypes
#endif
#ifdef NeedFunctionPrototypes
# include <stdio.h> /* for FILE * */
#endif
#undef GSM_P
#if NeedFunctionPrototypes
# define GSM_P( protos ) protos
#else
# define GSM_P( protos ) ( /* protos */ )
#endif
/*
* Interface
*/
typedef struct gsm_state * gsm;
typedef short gsm_signal; /* signed 16 bit */
typedef unsigned char gsm_byte;
typedef gsm_byte gsm_frame[33]; /* 33 * 8 bits */
#define GSM_MAGIC 0xD /* 13 kbit/s RPE-LTP */
#define GSM_PATCHLEVEL 19
#define GSM_MINOR 0
#define GSM_MAJOR 1
#define GSM_OPT_VERBOSE 1
#define GSM_OPT_FAST 2
#define GSM_OPT_LTP_CUT 3
#define GSM_OPT_WAV49 4
#define GSM_OPT_FRAME_INDEX 5
#define GSM_OPT_FRAME_CHAIN 6
extern gsm gsm_create GSM_P((void));
extern void gsm_destroy GSM_P((gsm));
extern int gsm_print GSM_P((FILE *, gsm, gsm_byte *));
extern int gsm_option GSM_P((gsm, int, int *));
extern void gsm_encode GSM_P((gsm, gsm_signal *, gsm_byte *));
extern int gsm_decode GSM_P((gsm, gsm_byte *, gsm_signal *));
extern int gsm_explode GSM_P((gsm, gsm_byte *, gsm_signal *));
extern void gsm_implode GSM_P((gsm, gsm_signal *, gsm_byte *));
#undef GSM_P
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* GSM_H */

277
libs/gsm/inc/private.h Normal file
View File

@ -0,0 +1,277 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/*$Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/private.h,v 1.6 1996/07/02 10:15:26 jutta Exp $*/
#ifndef PRIVATE_H
#define PRIVATE_H
#ifdef __cplusplus
extern "C" {
#endif
typedef short word; /* 16 bit signed int */
typedef long longword; /* 32 bit signed int */
typedef unsigned short uword; /* unsigned word */
typedef unsigned long ulongword; /* unsigned longword */
struct gsm_state {
word dp0[ 280 ];
word e[ 50 ]; /* code.c */
word z1; /* preprocessing.c, Offset_com. */
longword L_z2; /* Offset_com. */
int mp; /* Preemphasis */
word u[8]; /* short_term_aly_filter.c */
word LARpp[2][8]; /* */
word j; /* */
word ltp_cut; /* long_term.c, LTP crosscorr. */
word nrp; /* 40 */ /* long_term.c, synthesis */
word v[9]; /* short_term.c, synthesis */
word msr; /* decoder.c, Postprocessing */
char verbose; /* only used if !NDEBUG */
char fast; /* only used if FAST */
char wav_fmt; /* only used if WAV49 defined */
unsigned char frame_index; /* odd/even chaining */
unsigned char frame_chain; /* half-byte to carry forward */
};
#define MIN_WORD (-32767 - 1)
#define MAX_WORD 32767
#define MIN_LONGWORD (-2147483647 - 1)
#define MAX_LONGWORD 2147483647
#ifdef SASR /* flag: >> is a signed arithmetic shift right */
#undef SASR
#define SASR(x, by) ((x) >> (by))
#else
#define SASR(x, by) ((x) >= 0 ? (x) >> (by) : (~(-((x) + 1) >> (by))))
#endif /* SASR */
#include "proto.h"
/*
* Prototypes from add.c
*/
extern word gsm_mult P((word a, word b));
extern longword gsm_L_mult P((word a, word b));
extern word gsm_mult_r P((word a, word b));
extern word gsm_div P((word num, word denum));
extern word gsm_add P(( word a, word b ));
extern longword gsm_L_add P(( longword a, longword b ));
extern word gsm_sub P((word a, word b));
extern longword gsm_L_sub P((longword a, longword b));
extern word gsm_abs P((word a));
extern word gsm_norm P(( longword a ));
extern longword gsm_L_asl P((longword a, int n));
extern word gsm_asl P((word a, int n));
extern longword gsm_L_asr P((longword a, int n));
extern word gsm_asr P((word a, int n));
/*
* Inlined functions from add.h
*/
/*
* #define GSM_MULT_R(a, b) (* word a, word b, !(a == b == MIN_WORD) *) \
* (0x0FFFF & SASR(((longword)(a) * (longword)(b) + 16384), 15))
*/
#define GSM_MULT_R(a, b) /* word a, word b, !(a == b == MIN_WORD) */ \
(SASR( ((longword)(a) * (longword)(b) + 16384), 15 ))
# define GSM_MULT(a,b) /* word a, word b, !(a == b == MIN_WORD) */ \
(SASR( ((longword)(a) * (longword)(b)), 15 ))
# define GSM_L_MULT(a, b) /* word a, word b */ \
(((longword)(a) * (longword)(b)) << 1)
# define GSM_L_ADD(a, b) \
( (a) < 0 ? ( (b) >= 0 ? (a) + (b) \
: (utmp = (ulongword)-((a) + 1) + (ulongword)-((b) + 1)) \
>= MAX_LONGWORD ? MIN_LONGWORD : -(longword)utmp-2 ) \
: ((b) <= 0 ? (a) + (b) \
: (utmp = (ulongword)(a) + (ulongword)(b)) >= MAX_LONGWORD \
? MAX_LONGWORD : utmp))
/*
* # define GSM_ADD(a, b) \
* ((ltmp = (longword)(a) + (longword)(b)) >= MAX_WORD \
* ? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp)
*/
/* Nonportable, but faster: */
#define GSM_ADD(a, b) \
((ulongword)((ltmp = (longword)(a) + (longword)(b)) - MIN_WORD) > \
MAX_WORD - MIN_WORD ? (ltmp > 0 ? MAX_WORD : MIN_WORD) : ltmp)
# define GSM_SUB(a, b) \
((ltmp = (longword)(a) - (longword)(b)) >= MAX_WORD \
? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp)
# define GSM_ABS(a) ((a) < 0 ? ((a) == MIN_WORD ? MAX_WORD : -(a)) : (a))
/* Use these if necessary:
# define GSM_MULT_R(a, b) gsm_mult_r(a, b)
# define GSM_MULT(a, b) gsm_mult(a, b)
# define GSM_L_MULT(a, b) gsm_L_mult(a, b)
# define GSM_L_ADD(a, b) gsm_L_add(a, b)
# define GSM_ADD(a, b) gsm_add(a, b)
# define GSM_SUB(a, b) gsm_sub(a, b)
# define GSM_ABS(a) gsm_abs(a)
*/
/*
* More prototypes from implementations..
*/
extern void Gsm_Coder P((
struct gsm_state * S,
word * s, /* [0..159] samples IN */
word * LARc, /* [0..7] LAR coefficients OUT */
word * Nc, /* [0..3] LTP lag OUT */
word * bc, /* [0..3] coded LTP gain OUT */
word * Mc, /* [0..3] RPE grid selection OUT */
word * xmaxc,/* [0..3] Coded maximum amplitude OUT */
word * xMc /* [13*4] normalized RPE samples OUT */));
extern void Gsm_Long_Term_Predictor P(( /* 4x for 160 samples */
struct gsm_state * S,
word * d, /* [0..39] residual signal IN */
word * dp, /* [-120..-1] d' IN */
word * e, /* [0..40] OUT */
word * dpp, /* [0..40] OUT */
word * Nc, /* correlation lag OUT */
word * bc /* gain factor OUT */));
extern void Gsm_LPC_Analysis P((
struct gsm_state * S,
word * s, /* 0..159 signals IN/OUT */
word * LARc)); /* 0..7 LARc's OUT */
extern void Gsm_Preprocess P((
struct gsm_state * S,
word * s, word * so));
extern void Gsm_Encoding P((
struct gsm_state * S,
word * e,
word * ep,
word * xmaxc,
word * Mc,
word * xMc));
extern void Gsm_Short_Term_Analysis_Filter P((
struct gsm_state * S,
word * LARc, /* coded log area ratio [0..7] IN */
word * d /* st res. signal [0..159] IN/OUT */));
extern void Gsm_Decoder P((
struct gsm_state * S,
word * LARcr, /* [0..7] IN */
word * Ncr, /* [0..3] IN */
word * bcr, /* [0..3] IN */
word * Mcr, /* [0..3] IN */
word * xmaxcr, /* [0..3] IN */
word * xMcr, /* [0..13*4] IN */
word * s)); /* [0..159] OUT */
extern void Gsm_Decoding P((
struct gsm_state * S,
word xmaxcr,
word Mcr,
word * xMcr, /* [0..12] IN */
word * erp)); /* [0..39] OUT */
extern void Gsm_Long_Term_Synthesis_Filtering P((
struct gsm_state* S,
word Ncr,
word bcr,
word * erp, /* [0..39] IN */
word * drp)); /* [-120..-1] IN, [0..40] OUT */
void Gsm_RPE_Decoding P((
struct gsm_state *S,
word xmaxcr,
word Mcr,
word * xMcr, /* [0..12], 3 bits IN */
word * erp)); /* [0..39] OUT */
void Gsm_RPE_Encoding P((
struct gsm_state * S,
word * e, /* -5..-1][0..39][40..44 IN/OUT */
word * xmaxc, /* OUT */
word * Mc, /* OUT */
word * xMc)); /* [0..12] OUT */
extern void Gsm_Short_Term_Synthesis_Filter P((
struct gsm_state * S,
word * LARcr, /* log area ratios [0..7] IN */
word * drp, /* received d [0...39] IN */
word * s)); /* signal s [0..159] OUT */
extern void Gsm_Update_of_reconstructed_short_time_residual_signal P((
word * dpp, /* [0...39] IN */
word * ep, /* [0...39] IN */
word * dp)); /* [-120...-1] IN/OUT */
/*
* Tables from table.c
*/
#ifndef GSM_TABLE_C
extern word gsm_A[8], gsm_B[8], gsm_MIC[8], gsm_MAC[8];
extern word gsm_INVA[8];
extern word gsm_DLB[4], gsm_QLB[4];
extern word gsm_H[11];
extern word gsm_NRFAC[8];
extern word gsm_FAC[8];
#endif /* GSM_TABLE_C */
/*
* Debugging
*/
#ifdef NDEBUG
# define gsm_debug_words(a, b, c, d) /* nil */
# define gsm_debug_longwords(a, b, c, d) /* nil */
# define gsm_debug_word(a, b) /* nil */
# define gsm_debug_longword(a, b) /* nil */
#else /* !NDEBUG => DEBUG */
extern void gsm_debug_words P((char * name, int, int, word *));
extern void gsm_debug_longwords P((char * name, int, int, longword *));
extern void gsm_debug_longword P((char * name, longword));
extern void gsm_debug_word P((char * name, word));
#endif /* !NDEBUG */
#include "unproto.h"
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* PRIVATE_H */

65
libs/gsm/inc/proto.h Normal file
View File

@ -0,0 +1,65 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/*$Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/proto.h,v 1.1 1992/10/28 00:11:08 jutta Exp $*/
#ifndef PROTO_H
#define PROTO_H
#if __cplusplus
# define NeedFunctionPrototypes 1
#endif
#if __STDC__
# define NeedFunctionPrototypes 1
#endif
#ifdef _NO_PROTO
# undef NeedFunctionPrototypes
#endif
#undef P /* gnu stdio.h actually defines this... */
#undef P0
#undef P1
#undef P2
#undef P3
#undef P4
#undef P5
#undef P6
#undef P7
#undef P8
#if NeedFunctionPrototypes
# define P( protos ) protos
# define P0() (void)
# define P1(x, a) (a)
# define P2(x, a, b) (a, b)
# define P3(x, a, b, c) (a, b, c)
# define P4(x, a, b, c, d) (a, b, c, d)
# define P5(x, a, b, c, d, e) (a, b, c, d, e)
# define P6(x, a, b, c, d, e, f) (a, b, c, d, e, f)
# define P7(x, a, b, c, d, e, f, g) (a, b, c, d, e, f, g)
# define P8(x, a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g, h)
#else /* !NeedFunctionPrototypes */
# define P( protos ) ( /* protos */ )
# define P0() ()
# define P1(x, a) x a;
# define P2(x, a, b) x a; b;
# define P3(x, a, b, c) x a; b; c;
# define P4(x, a, b, c, d) x a; b; c; d;
# define P5(x, a, b, c, d, e) x a; b; c; d; e;
# define P6(x, a, b, c, d, e, f) x a; b; c; d; e; f;
# define P7(x, a, b, c, d, e, f, g) x a; b; c; d; e; f; g;
# define P8(x, a, b, c, d, e, f, g, h) x a; b; c; d; e; f; g; h;
#endif /* !NeedFunctionPrototypes */
#endif /* PROTO_H */

23
libs/gsm/inc/unproto.h Normal file
View File

@ -0,0 +1,23 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/*$Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/unproto.h,v 1.1 1992/10/28 00:11:08 jutta Exp $*/
#ifdef PROTO_H /* sic */
#undef PROTO_H
#undef P
#undef P0
#undef P1
#undef P2
#undef P3
#undef P4
#undef P5
#undef P6
#undef P7
#undef P8
#endif /* PROTO_H */

235
libs/gsm/src/add.c Normal file
View File

@ -0,0 +1,235 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/add.c,v 1.6 1996/07/02 09:57:33 jutta Exp $ */
/*
* See private.h for the more commonly used macro versions.
*/
#include <stdio.h>
#include <assert.h>
#include "private.h"
#include "gsm.h"
#include "proto.h"
#define saturate(x) \
((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))
word gsm_add P2((a,b), word a, word b)
{
longword sum = (longword)a + (longword)b;
return saturate(sum);
}
word gsm_sub P2((a,b), word a, word b)
{
longword diff = (longword)a - (longword)b;
return saturate(diff);
}
word gsm_mult P2((a,b), word a, word b)
{
if (a == MIN_WORD && b == MIN_WORD) return MAX_WORD;
else return SASR( (longword)a * (longword)b, 15 );
}
word gsm_mult_r P2((a,b), word a, word b)
{
if (b == MIN_WORD && a == MIN_WORD) return MAX_WORD;
else {
longword prod = (longword)a * (longword)b + 16384;
prod >>= 15;
return prod & 0xFFFF;
}
}
word gsm_abs P1((a), word a)
{
return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
}
longword gsm_L_mult P2((a,b),word a, word b)
{
assert( a != MIN_WORD || b != MIN_WORD );
return ((longword)a * (longword)b) << 1;
}
longword gsm_L_add P2((a,b), longword a, longword b)
{
if (a < 0) {
if (b >= 0) return a + b;
else {
ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1);
return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2;
}
}
else if (b <= 0) return a + b;
else {
ulongword A = (ulongword)a + (ulongword)b;
return A > MAX_LONGWORD ? MAX_LONGWORD : A;
}
}
longword gsm_L_sub P2((a,b), longword a, longword b)
{
if (a >= 0) {
if (b >= 0) return a - b;
else {
/* a>=0, b<0 */
ulongword A = (ulongword)a + -(b + 1);
return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
}
}
else if (b <= 0) return a - b;
else {
/* a<0, b>0 */
ulongword A = (ulongword)-(a + 1) + b;
return A >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)A - 1;
}
}
static unsigned char const bitoff[ 256 ] = {
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
word gsm_norm P1((a), longword a )
/*
* the number of left shifts needed to normalize the 32 bit
* variable L_var1 for positive values on the interval
*
* with minimum of
* minimum of 1073741824 (01000000000000000000000000000000) and
* maximum of 2147483647 (01111111111111111111111111111111)
*
*
* and for negative values on the interval with
* minimum of -2147483648 (-10000000000000000000000000000000) and
* maximum of -1073741824 ( -1000000000000000000000000000000).
*
* in order to normalize the result, the following
* operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
*
* (That's 'ffs', only from the left, not the right..)
*/
{
assert(a != 0);
if (a < 0) {
if (a <= -1073741824) return 0;
a = ~a;
}
return a & 0xffff0000
? ( a & 0xff000000
? -1 + bitoff[ 0xFF & (a >> 24) ]
: 7 + bitoff[ 0xFF & (a >> 16) ] )
: ( a & 0xff00
? 15 + bitoff[ 0xFF & (a >> 8) ]
: 23 + bitoff[ 0xFF & a ] );
}
longword gsm_L_asl P2((a,n), longword a, int n)
{
if (n >= 32) return 0;
if (n <= -32) return -(a < 0);
if (n < 0) return gsm_L_asr(a, -n);
return a << n;
}
word gsm_asl P2((a,n), word a, int n)
{
if (n >= 16) return 0;
if (n <= -16) return -(a < 0);
if (n < 0) return gsm_asr(a, -n);
return a << n;
}
longword gsm_L_asr P2((a,n), longword a, int n)
{
if (n >= 32) return -(a < 0);
if (n <= -32) return 0;
if (n < 0) return a << -n;
# ifdef SASR
return a >> n;
# else
if (a >= 0) return a >> n;
else return -(longword)( -(ulongword)a >> n );
# endif
}
word gsm_asr P2((a,n), word a, int n)
{
if (n >= 16) return -(a < 0);
if (n <= -16) return 0;
if (n < 0) return a << -n;
# ifdef SASR
return a >> n;
# else
if (a >= 0) return a >> n;
else return -(word)( -(uword)a >> n );
# endif
}
/*
* (From p. 46, end of section 4.2.5)
*
* NOTE: The following lines gives [sic] one correct implementation
* of the div(num, denum) arithmetic operation. Compute div
* which is the integer division of num by denum: with denum
* >= num > 0
*/
word gsm_div P2((num,denum), word num, word denum)
{
longword L_num = num;
longword L_denum = denum;
word div = 0;
int k = 15;
/* The parameter num sometimes becomes zero.
* Although this is explicitly guarded against in 4.2.5,
* we assume that the result should then be zero as well.
*/
/* assert(num != 0); */
assert(num >= 0 && denum >= num);
if (num == 0)
return 0;
while (k--) {
div <<= 1;
L_num <<= 1;
if (L_num >= L_denum) {
L_num -= L_denum;
div++;
}
}
return div;
}

89
libs/gsm/src/code.c Normal file
View File

@ -0,0 +1,89 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/code.c,v 1.3 1996/07/02 09:59:05 jutta Exp $ */
#include <string.h>
#include "private.h"
#include "gsm.h"
#include "proto.h"
/*
* 4.2 FIXED POINT IMPLEMENTATION OF THE RPE-LTP CODER
*/
void Gsm_Coder P8((S,s,LARc,Nc,bc,Mc,xmaxc,xMc),
struct gsm_state * S,
word * s, /* [0..159] samples IN */
/*
* The RPE-LTD coder works on a frame by frame basis. The length of
* the frame is equal to 160 samples. Some computations are done
* once per frame to produce at the output of the coder the
* LARc[1..8] parameters which are the coded LAR coefficients and
* also to realize the inverse filtering operation for the entire
* frame (160 samples of signal d[0..159]). These parts produce at
* the output of the coder:
*/
word * LARc, /* [0..7] LAR coefficients OUT */
/*
* Procedure 4.2.11 to 4.2.18 are to be executed four times per
* frame. That means once for each sub-segment RPE-LTP analysis of
* 40 samples. These parts produce at the output of the coder:
*/
word * Nc, /* [0..3] LTP lag OUT */
word * bc, /* [0..3] coded LTP gain OUT */
word * Mc, /* [0..3] RPE grid selection OUT */
word * xmaxc,/* [0..3] Coded maximum amplitude OUT */
word * xMc /* [13*4] normalized RPE samples OUT */
)
{
int k;
word * dp = S->dp0 + 120; /* [ -120...-1 ] */
word * dpp = dp; /* [ 0...39 ] */
word so[160];
Gsm_Preprocess (S, s, so);
Gsm_LPC_Analysis (S, so, LARc);
Gsm_Short_Term_Analysis_Filter (S, LARc, so);
for (k = 0; k <= 3; k++, xMc += 13) {
Gsm_Long_Term_Predictor ( S,
so+k*40, /* d [0..39] IN */
dp, /* dp [-120..-1] IN */
S->e + 5, /* e [0..39] OUT */
dpp, /* dpp [0..39] OUT */
Nc++,
bc++);
Gsm_RPE_Encoding ( S,
S->e + 5,/* e ][0..39][ IN/OUT */
xmaxc++, Mc++, xMc );
/*
* Gsm_Update_of_reconstructed_short_time_residual_signal
* ( dpp, S->e + 5, dp );
*/
{ register int i;
register longword ltmp;
for (i = 0; i <= 39; i++)
dp[ i ] = GSM_ADD( S->e[5 + i], dpp[i] );
}
dp += 40;
dpp += 40;
}
(void)memcpy( (char *)S->dp0, (char *)(S->dp0 + 160),
120 * sizeof(*S->dp0) );
}

63
libs/gsm/src/decode.c Normal file
View File

@ -0,0 +1,63 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/decode.c,v 1.1 1992/10/28 00:15:50 jutta Exp $ */
#include <stdio.h>
#include "private.h"
#include "gsm.h"
#include "proto.h"
/*
* 4.3 FIXED POINT IMPLEMENTATION OF THE RPE-LTP DECODER
*/
static void Postprocessing P2((S,s),
struct gsm_state * S,
register word * s)
{
register int k;
register word msr = S->msr;
register longword ltmp; /* for GSM_ADD */
register word tmp;
for (k = 160; k--; s++) {
tmp = GSM_MULT_R( msr, 28180 );
msr = GSM_ADD(*s, tmp); /* Deemphasis */
*s = GSM_ADD(msr, msr) & 0xFFF8; /* Truncation & Upscaling */
}
S->msr = msr;
}
void Gsm_Decoder P8((S,LARcr, Ncr,bcr,Mcr,xmaxcr,xMcr,s),
struct gsm_state * S,
word * LARcr, /* [0..7] IN */
word * Ncr, /* [0..3] IN */
word * bcr, /* [0..3] IN */
word * Mcr, /* [0..3] IN */
word * xmaxcr, /* [0..3] IN */
word * xMcr, /* [0..13*4] IN */
word * s) /* [0..159] OUT */
{
int j, k;
word erp[40], wt[160];
word * drp = S->dp0 + 120;
for (j=0; j <= 3; j++, xmaxcr++, bcr++, Ncr++, Mcr++, xMcr += 13) {
Gsm_RPE_Decoding( S, *xmaxcr, *Mcr, xMcr, erp );
Gsm_Long_Term_Synthesis_Filtering( S, *Ncr, *bcr, erp, drp );
for (k = 0; k <= 39; k++) wt[ j * 40 + k ] = drp[ k ];
}
Gsm_Short_Term_Synthesis_Filter( S, LARcr, wt, s );
Postprocessing(S, s);
}

28
libs/gsm/src/gsm_create.c Normal file
View File

@ -0,0 +1,28 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
static char const ident[] = "$Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/gsm_create.c,v 1.4 1996/07/02 09:59:05 jutta Exp $";
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "gsm.h"
#include "private.h"
#include "proto.h"
gsm gsm_create P0()
{
gsm r;
r = (gsm)malloc(sizeof(struct gsm_state));
if (!r) return r;
memset((char *)r, 0, sizeof(*r));
r->nrp = 40;
return r;
}

361
libs/gsm/src/gsm_decode.c Normal file
View File

@ -0,0 +1,361 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/gsm_decode.c,v 1.2 1996/07/02 09:59:05 jutta Exp $ */
#include "private.h"
#include "gsm.h"
#include "proto.h"
int gsm_decode P3((s, c, target), gsm s, gsm_byte * c, gsm_signal * target)
{
word LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4];
#ifdef WAV49
if (s->wav_fmt) {
uword sr = 0;
s->frame_index = !s->frame_index;
if (s->frame_index) {
sr = *c++;
LARc[0] = sr & 0x3f; sr >>= 6;
sr |= (uword)*c++ << 2;
LARc[1] = sr & 0x3f; sr >>= 6;
sr |= (uword)*c++ << 4;
LARc[2] = sr & 0x1f; sr >>= 5;
LARc[3] = sr & 0x1f; sr >>= 5;
sr |= (uword)*c++ << 2;
LARc[4] = sr & 0xf; sr >>= 4;
LARc[5] = sr & 0xf; sr >>= 4;
sr |= (uword)*c++ << 2; /* 5 */
LARc[6] = sr & 0x7; sr >>= 3;
LARc[7] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 4;
Nc[0] = sr & 0x7f; sr >>= 7;
bc[0] = sr & 0x3; sr >>= 2;
Mc[0] = sr & 0x3; sr >>= 2;
sr |= (uword)*c++ << 1;
xmaxc[0] = sr & 0x3f; sr >>= 6;
xmc[0] = sr & 0x7; sr >>= 3;
sr = *c++;
xmc[1] = sr & 0x7; sr >>= 3;
xmc[2] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 2;
xmc[3] = sr & 0x7; sr >>= 3;
xmc[4] = sr & 0x7; sr >>= 3;
xmc[5] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 1; /* 10 */
xmc[6] = sr & 0x7; sr >>= 3;
xmc[7] = sr & 0x7; sr >>= 3;
xmc[8] = sr & 0x7; sr >>= 3;
sr = *c++;
xmc[9] = sr & 0x7; sr >>= 3;
xmc[10] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 2;
xmc[11] = sr & 0x7; sr >>= 3;
xmc[12] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 4;
Nc[1] = sr & 0x7f; sr >>= 7;
bc[1] = sr & 0x3; sr >>= 2;
Mc[1] = sr & 0x3; sr >>= 2;
sr |= (uword)*c++ << 1;
xmaxc[1] = sr & 0x3f; sr >>= 6;
xmc[13] = sr & 0x7; sr >>= 3;
sr = *c++; /* 15 */
xmc[14] = sr & 0x7; sr >>= 3;
xmc[15] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 2;
xmc[16] = sr & 0x7; sr >>= 3;
xmc[17] = sr & 0x7; sr >>= 3;
xmc[18] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 1;
xmc[19] = sr & 0x7; sr >>= 3;
xmc[20] = sr & 0x7; sr >>= 3;
xmc[21] = sr & 0x7; sr >>= 3;
sr = *c++;
xmc[22] = sr & 0x7; sr >>= 3;
xmc[23] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 2;
xmc[24] = sr & 0x7; sr >>= 3;
xmc[25] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 4; /* 20 */
Nc[2] = sr & 0x7f; sr >>= 7;
bc[2] = sr & 0x3; sr >>= 2;
Mc[2] = sr & 0x3; sr >>= 2;
sr |= (uword)*c++ << 1;
xmaxc[2] = sr & 0x3f; sr >>= 6;
xmc[26] = sr & 0x7; sr >>= 3;
sr = *c++;
xmc[27] = sr & 0x7; sr >>= 3;
xmc[28] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 2;
xmc[29] = sr & 0x7; sr >>= 3;
xmc[30] = sr & 0x7; sr >>= 3;
xmc[31] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 1;
xmc[32] = sr & 0x7; sr >>= 3;
xmc[33] = sr & 0x7; sr >>= 3;
xmc[34] = sr & 0x7; sr >>= 3;
sr = *c++; /* 25 */
xmc[35] = sr & 0x7; sr >>= 3;
xmc[36] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 2;
xmc[37] = sr & 0x7; sr >>= 3;
xmc[38] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 4;
Nc[3] = sr & 0x7f; sr >>= 7;
bc[3] = sr & 0x3; sr >>= 2;
Mc[3] = sr & 0x3; sr >>= 2;
sr |= (uword)*c++ << 1;
xmaxc[3] = sr & 0x3f; sr >>= 6;
xmc[39] = sr & 0x7; sr >>= 3;
sr = *c++;
xmc[40] = sr & 0x7; sr >>= 3;
xmc[41] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 2; /* 30 */
xmc[42] = sr & 0x7; sr >>= 3;
xmc[43] = sr & 0x7; sr >>= 3;
xmc[44] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 1;
xmc[45] = sr & 0x7; sr >>= 3;
xmc[46] = sr & 0x7; sr >>= 3;
xmc[47] = sr & 0x7; sr >>= 3;
sr = *c++;
xmc[48] = sr & 0x7; sr >>= 3;
xmc[49] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 2;
xmc[50] = sr & 0x7; sr >>= 3;
xmc[51] = sr & 0x7; sr >>= 3;
s->frame_chain = sr & 0xf;
}
else {
sr = s->frame_chain;
sr |= (uword)*c++ << 4; /* 1 */
LARc[0] = sr & 0x3f; sr >>= 6;
LARc[1] = sr & 0x3f; sr >>= 6;
sr = *c++;
LARc[2] = sr & 0x1f; sr >>= 5;
sr |= (uword)*c++ << 3;
LARc[3] = sr & 0x1f; sr >>= 5;
LARc[4] = sr & 0xf; sr >>= 4;
sr |= (uword)*c++ << 2;
LARc[5] = sr & 0xf; sr >>= 4;
LARc[6] = sr & 0x7; sr >>= 3;
LARc[7] = sr & 0x7; sr >>= 3;
sr = *c++; /* 5 */
Nc[0] = sr & 0x7f; sr >>= 7;
sr |= (uword)*c++ << 1;
bc[0] = sr & 0x3; sr >>= 2;
Mc[0] = sr & 0x3; sr >>= 2;
sr |= (uword)*c++ << 5;
xmaxc[0] = sr & 0x3f; sr >>= 6;
xmc[0] = sr & 0x7; sr >>= 3;
xmc[1] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 1;
xmc[2] = sr & 0x7; sr >>= 3;
xmc[3] = sr & 0x7; sr >>= 3;
xmc[4] = sr & 0x7; sr >>= 3;
sr = *c++;
xmc[5] = sr & 0x7; sr >>= 3;
xmc[6] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 2; /* 10 */
xmc[7] = sr & 0x7; sr >>= 3;
xmc[8] = sr & 0x7; sr >>= 3;
xmc[9] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 1;
xmc[10] = sr & 0x7; sr >>= 3;
xmc[11] = sr & 0x7; sr >>= 3;
xmc[12] = sr & 0x7; sr >>= 3;
sr = *c++;
Nc[1] = sr & 0x7f; sr >>= 7;
sr |= (uword)*c++ << 1;
bc[1] = sr & 0x3; sr >>= 2;
Mc[1] = sr & 0x3; sr >>= 2;
sr |= (uword)*c++ << 5;
xmaxc[1] = sr & 0x3f; sr >>= 6;
xmc[13] = sr & 0x7; sr >>= 3;
xmc[14] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 1; /* 15 */
xmc[15] = sr & 0x7; sr >>= 3;
xmc[16] = sr & 0x7; sr >>= 3;
xmc[17] = sr & 0x7; sr >>= 3;
sr = *c++;
xmc[18] = sr & 0x7; sr >>= 3;
xmc[19] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 2;
xmc[20] = sr & 0x7; sr >>= 3;
xmc[21] = sr & 0x7; sr >>= 3;
xmc[22] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 1;
xmc[23] = sr & 0x7; sr >>= 3;
xmc[24] = sr & 0x7; sr >>= 3;
xmc[25] = sr & 0x7; sr >>= 3;
sr = *c++;
Nc[2] = sr & 0x7f; sr >>= 7;
sr |= (uword)*c++ << 1; /* 20 */
bc[2] = sr & 0x3; sr >>= 2;
Mc[2] = sr & 0x3; sr >>= 2;
sr |= (uword)*c++ << 5;
xmaxc[2] = sr & 0x3f; sr >>= 6;
xmc[26] = sr & 0x7; sr >>= 3;
xmc[27] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 1;
xmc[28] = sr & 0x7; sr >>= 3;
xmc[29] = sr & 0x7; sr >>= 3;
xmc[30] = sr & 0x7; sr >>= 3;
sr = *c++;
xmc[31] = sr & 0x7; sr >>= 3;
xmc[32] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 2;
xmc[33] = sr & 0x7; sr >>= 3;
xmc[34] = sr & 0x7; sr >>= 3;
xmc[35] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 1; /* 25 */
xmc[36] = sr & 0x7; sr >>= 3;
xmc[37] = sr & 0x7; sr >>= 3;
xmc[38] = sr & 0x7; sr >>= 3;
sr = *c++;
Nc[3] = sr & 0x7f; sr >>= 7;
sr |= (uword)*c++ << 1;
bc[3] = sr & 0x3; sr >>= 2;
Mc[3] = sr & 0x3; sr >>= 2;
sr |= (uword)*c++ << 5;
xmaxc[3] = sr & 0x3f; sr >>= 6;
xmc[39] = sr & 0x7; sr >>= 3;
xmc[40] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 1;
xmc[41] = sr & 0x7; sr >>= 3;
xmc[42] = sr & 0x7; sr >>= 3;
xmc[43] = sr & 0x7; sr >>= 3;
sr = *c++; /* 30 */
xmc[44] = sr & 0x7; sr >>= 3;
xmc[45] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 2;
xmc[46] = sr & 0x7; sr >>= 3;
xmc[47] = sr & 0x7; sr >>= 3;
xmc[48] = sr & 0x7; sr >>= 3;
sr |= (uword)*c++ << 1;
xmc[49] = sr & 0x7; sr >>= 3;
xmc[50] = sr & 0x7; sr >>= 3;
xmc[51] = sr & 0x7; sr >>= 3;
}
}
else
#endif
{
/* GSM_MAGIC = (*c >> 4) & 0xF; */
if (((*c >> 4) & 0x0F) != GSM_MAGIC) return -1;
LARc[0] = (*c++ & 0xF) << 2; /* 1 */
LARc[0] |= (*c >> 6) & 0x3;
LARc[1] = *c++ & 0x3F;
LARc[2] = (*c >> 3) & 0x1F;
LARc[3] = (*c++ & 0x7) << 2;
LARc[3] |= (*c >> 6) & 0x3;
LARc[4] = (*c >> 2) & 0xF;
LARc[5] = (*c++ & 0x3) << 2;
LARc[5] |= (*c >> 6) & 0x3;
LARc[6] = (*c >> 3) & 0x7;
LARc[7] = *c++ & 0x7;
Nc[0] = (*c >> 1) & 0x7F;
bc[0] = (*c++ & 0x1) << 1;
bc[0] |= (*c >> 7) & 0x1;
Mc[0] = (*c >> 5) & 0x3;
xmaxc[0] = (*c++ & 0x1F) << 1;
xmaxc[0] |= (*c >> 7) & 0x1;
xmc[0] = (*c >> 4) & 0x7;
xmc[1] = (*c >> 1) & 0x7;
xmc[2] = (*c++ & 0x1) << 2;
xmc[2] |= (*c >> 6) & 0x3;
xmc[3] = (*c >> 3) & 0x7;
xmc[4] = *c++ & 0x7;
xmc[5] = (*c >> 5) & 0x7;
xmc[6] = (*c >> 2) & 0x7;
xmc[7] = (*c++ & 0x3) << 1; /* 10 */
xmc[7] |= (*c >> 7) & 0x1;
xmc[8] = (*c >> 4) & 0x7;
xmc[9] = (*c >> 1) & 0x7;
xmc[10] = (*c++ & 0x1) << 2;
xmc[10] |= (*c >> 6) & 0x3;
xmc[11] = (*c >> 3) & 0x7;
xmc[12] = *c++ & 0x7;
Nc[1] = (*c >> 1) & 0x7F;
bc[1] = (*c++ & 0x1) << 1;
bc[1] |= (*c >> 7) & 0x1;
Mc[1] = (*c >> 5) & 0x3;
xmaxc[1] = (*c++ & 0x1F) << 1;
xmaxc[1] |= (*c >> 7) & 0x1;
xmc[13] = (*c >> 4) & 0x7;
xmc[14] = (*c >> 1) & 0x7;
xmc[15] = (*c++ & 0x1) << 2;
xmc[15] |= (*c >> 6) & 0x3;
xmc[16] = (*c >> 3) & 0x7;
xmc[17] = *c++ & 0x7;
xmc[18] = (*c >> 5) & 0x7;
xmc[19] = (*c >> 2) & 0x7;
xmc[20] = (*c++ & 0x3) << 1;
xmc[20] |= (*c >> 7) & 0x1;
xmc[21] = (*c >> 4) & 0x7;
xmc[22] = (*c >> 1) & 0x7;
xmc[23] = (*c++ & 0x1) << 2;
xmc[23] |= (*c >> 6) & 0x3;
xmc[24] = (*c >> 3) & 0x7;
xmc[25] = *c++ & 0x7;
Nc[2] = (*c >> 1) & 0x7F;
bc[2] = (*c++ & 0x1) << 1; /* 20 */
bc[2] |= (*c >> 7) & 0x1;
Mc[2] = (*c >> 5) & 0x3;
xmaxc[2] = (*c++ & 0x1F) << 1;
xmaxc[2] |= (*c >> 7) & 0x1;
xmc[26] = (*c >> 4) & 0x7;
xmc[27] = (*c >> 1) & 0x7;
xmc[28] = (*c++ & 0x1) << 2;
xmc[28] |= (*c >> 6) & 0x3;
xmc[29] = (*c >> 3) & 0x7;
xmc[30] = *c++ & 0x7;
xmc[31] = (*c >> 5) & 0x7;
xmc[32] = (*c >> 2) & 0x7;
xmc[33] = (*c++ & 0x3) << 1;
xmc[33] |= (*c >> 7) & 0x1;
xmc[34] = (*c >> 4) & 0x7;
xmc[35] = (*c >> 1) & 0x7;
xmc[36] = (*c++ & 0x1) << 2;
xmc[36] |= (*c >> 6) & 0x3;
xmc[37] = (*c >> 3) & 0x7;
xmc[38] = *c++ & 0x7;
Nc[3] = (*c >> 1) & 0x7F;
bc[3] = (*c++ & 0x1) << 1;
bc[3] |= (*c >> 7) & 0x1;
Mc[3] = (*c >> 5) & 0x3;
xmaxc[3] = (*c++ & 0x1F) << 1;
xmaxc[3] |= (*c >> 7) & 0x1;
xmc[39] = (*c >> 4) & 0x7;
xmc[40] = (*c >> 1) & 0x7;
xmc[41] = (*c++ & 0x1) << 2;
xmc[41] |= (*c >> 6) & 0x3;
xmc[42] = (*c >> 3) & 0x7;
xmc[43] = *c++ & 0x7; /* 30 */
xmc[44] = (*c >> 5) & 0x7;
xmc[45] = (*c >> 2) & 0x7;
xmc[46] = (*c++ & 0x3) << 1;
xmc[46] |= (*c >> 7) & 0x1;
xmc[47] = (*c >> 4) & 0x7;
xmc[48] = (*c >> 1) & 0x7;
xmc[49] = (*c++ & 0x1) << 2;
xmc[49] |= (*c >> 6) & 0x3;
xmc[50] = (*c >> 3) & 0x7;
xmc[51] = *c & 0x7; /* 33 */
}
Gsm_Decoder(s, LARc, Nc, bc, Mc, xmaxc, xmc, target);
return 0;
}

View File

@ -0,0 +1,16 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/gsm_destroy.c,v 1.3 1994/11/28 19:52:25 jutta Exp $ */
#include "gsm.h"
#include "proto.h"
#include <stdlib.h>
void gsm_destroy P1((S), gsm S)
{
if (S) free((char *)S);
}

451
libs/gsm/src/gsm_encode.c Normal file
View File

@ -0,0 +1,451 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/gsm_encode.c,v 1.2 1996/07/02 09:59:05 jutta Exp $ */
#include "private.h"
#include "gsm.h"
#include "proto.h"
void gsm_encode P3((s, source, c), gsm s, gsm_signal * source, gsm_byte * c)
{
word LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4];
Gsm_Coder(s, source, LARc, Nc, bc, Mc, xmaxc, xmc);
/* variable size
GSM_MAGIC 4
LARc[0] 6
LARc[1] 6
LARc[2] 5
LARc[3] 5
LARc[4] 4
LARc[5] 4
LARc[6] 3
LARc[7] 3
Nc[0] 7
bc[0] 2
Mc[0] 2
xmaxc[0] 6
xmc[0] 3
xmc[1] 3
xmc[2] 3
xmc[3] 3
xmc[4] 3
xmc[5] 3
xmc[6] 3
xmc[7] 3
xmc[8] 3
xmc[9] 3
xmc[10] 3
xmc[11] 3
xmc[12] 3
Nc[1] 7
bc[1] 2
Mc[1] 2
xmaxc[1] 6
xmc[13] 3
xmc[14] 3
xmc[15] 3
xmc[16] 3
xmc[17] 3
xmc[18] 3
xmc[19] 3
xmc[20] 3
xmc[21] 3
xmc[22] 3
xmc[23] 3
xmc[24] 3
xmc[25] 3
Nc[2] 7
bc[2] 2
Mc[2] 2
xmaxc[2] 6
xmc[26] 3
xmc[27] 3
xmc[28] 3
xmc[29] 3
xmc[30] 3
xmc[31] 3
xmc[32] 3
xmc[33] 3
xmc[34] 3
xmc[35] 3
xmc[36] 3
xmc[37] 3
xmc[38] 3
Nc[3] 7
bc[3] 2
Mc[3] 2
xmaxc[3] 6
xmc[39] 3
xmc[40] 3
xmc[41] 3
xmc[42] 3
xmc[43] 3
xmc[44] 3
xmc[45] 3
xmc[46] 3
xmc[47] 3
xmc[48] 3
xmc[49] 3
xmc[50] 3
xmc[51] 3
*/
#ifdef WAV49
if (s->wav_fmt) {
s->frame_index = !s->frame_index;
if (s->frame_index) {
uword sr;
sr = 0;
sr = sr >> 6 | LARc[0] << 10;
sr = sr >> 6 | LARc[1] << 10;
*c++ = sr >> 4;
sr = sr >> 5 | LARc[2] << 11;
*c++ = sr >> 7;
sr = sr >> 5 | LARc[3] << 11;
sr = sr >> 4 | LARc[4] << 12;
*c++ = sr >> 6;
sr = sr >> 4 | LARc[5] << 12;
sr = sr >> 3 | LARc[6] << 13;
*c++ = sr >> 7;
sr = sr >> 3 | LARc[7] << 13;
sr = sr >> 7 | Nc[0] << 9;
*c++ = sr >> 5;
sr = sr >> 2 | bc[0] << 14;
sr = sr >> 2 | Mc[0] << 14;
sr = sr >> 6 | xmaxc[0] << 10;
*c++ = sr >> 3;
sr = sr >> 3 | xmc[0] << 13;
*c++ = sr >> 8;
sr = sr >> 3 | xmc[1] << 13;
sr = sr >> 3 | xmc[2] << 13;
sr = sr >> 3 | xmc[3] << 13;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[4] << 13;
sr = sr >> 3 | xmc[5] << 13;
sr = sr >> 3 | xmc[6] << 13;
*c++ = sr >> 6;
sr = sr >> 3 | xmc[7] << 13;
sr = sr >> 3 | xmc[8] << 13;
*c++ = sr >> 8;
sr = sr >> 3 | xmc[9] << 13;
sr = sr >> 3 | xmc[10] << 13;
sr = sr >> 3 | xmc[11] << 13;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[12] << 13;
sr = sr >> 7 | Nc[1] << 9;
*c++ = sr >> 5;
sr = sr >> 2 | bc[1] << 14;
sr = sr >> 2 | Mc[1] << 14;
sr = sr >> 6 | xmaxc[1] << 10;
*c++ = sr >> 3;
sr = sr >> 3 | xmc[13] << 13;
*c++ = sr >> 8;
sr = sr >> 3 | xmc[14] << 13;
sr = sr >> 3 | xmc[15] << 13;
sr = sr >> 3 | xmc[16] << 13;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[17] << 13;
sr = sr >> 3 | xmc[18] << 13;
sr = sr >> 3 | xmc[19] << 13;
*c++ = sr >> 6;
sr = sr >> 3 | xmc[20] << 13;
sr = sr >> 3 | xmc[21] << 13;
*c++ = sr >> 8;
sr = sr >> 3 | xmc[22] << 13;
sr = sr >> 3 | xmc[23] << 13;
sr = sr >> 3 | xmc[24] << 13;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[25] << 13;
sr = sr >> 7 | Nc[2] << 9;
*c++ = sr >> 5;
sr = sr >> 2 | bc[2] << 14;
sr = sr >> 2 | Mc[2] << 14;
sr = sr >> 6 | xmaxc[2] << 10;
*c++ = sr >> 3;
sr = sr >> 3 | xmc[26] << 13;
*c++ = sr >> 8;
sr = sr >> 3 | xmc[27] << 13;
sr = sr >> 3 | xmc[28] << 13;
sr = sr >> 3 | xmc[29] << 13;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[30] << 13;
sr = sr >> 3 | xmc[31] << 13;
sr = sr >> 3 | xmc[32] << 13;
*c++ = sr >> 6;
sr = sr >> 3 | xmc[33] << 13;
sr = sr >> 3 | xmc[34] << 13;
*c++ = sr >> 8;
sr = sr >> 3 | xmc[35] << 13;
sr = sr >> 3 | xmc[36] << 13;
sr = sr >> 3 | xmc[37] << 13;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[38] << 13;
sr = sr >> 7 | Nc[3] << 9;
*c++ = sr >> 5;
sr = sr >> 2 | bc[3] << 14;
sr = sr >> 2 | Mc[3] << 14;
sr = sr >> 6 | xmaxc[3] << 10;
*c++ = sr >> 3;
sr = sr >> 3 | xmc[39] << 13;
*c++ = sr >> 8;
sr = sr >> 3 | xmc[40] << 13;
sr = sr >> 3 | xmc[41] << 13;
sr = sr >> 3 | xmc[42] << 13;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[43] << 13;
sr = sr >> 3 | xmc[44] << 13;
sr = sr >> 3 | xmc[45] << 13;
*c++ = sr >> 6;
sr = sr >> 3 | xmc[46] << 13;
sr = sr >> 3 | xmc[47] << 13;
*c++ = sr >> 8;
sr = sr >> 3 | xmc[48] << 13;
sr = sr >> 3 | xmc[49] << 13;
sr = sr >> 3 | xmc[50] << 13;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[51] << 13;
sr = sr >> 4;
*c = sr >> 8;
s->frame_chain = *c;
}
else {
uword sr;
sr = 0;
sr = sr >> 4 | s->frame_chain << 12;
sr = sr >> 6 | LARc[0] << 10;
*c++ = sr >> 6;
sr = sr >> 6 | LARc[1] << 10;
*c++ = sr >> 8;
sr = sr >> 5 | LARc[2] << 11;
sr = sr >> 5 | LARc[3] << 11;
*c++ = sr >> 6;
sr = sr >> 4 | LARc[4] << 12;
sr = sr >> 4 | LARc[5] << 12;
*c++ = sr >> 6;
sr = sr >> 3 | LARc[6] << 13;
sr = sr >> 3 | LARc[7] << 13;
*c++ = sr >> 8;
sr = sr >> 7 | Nc[0] << 9;
sr = sr >> 2 | bc[0] << 14;
*c++ = sr >> 7;
sr = sr >> 2 | Mc[0] << 14;
sr = sr >> 6 | xmaxc[0] << 10;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[0] << 13;
sr = sr >> 3 | xmc[1] << 13;
sr = sr >> 3 | xmc[2] << 13;
*c++ = sr >> 6;
sr = sr >> 3 | xmc[3] << 13;
sr = sr >> 3 | xmc[4] << 13;
*c++ = sr >> 8;
sr = sr >> 3 | xmc[5] << 13;
sr = sr >> 3 | xmc[6] << 13;
sr = sr >> 3 | xmc[7] << 13;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[8] << 13;
sr = sr >> 3 | xmc[9] << 13;
sr = sr >> 3 | xmc[10] << 13;
*c++ = sr >> 6;
sr = sr >> 3 | xmc[11] << 13;
sr = sr >> 3 | xmc[12] << 13;
*c++ = sr >> 8;
sr = sr >> 7 | Nc[1] << 9;
sr = sr >> 2 | bc[1] << 14;
*c++ = sr >> 7;
sr = sr >> 2 | Mc[1] << 14;
sr = sr >> 6 | xmaxc[1] << 10;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[13] << 13;
sr = sr >> 3 | xmc[14] << 13;
sr = sr >> 3 | xmc[15] << 13;
*c++ = sr >> 6;
sr = sr >> 3 | xmc[16] << 13;
sr = sr >> 3 | xmc[17] << 13;
*c++ = sr >> 8;
sr = sr >> 3 | xmc[18] << 13;
sr = sr >> 3 | xmc[19] << 13;
sr = sr >> 3 | xmc[20] << 13;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[21] << 13;
sr = sr >> 3 | xmc[22] << 13;
sr = sr >> 3 | xmc[23] << 13;
*c++ = sr >> 6;
sr = sr >> 3 | xmc[24] << 13;
sr = sr >> 3 | xmc[25] << 13;
*c++ = sr >> 8;
sr = sr >> 7 | Nc[2] << 9;
sr = sr >> 2 | bc[2] << 14;
*c++ = sr >> 7;
sr = sr >> 2 | Mc[2] << 14;
sr = sr >> 6 | xmaxc[2] << 10;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[26] << 13;
sr = sr >> 3 | xmc[27] << 13;
sr = sr >> 3 | xmc[28] << 13;
*c++ = sr >> 6;
sr = sr >> 3 | xmc[29] << 13;
sr = sr >> 3 | xmc[30] << 13;
*c++ = sr >> 8;
sr = sr >> 3 | xmc[31] << 13;
sr = sr >> 3 | xmc[32] << 13;
sr = sr >> 3 | xmc[33] << 13;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[34] << 13;
sr = sr >> 3 | xmc[35] << 13;
sr = sr >> 3 | xmc[36] << 13;
*c++ = sr >> 6;
sr = sr >> 3 | xmc[37] << 13;
sr = sr >> 3 | xmc[38] << 13;
*c++ = sr >> 8;
sr = sr >> 7 | Nc[3] << 9;
sr = sr >> 2 | bc[3] << 14;
*c++ = sr >> 7;
sr = sr >> 2 | Mc[3] << 14;
sr = sr >> 6 | xmaxc[3] << 10;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[39] << 13;
sr = sr >> 3 | xmc[40] << 13;
sr = sr >> 3 | xmc[41] << 13;
*c++ = sr >> 6;
sr = sr >> 3 | xmc[42] << 13;
sr = sr >> 3 | xmc[43] << 13;
*c++ = sr >> 8;
sr = sr >> 3 | xmc[44] << 13;
sr = sr >> 3 | xmc[45] << 13;
sr = sr >> 3 | xmc[46] << 13;
*c++ = sr >> 7;
sr = sr >> 3 | xmc[47] << 13;
sr = sr >> 3 | xmc[48] << 13;
sr = sr >> 3 | xmc[49] << 13;
*c++ = sr >> 6;
sr = sr >> 3 | xmc[50] << 13;
sr = sr >> 3 | xmc[51] << 13;
*c++ = sr >> 8;
}
}
else
#endif /* WAV49 */
{
*c++ = ((GSM_MAGIC & 0xF) << 4) /* 1 */
| ((LARc[0] >> 2) & 0xF);
*c++ = ((LARc[0] & 0x3) << 6)
| (LARc[1] & 0x3F);
*c++ = ((LARc[2] & 0x1F) << 3)
| ((LARc[3] >> 2) & 0x7);
*c++ = ((LARc[3] & 0x3) << 6)
| ((LARc[4] & 0xF) << 2)
| ((LARc[5] >> 2) & 0x3);
*c++ = ((LARc[5] & 0x3) << 6)
| ((LARc[6] & 0x7) << 3)
| (LARc[7] & 0x7);
*c++ = ((Nc[0] & 0x7F) << 1)
| ((bc[0] >> 1) & 0x1);
*c++ = ((bc[0] & 0x1) << 7)
| ((Mc[0] & 0x3) << 5)
| ((xmaxc[0] >> 1) & 0x1F);
*c++ = ((xmaxc[0] & 0x1) << 7)
| ((xmc[0] & 0x7) << 4)
| ((xmc[1] & 0x7) << 1)
| ((xmc[2] >> 2) & 0x1);
*c++ = ((xmc[2] & 0x3) << 6)
| ((xmc[3] & 0x7) << 3)
| (xmc[4] & 0x7);
*c++ = ((xmc[5] & 0x7) << 5) /* 10 */
| ((xmc[6] & 0x7) << 2)
| ((xmc[7] >> 1) & 0x3);
*c++ = ((xmc[7] & 0x1) << 7)
| ((xmc[8] & 0x7) << 4)
| ((xmc[9] & 0x7) << 1)
| ((xmc[10] >> 2) & 0x1);
*c++ = ((xmc[10] & 0x3) << 6)
| ((xmc[11] & 0x7) << 3)
| (xmc[12] & 0x7);
*c++ = ((Nc[1] & 0x7F) << 1)
| ((bc[1] >> 1) & 0x1);
*c++ = ((bc[1] & 0x1) << 7)
| ((Mc[1] & 0x3) << 5)
| ((xmaxc[1] >> 1) & 0x1F);
*c++ = ((xmaxc[1] & 0x1) << 7)
| ((xmc[13] & 0x7) << 4)
| ((xmc[14] & 0x7) << 1)
| ((xmc[15] >> 2) & 0x1);
*c++ = ((xmc[15] & 0x3) << 6)
| ((xmc[16] & 0x7) << 3)
| (xmc[17] & 0x7);
*c++ = ((xmc[18] & 0x7) << 5)
| ((xmc[19] & 0x7) << 2)
| ((xmc[20] >> 1) & 0x3);
*c++ = ((xmc[20] & 0x1) << 7)
| ((xmc[21] & 0x7) << 4)
| ((xmc[22] & 0x7) << 1)
| ((xmc[23] >> 2) & 0x1);
*c++ = ((xmc[23] & 0x3) << 6)
| ((xmc[24] & 0x7) << 3)
| (xmc[25] & 0x7);
*c++ = ((Nc[2] & 0x7F) << 1) /* 20 */
| ((bc[2] >> 1) & 0x1);
*c++ = ((bc[2] & 0x1) << 7)
| ((Mc[2] & 0x3) << 5)
| ((xmaxc[2] >> 1) & 0x1F);
*c++ = ((xmaxc[2] & 0x1) << 7)
| ((xmc[26] & 0x7) << 4)
| ((xmc[27] & 0x7) << 1)
| ((xmc[28] >> 2) & 0x1);
*c++ = ((xmc[28] & 0x3) << 6)
| ((xmc[29] & 0x7) << 3)
| (xmc[30] & 0x7);
*c++ = ((xmc[31] & 0x7) << 5)
| ((xmc[32] & 0x7) << 2)
| ((xmc[33] >> 1) & 0x3);
*c++ = ((xmc[33] & 0x1) << 7)
| ((xmc[34] & 0x7) << 4)
| ((xmc[35] & 0x7) << 1)
| ((xmc[36] >> 2) & 0x1);
*c++ = ((xmc[36] & 0x3) << 6)
| ((xmc[37] & 0x7) << 3)
| (xmc[38] & 0x7);
*c++ = ((Nc[3] & 0x7F) << 1)
| ((bc[3] >> 1) & 0x1);
*c++ = ((bc[3] & 0x1) << 7)
| ((Mc[3] & 0x3) << 5)
| ((xmaxc[3] >> 1) & 0x1F);
*c++ = ((xmaxc[3] & 0x1) << 7)
| ((xmc[39] & 0x7) << 4)
| ((xmc[40] & 0x7) << 1)
| ((xmc[41] >> 2) & 0x1);
*c++ = ((xmc[41] & 0x3) << 6) /* 30 */
| ((xmc[42] & 0x7) << 3)
| (xmc[43] & 0x7);
*c++ = ((xmc[44] & 0x7) << 5)
| ((xmc[45] & 0x7) << 2)
| ((xmc[46] >> 1) & 0x3);
*c++ = ((xmc[46] & 0x1) << 7)
| ((xmc[47] & 0x7) << 4)
| ((xmc[48] & 0x7) << 1)
| ((xmc[49] >> 2) & 0x1);
*c++ = ((xmc[49] & 0x3) << 6)
| ((xmc[50] & 0x7) << 3)
| (xmc[51] & 0x7);
}
}

69
libs/gsm/src/gsm_option.c Normal file
View File

@ -0,0 +1,69 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/gsm_option.c,v 1.3 1996/07/02 09:59:05 jutta Exp $ */
#include "private.h"
#include "gsm.h"
#include "proto.h"
int gsm_option P3((r, opt, val), gsm r, int opt, int * val)
{
int result = -1;
switch (opt) {
case GSM_OPT_LTP_CUT:
#ifdef LTP_CUT
result = r->ltp_cut;
if (val) r->ltp_cut = *val;
#endif
break;
case GSM_OPT_VERBOSE:
#ifndef NDEBUG
result = r->verbose;
if (val) r->verbose = *val;
#endif
break;
case GSM_OPT_FAST:
#if defined(FAST) && defined(USE_FLOAT_MUL)
result = r->fast;
if (val) r->fast = !!*val;
#endif
break;
case GSM_OPT_FRAME_CHAIN:
#ifdef WAV49
result = r->frame_chain;
if (val) r->frame_chain = *val;
#endif
break;
case GSM_OPT_FRAME_INDEX:
#ifdef WAV49
result = r->frame_index;
if (val) r->frame_index = *val;
#endif
break;
case GSM_OPT_WAV49:
#ifdef WAV49
result = r->wav_fmt;
if (val) r->wav_fmt = !!*val;
#endif
break;
default:
break;
}
return result;
}

167
libs/gsm/src/gsm_print.c Normal file
View File

@ -0,0 +1,167 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/gsm_print.c,v 1.1 1992/10/28 00:15:50 jutta Exp $ */
#include <stdio.h>
#include "private.h"
#include "gsm.h"
#include "proto.h"
int gsm_print P3((f, s, c), FILE * f, gsm s, gsm_byte * c)
{
word LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4];
/* GSM_MAGIC = (*c >> 4) & 0xF; */
if (((*c >> 4) & 0x0F) != GSM_MAGIC) return -1;
LARc[0] = (*c++ & 0xF) << 2; /* 1 */
LARc[0] |= (*c >> 6) & 0x3;
LARc[1] = *c++ & 0x3F;
LARc[2] = (*c >> 3) & 0x1F;
LARc[3] = (*c++ & 0x7) << 2;
LARc[3] |= (*c >> 6) & 0x3;
LARc[4] = (*c >> 2) & 0xF;
LARc[5] = (*c++ & 0x3) << 2;
LARc[5] |= (*c >> 6) & 0x3;
LARc[6] = (*c >> 3) & 0x7;
LARc[7] = *c++ & 0x7;
Nc[0] = (*c >> 1) & 0x7F;
bc[0] = (*c++ & 0x1) << 1;
bc[0] |= (*c >> 7) & 0x1;
Mc[0] = (*c >> 5) & 0x3;
xmaxc[0] = (*c++ & 0x1F) << 1;
xmaxc[0] |= (*c >> 7) & 0x1;
xmc[0] = (*c >> 4) & 0x7;
xmc[1] = (*c >> 1) & 0x7;
xmc[2] = (*c++ & 0x1) << 2;
xmc[2] |= (*c >> 6) & 0x3;
xmc[3] = (*c >> 3) & 0x7;
xmc[4] = *c++ & 0x7;
xmc[5] = (*c >> 5) & 0x7;
xmc[6] = (*c >> 2) & 0x7;
xmc[7] = (*c++ & 0x3) << 1; /* 10 */
xmc[7] |= (*c >> 7) & 0x1;
xmc[8] = (*c >> 4) & 0x7;
xmc[9] = (*c >> 1) & 0x7;
xmc[10] = (*c++ & 0x1) << 2;
xmc[10] |= (*c >> 6) & 0x3;
xmc[11] = (*c >> 3) & 0x7;
xmc[12] = *c++ & 0x7;
Nc[1] = (*c >> 1) & 0x7F;
bc[1] = (*c++ & 0x1) << 1;
bc[1] |= (*c >> 7) & 0x1;
Mc[1] = (*c >> 5) & 0x3;
xmaxc[1] = (*c++ & 0x1F) << 1;
xmaxc[1] |= (*c >> 7) & 0x1;
xmc[13] = (*c >> 4) & 0x7;
xmc[14] = (*c >> 1) & 0x7;
xmc[15] = (*c++ & 0x1) << 2;
xmc[15] |= (*c >> 6) & 0x3;
xmc[16] = (*c >> 3) & 0x7;
xmc[17] = *c++ & 0x7;
xmc[18] = (*c >> 5) & 0x7;
xmc[19] = (*c >> 2) & 0x7;
xmc[20] = (*c++ & 0x3) << 1;
xmc[20] |= (*c >> 7) & 0x1;
xmc[21] = (*c >> 4) & 0x7;
xmc[22] = (*c >> 1) & 0x7;
xmc[23] = (*c++ & 0x1) << 2;
xmc[23] |= (*c >> 6) & 0x3;
xmc[24] = (*c >> 3) & 0x7;
xmc[25] = *c++ & 0x7;
Nc[2] = (*c >> 1) & 0x7F;
bc[2] = (*c++ & 0x1) << 1; /* 20 */
bc[2] |= (*c >> 7) & 0x1;
Mc[2] = (*c >> 5) & 0x3;
xmaxc[2] = (*c++ & 0x1F) << 1;
xmaxc[2] |= (*c >> 7) & 0x1;
xmc[26] = (*c >> 4) & 0x7;
xmc[27] = (*c >> 1) & 0x7;
xmc[28] = (*c++ & 0x1) << 2;
xmc[28] |= (*c >> 6) & 0x3;
xmc[29] = (*c >> 3) & 0x7;
xmc[30] = *c++ & 0x7;
xmc[31] = (*c >> 5) & 0x7;
xmc[32] = (*c >> 2) & 0x7;
xmc[33] = (*c++ & 0x3) << 1;
xmc[33] |= (*c >> 7) & 0x1;
xmc[34] = (*c >> 4) & 0x7;
xmc[35] = (*c >> 1) & 0x7;
xmc[36] = (*c++ & 0x1) << 2;
xmc[36] |= (*c >> 6) & 0x3;
xmc[37] = (*c >> 3) & 0x7;
xmc[38] = *c++ & 0x7;
Nc[3] = (*c >> 1) & 0x7F;
bc[3] = (*c++ & 0x1) << 1;
bc[3] |= (*c >> 7) & 0x1;
Mc[3] = (*c >> 5) & 0x3;
xmaxc[3] = (*c++ & 0x1F) << 1;
xmaxc[3] |= (*c >> 7) & 0x1;
xmc[39] = (*c >> 4) & 0x7;
xmc[40] = (*c >> 1) & 0x7;
xmc[41] = (*c++ & 0x1) << 2;
xmc[41] |= (*c >> 6) & 0x3;
xmc[42] = (*c >> 3) & 0x7;
xmc[43] = *c++ & 0x7; /* 30 */
xmc[44] = (*c >> 5) & 0x7;
xmc[45] = (*c >> 2) & 0x7;
xmc[46] = (*c++ & 0x3) << 1;
xmc[46] |= (*c >> 7) & 0x1;
xmc[47] = (*c >> 4) & 0x7;
xmc[48] = (*c >> 1) & 0x7;
xmc[49] = (*c++ & 0x1) << 2;
xmc[49] |= (*c >> 6) & 0x3;
xmc[50] = (*c >> 3) & 0x7;
xmc[51] = *c & 0x7; /* 33 */
fprintf(f,
"LARc:\t%2.2d %2.2d %2.2d %2.2d %2.2d %2.2d %2.2d %2.2d\n",
LARc[0],LARc[1],LARc[2],LARc[3],LARc[4],LARc[5],LARc[6],LARc[7]);
fprintf(f, "#1: Nc %4.4d bc %d Mc %d xmaxc %d\n",
Nc[0], bc[0], Mc[0], xmaxc[0]);
fprintf(f,
"\t%.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d\n",
xmc[0],xmc[1],xmc[2],xmc[3],xmc[4],xmc[5],xmc[6],
xmc[7],xmc[8],xmc[9],xmc[10],xmc[11],xmc[12] );
fprintf(f, "#2: Nc %4.4d bc %d Mc %d xmaxc %d\n",
Nc[1], bc[1], Mc[1], xmaxc[1]);
fprintf(f,
"\t%.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d\n",
xmc[13+0],xmc[13+1],xmc[13+2],xmc[13+3],xmc[13+4],xmc[13+5],
xmc[13+6], xmc[13+7],xmc[13+8],xmc[13+9],xmc[13+10],xmc[13+11],
xmc[13+12] );
fprintf(f, "#3: Nc %4.4d bc %d Mc %d xmaxc %d\n",
Nc[2], bc[2], Mc[2], xmaxc[2]);
fprintf(f,
"\t%.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d\n",
xmc[26+0],xmc[26+1],xmc[26+2],xmc[26+3],xmc[26+4],xmc[26+5],
xmc[26+6], xmc[26+7],xmc[26+8],xmc[26+9],xmc[26+10],xmc[26+11],
xmc[26+12] );
fprintf(f, "#4: Nc %4.4d bc %d Mc %d xmaxc %d\n",
Nc[3], bc[3], Mc[3], xmaxc[3]);
fprintf(f,
"\t%.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d\n",
xmc[39+0],xmc[39+1],xmc[39+2],xmc[39+3],xmc[39+4],xmc[39+5],
xmc[39+6], xmc[39+7],xmc[39+8],xmc[39+9],xmc[39+10],xmc[39+11],
xmc[39+12] );
return 0;
}

949
libs/gsm/src/long_term.c Normal file
View File

@ -0,0 +1,949 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/long_term.c,v 1.6 1996/07/02 12:33:19 jutta Exp $ */
#include <stdio.h>
#include <assert.h>
#include "private.h"
#include "gsm.h"
#include "proto.h"
/*
* 4.2.11 .. 4.2.12 LONG TERM PREDICTOR (LTP) SECTION
*/
/*
* This module computes the LTP gain (bc) and the LTP lag (Nc)
* for the long term analysis filter. This is done by calculating a
* maximum of the cross-correlation function between the current
* sub-segment short term residual signal d[0..39] (output of
* the short term analysis filter; for simplification the index
* of this array begins at 0 and ends at 39 for each sub-segment of the
* RPE-LTP analysis) and the previous reconstructed short term
* residual signal dp[ -120 .. -1 ]. A dynamic scaling must be
* performed to avoid overflow.
*/
/* The next procedure exists in six versions. First two integer
* version (if USE_FLOAT_MUL is not defined); then four floating
* point versions, twice with proper scaling (USE_FLOAT_MUL defined),
* once without (USE_FLOAT_MUL and FAST defined, and fast run-time
* option used). Every pair has first a Cut version (see the -C
* option to toast or the LTP_CUT option to gsm_option()), then the
* uncut one. (For a detailed explanation of why this is altogether
* a bad idea, see Henry Spencer and Geoff Collyer, ``#ifdef Considered
* Harmful''.)
*/
#ifndef USE_FLOAT_MUL
#ifdef LTP_CUT
static void Cut_Calculation_of_the_LTP_parameters P5((st, d,dp,bc_out,Nc_out),
struct gsm_state * st,
register word * d, /* [0..39] IN */
register word * dp, /* [-120..-1] IN */
word * bc_out, /* OUT */
word * Nc_out /* OUT */
)
{
register int k, lambda;
word Nc, bc;
word wt[40];
longword L_result;
longword L_max, L_power;
word R, S, dmax, scal, best_k;
word ltp_cut;
register word temp, wt_k;
/* Search of the optimum scaling of d[0..39].
*/
dmax = 0;
for (k = 0; k <= 39; k++) {
temp = d[k];
temp = GSM_ABS( temp );
if (temp > dmax) {
dmax = temp;
best_k = k;
}
}
temp = 0;
if (dmax == 0) scal = 0;
else {
assert(dmax > 0);
temp = gsm_norm( (longword)dmax << 16 );
}
if (temp > 6) scal = 0;
else scal = 6 - temp;
assert(scal >= 0);
/* Search for the maximum cross-correlation and coding of the LTP lag
*/
L_max = 0;
Nc = 40; /* index for the maximum cross-correlation */
wt_k = SASR(d[best_k], scal);
for (lambda = 40; lambda <= 120; lambda++) {
L_result = (longword)wt_k * dp[best_k - lambda];
if (L_result > L_max) {
Nc = lambda;
L_max = L_result;
}
}
*Nc_out = Nc;
L_max <<= 1;
/* Rescaling of L_max
*/
assert(scal <= 100 && scal >= -100);
L_max = L_max >> (6 - scal); /* sub(6, scal) */
assert( Nc <= 120 && Nc >= 40);
/* Compute the power of the reconstructed short term residual
* signal dp[..]
*/
L_power = 0;
for (k = 0; k <= 39; k++) {
register longword L_temp;
L_temp = SASR( dp[k - Nc], 3 );
L_power += L_temp * L_temp;
}
L_power <<= 1; /* from L_MULT */
/* Normalization of L_max and L_power
*/
if (L_max <= 0) {
*bc_out = 0;
return;
}
if (L_max >= L_power) {
*bc_out = 3;
return;
}
temp = gsm_norm( L_power );
R = SASR( L_max << temp, 16 );
S = SASR( L_power << temp, 16 );
/* Coding of the LTP gain
*/
/* Table 4.3a must be used to obtain the level DLB[i] for the
* quantization of the LTP gain b to get the coded version bc.
*/
for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
*bc_out = bc;
}
#endif /* LTP_CUT */
static void Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out),
register word * d, /* [0..39] IN */
register word * dp, /* [-120..-1] IN */
word * bc_out, /* OUT */
word * Nc_out /* OUT */
)
{
register int k, lambda;
word Nc, bc;
word wt[40];
longword L_max, L_power;
word R, S, dmax, scal;
register word temp;
/* Search of the optimum scaling of d[0..39].
*/
dmax = 0;
for (k = 0; k <= 39; k++) {
temp = d[k];
temp = GSM_ABS( temp );
if (temp > dmax) dmax = temp;
}
temp = 0;
if (dmax == 0) scal = 0;
else {
assert(dmax > 0);
temp = gsm_norm( (longword)dmax << 16 );
}
if (temp > 6) scal = 0;
else scal = 6 - temp;
assert(scal >= 0);
/* Initialization of a working array wt
*/
for (k = 0; k <= 39; k++) wt[k] = SASR( d[k], scal );
/* Search for the maximum cross-correlation and coding of the LTP lag
*/
L_max = 0;
Nc = 40; /* index for the maximum cross-correlation */
for (lambda = 40; lambda <= 120; lambda++) {
# undef STEP
# define STEP(k) (longword)wt[k] * dp[k - lambda]
register longword L_result;
L_result = STEP(0) ; L_result += STEP(1) ;
L_result += STEP(2) ; L_result += STEP(3) ;
L_result += STEP(4) ; L_result += STEP(5) ;
L_result += STEP(6) ; L_result += STEP(7) ;
L_result += STEP(8) ; L_result += STEP(9) ;
L_result += STEP(10) ; L_result += STEP(11) ;
L_result += STEP(12) ; L_result += STEP(13) ;
L_result += STEP(14) ; L_result += STEP(15) ;
L_result += STEP(16) ; L_result += STEP(17) ;
L_result += STEP(18) ; L_result += STEP(19) ;
L_result += STEP(20) ; L_result += STEP(21) ;
L_result += STEP(22) ; L_result += STEP(23) ;
L_result += STEP(24) ; L_result += STEP(25) ;
L_result += STEP(26) ; L_result += STEP(27) ;
L_result += STEP(28) ; L_result += STEP(29) ;
L_result += STEP(30) ; L_result += STEP(31) ;
L_result += STEP(32) ; L_result += STEP(33) ;
L_result += STEP(34) ; L_result += STEP(35) ;
L_result += STEP(36) ; L_result += STEP(37) ;
L_result += STEP(38) ; L_result += STEP(39) ;
if (L_result > L_max) {
Nc = lambda;
L_max = L_result;
}
}
*Nc_out = Nc;
L_max <<= 1;
/* Rescaling of L_max
*/
assert(scal <= 100 && scal >= -100);
L_max = L_max >> (6 - scal); /* sub(6, scal) */
assert( Nc <= 120 && Nc >= 40);
/* Compute the power of the reconstructed short term residual
* signal dp[..]
*/
L_power = 0;
for (k = 0; k <= 39; k++) {
register longword L_temp;
L_temp = SASR( dp[k - Nc], 3 );
L_power += L_temp * L_temp;
}
L_power <<= 1; /* from L_MULT */
/* Normalization of L_max and L_power
*/
if (L_max <= 0) {
*bc_out = 0;
return;
}
if (L_max >= L_power) {
*bc_out = 3;
return;
}
temp = gsm_norm( L_power );
R = SASR( L_max << temp, 16 );
S = SASR( L_power << temp, 16 );
/* Coding of the LTP gain
*/
/* Table 4.3a must be used to obtain the level DLB[i] for the
* quantization of the LTP gain b to get the coded version bc.
*/
for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
*bc_out = bc;
}
#else /* USE_FLOAT_MUL */
#ifdef LTP_CUT
static void Cut_Calculation_of_the_LTP_parameters P5((st, d,dp,bc_out,Nc_out),
struct gsm_state * st, /* IN */
register word * d, /* [0..39] IN */
register word * dp, /* [-120..-1] IN */
word * bc_out, /* OUT */
word * Nc_out /* OUT */
)
{
register int k, lambda;
word Nc, bc;
word ltp_cut;
float wt_float[40];
float dp_float_base[120], * dp_float = dp_float_base + 120;
longword L_max, L_power;
word R, S, dmax, scal;
register word temp;
/* Search of the optimum scaling of d[0..39].
*/
dmax = 0;
for (k = 0; k <= 39; k++) {
temp = d[k];
temp = GSM_ABS( temp );
if (temp > dmax) dmax = temp;
}
temp = 0;
if (dmax == 0) scal = 0;
else {
assert(dmax > 0);
temp = gsm_norm( (longword)dmax << 16 );
}
if (temp > 6) scal = 0;
else scal = 6 - temp;
assert(scal >= 0);
ltp_cut = (longword)SASR(dmax, scal) * st->ltp_cut / 100;
/* Initialization of a working array wt
*/
for (k = 0; k < 40; k++) {
register word w = SASR( d[k], scal );
if (w < 0 ? w > -ltp_cut : w < ltp_cut) {
wt_float[k] = 0.0;
}
else {
wt_float[k] = w;
}
}
for (k = -120; k < 0; k++) dp_float[k] = dp[k];
/* Search for the maximum cross-correlation and coding of the LTP lag
*/
L_max = 0;
Nc = 40; /* index for the maximum cross-correlation */
for (lambda = 40; lambda <= 120; lambda += 9) {
/* Calculate L_result for l = lambda .. lambda + 9.
*/
register float *lp = dp_float - lambda;
register float W;
register float a = lp[-8], b = lp[-7], c = lp[-6],
d = lp[-5], e = lp[-4], f = lp[-3],
g = lp[-2], h = lp[-1];
register float E;
register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
S5 = 0, S6 = 0, S7 = 0, S8 = 0;
# undef STEP
# define STEP(K, a, b, c, d, e, f, g, h) \
if ((W = wt_float[K]) != 0.0) { \
E = W * a; S8 += E; \
E = W * b; S7 += E; \
E = W * c; S6 += E; \
E = W * d; S5 += E; \
E = W * e; S4 += E; \
E = W * f; S3 += E; \
E = W * g; S2 += E; \
E = W * h; S1 += E; \
a = lp[K]; \
E = W * a; S0 += E; } else (a = lp[K])
# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
if (S0 > L_max) { L_max = S0; Nc = lambda; }
if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
}
*Nc_out = Nc;
L_max <<= 1;
/* Rescaling of L_max
*/
assert(scal <= 100 && scal >= -100);
L_max = L_max >> (6 - scal); /* sub(6, scal) */
assert( Nc <= 120 && Nc >= 40);
/* Compute the power of the reconstructed short term residual
* signal dp[..]
*/
L_power = 0;
for (k = 0; k <= 39; k++) {
register longword L_temp;
L_temp = SASR( dp[k - Nc], 3 );
L_power += L_temp * L_temp;
}
L_power <<= 1; /* from L_MULT */
/* Normalization of L_max and L_power
*/
if (L_max <= 0) {
*bc_out = 0;
return;
}
if (L_max >= L_power) {
*bc_out = 3;
return;
}
temp = gsm_norm( L_power );
R = SASR( L_max << temp, 16 );
S = SASR( L_power << temp, 16 );
/* Coding of the LTP gain
*/
/* Table 4.3a must be used to obtain the level DLB[i] for the
* quantization of the LTP gain b to get the coded version bc.
*/
for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
*bc_out = bc;
}
#endif /* LTP_CUT */
static void Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out),
register word * d, /* [0..39] IN */
register word * dp, /* [-120..-1] IN */
word * bc_out, /* OUT */
word * Nc_out /* OUT */
)
{
register int k, lambda;
word Nc, bc;
float wt_float[40];
float dp_float_base[120], * dp_float = dp_float_base + 120;
longword L_max, L_power;
word R, S, dmax, scal;
register word temp;
/* Search of the optimum scaling of d[0..39].
*/
dmax = 0;
for (k = 0; k <= 39; k++) {
temp = d[k];
temp = GSM_ABS( temp );
if (temp > dmax) dmax = temp;
}
temp = 0;
if (dmax == 0) scal = 0;
else {
assert(dmax > 0);
temp = gsm_norm( (longword)dmax << 16 );
}
if (temp > 6) scal = 0;
else scal = 6 - temp;
assert(scal >= 0);
/* Initialization of a working array wt
*/
for (k = 0; k < 40; k++) wt_float[k] = SASR( d[k], scal );
for (k = -120; k < 0; k++) dp_float[k] = dp[k];
/* Search for the maximum cross-correlation and coding of the LTP lag
*/
L_max = 0;
Nc = 40; /* index for the maximum cross-correlation */
for (lambda = 40; lambda <= 120; lambda += 9) {
/* Calculate L_result for l = lambda .. lambda + 9.
*/
register float *lp = dp_float - lambda;
register float W;
register float a = lp[-8], b = lp[-7], c = lp[-6],
d = lp[-5], e = lp[-4], f = lp[-3],
g = lp[-2], h = lp[-1];
register float E;
register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
S5 = 0, S6 = 0, S7 = 0, S8 = 0;
# undef STEP
# define STEP(K, a, b, c, d, e, f, g, h) \
W = wt_float[K]; \
E = W * a; S8 += E; \
E = W * b; S7 += E; \
E = W * c; S6 += E; \
E = W * d; S5 += E; \
E = W * e; S4 += E; \
E = W * f; S3 += E; \
E = W * g; S2 += E; \
E = W * h; S1 += E; \
a = lp[K]; \
E = W * a; S0 += E
# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
if (S0 > L_max) { L_max = S0; Nc = lambda; }
if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
}
*Nc_out = Nc;
L_max <<= 1;
/* Rescaling of L_max
*/
assert(scal <= 100 && scal >= -100);
L_max = L_max >> (6 - scal); /* sub(6, scal) */
assert( Nc <= 120 && Nc >= 40);
/* Compute the power of the reconstructed short term residual
* signal dp[..]
*/
L_power = 0;
for (k = 0; k <= 39; k++) {
register longword L_temp;
L_temp = SASR( dp[k - Nc], 3 );
L_power += L_temp * L_temp;
}
L_power <<= 1; /* from L_MULT */
/* Normalization of L_max and L_power
*/
if (L_max <= 0) {
*bc_out = 0;
return;
}
if (L_max >= L_power) {
*bc_out = 3;
return;
}
temp = gsm_norm( L_power );
R = SASR( L_max << temp, 16 );
S = SASR( L_power << temp, 16 );
/* Coding of the LTP gain
*/
/* Table 4.3a must be used to obtain the level DLB[i] for the
* quantization of the LTP gain b to get the coded version bc.
*/
for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
*bc_out = bc;
}
#ifdef FAST
#ifdef LTP_CUT
static void Cut_Fast_Calculation_of_the_LTP_parameters P5((st,
d,dp,bc_out,Nc_out),
struct gsm_state * st, /* IN */
register word * d, /* [0..39] IN */
register word * dp, /* [-120..-1] IN */
word * bc_out, /* OUT */
word * Nc_out /* OUT */
)
{
register int k, lambda;
register float wt_float;
word Nc, bc;
word wt_max, best_k, ltp_cut;
float dp_float_base[120], * dp_float = dp_float_base + 120;
register float L_result, L_max, L_power;
wt_max = 0;
for (k = 0; k < 40; ++k) {
if ( d[k] > wt_max) wt_max = d[best_k = k];
else if (-d[k] > wt_max) wt_max = -d[best_k = k];
}
assert(wt_max >= 0);
wt_float = (float)wt_max;
for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k];
/* Search for the maximum cross-correlation and coding of the LTP lag
*/
L_max = 0;
Nc = 40; /* index for the maximum cross-correlation */
for (lambda = 40; lambda <= 120; lambda++) {
L_result = wt_float * dp_float[best_k - lambda];
if (L_result > L_max) {
Nc = lambda;
L_max = L_result;
}
}
*Nc_out = Nc;
if (L_max <= 0.) {
*bc_out = 0;
return;
}
/* Compute the power of the reconstructed short term residual
* signal dp[..]
*/
dp_float -= Nc;
L_power = 0;
for (k = 0; k < 40; ++k) {
register float f = dp_float[k];
L_power += f * f;
}
if (L_max >= L_power) {
*bc_out = 3;
return;
}
/* Coding of the LTP gain
* Table 4.3a must be used to obtain the level DLB[i] for the
* quantization of the LTP gain b to get the coded version bc.
*/
lambda = L_max / L_power * 32768.;
for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;
*bc_out = bc;
}
#endif /* LTP_CUT */
static void Fast_Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out),
register word * d, /* [0..39] IN */
register word * dp, /* [-120..-1] IN */
word * bc_out, /* OUT */
word * Nc_out /* OUT */
)
{
register int k, lambda;
word Nc, bc;
float wt_float[40];
float dp_float_base[120], * dp_float = dp_float_base + 120;
register float L_max, L_power;
for (k = 0; k < 40; ++k) wt_float[k] = (float)d[k];
for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k];
/* Search for the maximum cross-correlation and coding of the LTP lag
*/
L_max = 0;
Nc = 40; /* index for the maximum cross-correlation */
for (lambda = 40; lambda <= 120; lambda += 9) {
/* Calculate L_result for l = lambda .. lambda + 9.
*/
register float *lp = dp_float - lambda;
register float W;
register float a = lp[-8], b = lp[-7], c = lp[-6],
d = lp[-5], e = lp[-4], f = lp[-3],
g = lp[-2], h = lp[-1];
register float E;
register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
S5 = 0, S6 = 0, S7 = 0, S8 = 0;
# undef STEP
# define STEP(K, a, b, c, d, e, f, g, h) \
W = wt_float[K]; \
E = W * a; S8 += E; \
E = W * b; S7 += E; \
E = W * c; S6 += E; \
E = W * d; S5 += E; \
E = W * e; S4 += E; \
E = W * f; S3 += E; \
E = W * g; S2 += E; \
E = W * h; S1 += E; \
a = lp[K]; \
E = W * a; S0 += E
# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
if (S0 > L_max) { L_max = S0; Nc = lambda; }
if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
}
*Nc_out = Nc;
if (L_max <= 0.) {
*bc_out = 0;
return;
}
/* Compute the power of the reconstructed short term residual
* signal dp[..]
*/
dp_float -= Nc;
L_power = 0;
for (k = 0; k < 40; ++k) {
register float f = dp_float[k];
L_power += f * f;
}
if (L_max >= L_power) {
*bc_out = 3;
return;
}
/* Coding of the LTP gain
* Table 4.3a must be used to obtain the level DLB[i] for the
* quantization of the LTP gain b to get the coded version bc.
*/
lambda = L_max / L_power * 32768.;
for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;
*bc_out = bc;
}
#endif /* FAST */
#endif /* USE_FLOAT_MUL */
/* 4.2.12 */
static void Long_term_analysis_filtering P6((bc,Nc,dp,d,dpp,e),
word bc, /* IN */
word Nc, /* IN */
register word * dp, /* previous d [-120..-1] IN */
register word * d, /* d [0..39] IN */
register word * dpp, /* estimate [0..39] OUT */
register word * e /* long term res. signal [0..39] OUT */
)
/*
* In this part, we have to decode the bc parameter to compute
* the samples of the estimate dpp[0..39]. The decoding of bc needs the
* use of table 4.3b. The long term residual signal e[0..39]
* is then calculated to be fed to the RPE encoding section.
*/
{
register int k;
register longword ltmp;
# undef STEP
# define STEP(BP) \
for (k = 0; k <= 39; k++) { \
dpp[k] = GSM_MULT_R( BP, dp[k - Nc]); \
e[k] = GSM_SUB( d[k], dpp[k] ); \
}
switch (bc) {
case 0: STEP( 3277 ); break;
case 1: STEP( 11469 ); break;
case 2: STEP( 21299 ); break;
case 3: STEP( 32767 ); break;
}
}
void Gsm_Long_Term_Predictor P7((S,d,dp,e,dpp,Nc,bc), /* 4x for 160 samples */
struct gsm_state * S,
word * d, /* [0..39] residual signal IN */
word * dp, /* [-120..-1] d' IN */
word * e, /* [0..39] OUT */
word * dpp, /* [0..39] OUT */
word * Nc, /* correlation lag OUT */
word * bc /* gain factor OUT */
)
{
assert( d ); assert( dp ); assert( e );
assert( dpp); assert( Nc ); assert( bc );
#if defined(FAST) && defined(USE_FLOAT_MUL)
if (S->fast)
#if defined (LTP_CUT)
if (S->ltp_cut)
Cut_Fast_Calculation_of_the_LTP_parameters(S,
d, dp, bc, Nc);
else
#endif /* LTP_CUT */
Fast_Calculation_of_the_LTP_parameters(d, dp, bc, Nc );
else
#endif /* FAST & USE_FLOAT_MUL */
#ifdef LTP_CUT
if (S->ltp_cut)
Cut_Calculation_of_the_LTP_parameters(S, d, dp, bc, Nc);
else
#endif
Calculation_of_the_LTP_parameters(d, dp, bc, Nc);
Long_term_analysis_filtering( *bc, *Nc, dp, d, dpp, e );
}
/* 4.3.2 */
void Gsm_Long_Term_Synthesis_Filtering P5((S,Ncr,bcr,erp,drp),
struct gsm_state * S,
word Ncr,
word bcr,
register word * erp, /* [0..39] IN */
register word * drp /* [-120..-1] IN, [-120..40] OUT */
)
/*
* This procedure uses the bcr and Ncr parameter to realize the
* long term synthesis filtering. The decoding of bcr needs
* table 4.3b.
*/
{
register longword ltmp; /* for ADD */
register int k;
word brp, drpp, Nr;
/* Check the limits of Nr.
*/
Nr = Ncr < 40 || Ncr > 120 ? S->nrp : Ncr;
S->nrp = Nr;
assert(Nr >= 40 && Nr <= 120);
/* Decoding of the LTP gain bcr
*/
brp = gsm_QLB[ bcr ];
/* Computation of the reconstructed short term residual
* signal drp[0..39]
*/
assert(brp != MIN_WORD);
for (k = 0; k <= 39; k++) {
drpp = GSM_MULT_R( brp, drp[ k - Nr ] );
drp[k] = GSM_ADD( erp[k], drpp );
}
/*
* Update of the reconstructed short term residual signal
* drp[ -1..-120 ]
*/
for (k = 0; k <= 119; k++) drp[ -120 + k ] = drp[ -80 + k ];
}

341
libs/gsm/src/lpc.c Normal file
View File

@ -0,0 +1,341 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/lpc.c,v 1.5 1994/12/30 23:14:54 jutta Exp $ */
#include <stdio.h>
#include <assert.h>
#include "private.h"
#include "gsm.h"
#include "proto.h"
#undef P
/*
* 4.2.4 .. 4.2.7 LPC ANALYSIS SECTION
*/
/* 4.2.4 */
static void Autocorrelation P2((s, L_ACF),
word * s, /* [0..159] IN/OUT */
longword * L_ACF) /* [0..8] OUT */
/*
* The goal is to compute the array L_ACF[k]. The signal s[i] must
* be scaled in order to avoid an overflow situation.
*/
{
register int k, i;
word temp, smax, scalauto;
#ifdef USE_FLOAT_MUL
float float_s[160];
#endif
/* Dynamic scaling of the array s[0..159]
*/
/* Search for the maximum.
*/
smax = 0;
for (k = 0; k <= 159; k++) {
temp = GSM_ABS( s[k] );
if (temp > smax) smax = temp;
}
/* Computation of the scaling factor.
*/
if (smax == 0) scalauto = 0;
else {
assert(smax > 0);
scalauto = 4 - gsm_norm( (longword)smax << 16 );/* sub(4,..) */
}
/* Scaling of the array s[0...159]
*/
if (scalauto > 0) {
# ifdef USE_FLOAT_MUL
# define SCALE(n) \
case n: for (k = 0; k <= 159; k++) \
float_s[k] = (float) \
(s[k] = GSM_MULT_R(s[k], 16384 >> (n-1)));\
break;
# else
# define SCALE(n) \
case n: for (k = 0; k <= 159; k++) \
s[k] = GSM_MULT_R( s[k], 16384 >> (n-1) );\
break;
# endif /* USE_FLOAT_MUL */
switch (scalauto) {
SCALE(1)
SCALE(2)
SCALE(3)
SCALE(4)
}
# undef SCALE
}
# ifdef USE_FLOAT_MUL
else for (k = 0; k <= 159; k++) float_s[k] = (float) s[k];
# endif
/* Compute the L_ACF[..].
*/
{
# ifdef USE_FLOAT_MUL
register float * sp = float_s;
register float sl = *sp;
# define STEP(k) L_ACF[k] += (longword)(sl * sp[ -(k) ]);
# else
word * sp = s;
word sl = *sp;
# define STEP(k) L_ACF[k] += ((longword)sl * sp[ -(k) ]);
# endif
# define NEXTI sl = *++sp
for (k = 9; k--; L_ACF[k] = 0) ;
STEP (0);
NEXTI;
STEP(0); STEP(1);
NEXTI;
STEP(0); STEP(1); STEP(2);
NEXTI;
STEP(0); STEP(1); STEP(2); STEP(3);
NEXTI;
STEP(0); STEP(1); STEP(2); STEP(3); STEP(4);
NEXTI;
STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5);
NEXTI;
STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6);
NEXTI;
STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); STEP(7);
for (i = 8; i <= 159; i++) {
NEXTI;
STEP(0);
STEP(1); STEP(2); STEP(3); STEP(4);
STEP(5); STEP(6); STEP(7); STEP(8);
}
for (k = 9; k--; L_ACF[k] <<= 1) ;
}
/* Rescaling of the array s[0..159]
*/
if (scalauto > 0) {
assert(scalauto <= 4);
for (k = 160; k--; *s++ <<= scalauto) ;
}
}
#if defined(USE_FLOAT_MUL) && defined(FAST)
static void Fast_Autocorrelation P2((s, L_ACF),
word * s, /* [0..159] IN/OUT */
longword * L_ACF) /* [0..8] OUT */
{
register int k, i;
float f_L_ACF[9];
float scale;
float s_f[160];
register float *sf = s_f;
for (i = 0; i < 160; ++i) sf[i] = s[i];
for (k = 0; k <= 8; k++) {
register float L_temp2 = 0;
register float *sfl = sf - k;
for (i = k; i < 160; ++i) L_temp2 += sf[i] * sfl[i];
f_L_ACF[k] = L_temp2;
}
scale = MAX_LONGWORD / f_L_ACF[0];
for (k = 0; k <= 8; k++) {
L_ACF[k] = f_L_ACF[k] * scale;
}
}
#endif /* defined (USE_FLOAT_MUL) && defined (FAST) */
/* 4.2.5 */
static void Reflection_coefficients P2( (L_ACF, r),
longword * L_ACF, /* 0...8 IN */
register word * r /* 0...7 OUT */
)
{
register int i, m, n;
register word temp;
register longword ltmp;
word ACF[9]; /* 0..8 */
word P[ 9]; /* 0..8 */
word K[ 9]; /* 2..8 */
/* Schur recursion with 16 bits arithmetic.
*/
if (L_ACF[0] == 0) {
for (i = 8; i--; *r++ = 0) ;
return;
}
assert( L_ACF[0] != 0 );
temp = gsm_norm( L_ACF[0] );
assert(temp >= 0 && temp < 32);
/* ? overflow ? */
for (i = 0; i <= 8; i++) ACF[i] = SASR( L_ACF[i] << temp, 16 );
/* Initialize array P[..] and K[..] for the recursion.
*/
for (i = 1; i <= 7; i++) K[ i ] = ACF[ i ];
for (i = 0; i <= 8; i++) P[ i ] = ACF[ i ];
/* Compute reflection coefficients
*/
for (n = 1; n <= 8; n++, r++) {
temp = P[1];
temp = GSM_ABS(temp);
if (P[0] < temp) {
for (i = n; i <= 8; i++) *r++ = 0;
return;
}
*r = gsm_div( temp, P[0] );
assert(*r >= 0);
if (P[1] > 0) *r = -*r; /* r[n] = sub(0, r[n]) */
assert (*r != MIN_WORD);
if (n == 8) return;
/* Schur recursion
*/
temp = GSM_MULT_R( P[1], *r );
P[0] = GSM_ADD( P[0], temp );
for (m = 1; m <= 8 - n; m++) {
temp = GSM_MULT_R( K[ m ], *r );
P[m] = GSM_ADD( P[ m+1 ], temp );
temp = GSM_MULT_R( P[ m+1 ], *r );
K[m] = GSM_ADD( K[ m ], temp );
}
}
}
/* 4.2.6 */
static void Transformation_to_Log_Area_Ratios P1((r),
register word * r /* 0..7 IN/OUT */
)
/*
* The following scaling for r[..] and LAR[..] has been used:
*
* r[..] = integer( real_r[..]*32768. ); -1 <= real_r < 1.
* LAR[..] = integer( real_LAR[..] * 16384 );
* with -1.625 <= real_LAR <= 1.625
*/
{
register word temp;
register int i;
/* Computation of the LAR[0..7] from the r[0..7]
*/
for (i = 1; i <= 8; i++, r++) {
temp = *r;
temp = GSM_ABS(temp);
assert(temp >= 0);
if (temp < 22118) {
temp >>= 1;
} else if (temp < 31130) {
assert( temp >= 11059 );
temp -= 11059;
} else {
assert( temp >= 26112 );
temp -= 26112;
temp <<= 2;
}
*r = *r < 0 ? -temp : temp;
assert( *r != MIN_WORD );
}
}
/* 4.2.7 */
static void Quantization_and_coding P1((LAR),
register word * LAR /* [0..7] IN/OUT */
)
{
register word temp;
longword ltmp;
/* This procedure needs four tables; the following equations
* give the optimum scaling for the constants:
*
* A[0..7] = integer( real_A[0..7] * 1024 )
* B[0..7] = integer( real_B[0..7] * 512 )
* MAC[0..7] = maximum of the LARc[0..7]
* MIC[0..7] = minimum of the LARc[0..7]
*/
# undef STEP
# define STEP( A, B, MAC, MIC ) \
temp = GSM_MULT( A, *LAR ); \
temp = GSM_ADD( temp, B ); \
temp = GSM_ADD( temp, 256 ); \
temp = SASR( temp, 9 ); \
*LAR = temp>MAC ? MAC - MIC : (temp<MIC ? 0 : temp - MIC); \
LAR++;
STEP( 20480, 0, 31, -32 );
STEP( 20480, 0, 31, -32 );
STEP( 20480, 2048, 15, -16 );
STEP( 20480, -2560, 15, -16 );
STEP( 13964, 94, 7, -8 );
STEP( 15360, -1792, 7, -8 );
STEP( 8534, -341, 3, -4 );
STEP( 9036, -1144, 3, -4 );
# undef STEP
}
void Gsm_LPC_Analysis P3((S, s,LARc),
struct gsm_state *S,
word * s, /* 0..159 signals IN/OUT */
word * LARc) /* 0..7 LARc's OUT */
{
longword L_ACF[9];
#if defined(USE_FLOAT_MUL) && defined(FAST)
if (S->fast) Fast_Autocorrelation (s, L_ACF );
else
#endif
Autocorrelation (s, L_ACF );
Reflection_coefficients (L_ACF, LARc );
Transformation_to_Log_Area_Ratios (LARc);
Quantization_and_coding (LARc);
}

113
libs/gsm/src/preprocess.c Normal file
View File

@ -0,0 +1,113 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/preprocess.c,v 1.2 1994/05/10 20:18:45 jutta Exp $ */
#include <stdio.h>
#include <assert.h>
#include "private.h"
#include "gsm.h"
#include "proto.h"
/* 4.2.0 .. 4.2.3 PREPROCESSING SECTION
*
* After A-law to linear conversion (or directly from the
* Ato D converter) the following scaling is assumed for
* input to the RPE-LTP algorithm:
*
* in: 0.1.....................12
* S.v.v.v.v.v.v.v.v.v.v.v.v.*.*.*
*
* Where S is the sign bit, v a valid bit, and * a "don't care" bit.
* The original signal is called sop[..]
*
* out: 0.1................... 12
* S.S.v.v.v.v.v.v.v.v.v.v.v.v.0.0
*/
void Gsm_Preprocess P3((S, s, so),
struct gsm_state * S,
word * s,
word * so ) /* [0..159] IN/OUT */
{
word z1 = S->z1;
longword L_z2 = S->L_z2;
word mp = S->mp;
word s1;
longword L_s2;
longword L_temp;
word msp, lsp;
word SO;
longword ltmp; /* for ADD */
ulongword utmp; /* for L_ADD */
register int k = 160;
while (k--) {
/* 4.2.1 Downscaling of the input signal
*/
SO = SASR( *s, 3 ) << 2;
s++;
assert (SO >= -0x4000); /* downscaled by */
assert (SO <= 0x3FFC); /* previous routine. */
/* 4.2.2 Offset compensation
*
* This part implements a high-pass filter and requires extended
* arithmetic precision for the recursive part of this filter.
* The input of this procedure is the array so[0...159] and the
* output the array sof[ 0...159 ].
*/
/* Compute the non-recursive part
*/
s1 = SO - z1; /* s1 = gsm_sub( *so, z1 ); */
z1 = SO;
assert(s1 != MIN_WORD);
/* Compute the recursive part
*/
L_s2 = s1;
L_s2 <<= 15;
/* Execution of a 31 bv 16 bits multiplication
*/
msp = SASR( L_z2, 15 );
lsp = L_z2-((longword)msp<<15); /* gsm_L_sub(L_z2,(msp<<15)); */
L_s2 += GSM_MULT_R( lsp, 32735 );
L_temp = (longword)msp * 32735; /* GSM_L_MULT(msp,32735) >> 1;*/
L_z2 = GSM_L_ADD( L_temp, L_s2 );
/* Compute sof[k] with rounding
*/
L_temp = GSM_L_ADD( L_z2, 16384 );
/* 4.2.3 Preemphasis
*/
msp = GSM_MULT_R( mp, -28180 );
mp = SASR( L_temp, 15 );
*so++ = GSM_ADD( mp, msp );
}
S->z1 = z1;
S->L_z2 = L_z2;
S->mp = mp;
}

488
libs/gsm/src/rpe.c Normal file
View File

@ -0,0 +1,488 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/rpe.c,v 1.3 1994/05/10 20:18:46 jutta Exp $ */
#include <stdio.h>
#include <assert.h>
#include "private.h"
#include "gsm.h"
#include "proto.h"
/* 4.2.13 .. 4.2.17 RPE ENCODING SECTION
*/
/* 4.2.13 */
static void Weighting_filter P2((e, x),
register word * e, /* signal [-5..0.39.44] IN */
word * x /* signal [0..39] OUT */
)
/*
* The coefficients of the weighting filter are stored in a table
* (see table 4.4). The following scaling is used:
*
* H[0..10] = integer( real_H[ 0..10] * 8192 );
*/
{
/* word wt[ 50 ]; */
register longword L_result;
register int k /* , i */ ;
/* Initialization of a temporary working array wt[0...49]
*/
/* for (k = 0; k <= 4; k++) wt[k] = 0;
* for (k = 5; k <= 44; k++) wt[k] = *e++;
* for (k = 45; k <= 49; k++) wt[k] = 0;
*
* (e[-5..-1] and e[40..44] are allocated by the caller,
* are initially zero and are not written anywhere.)
*/
e -= 5;
/* Compute the signal x[0..39]
*/
for (k = 0; k <= 39; k++) {
L_result = 8192 >> 1;
/* for (i = 0; i <= 10; i++) {
* L_temp = GSM_L_MULT( wt[k+i], gsm_H[i] );
* L_result = GSM_L_ADD( L_result, L_temp );
* }
*/
#undef STEP
#define STEP( i, H ) (e[ k + i ] * (longword)H)
/* Every one of these multiplications is done twice --
* but I don't see an elegant way to optimize this.
* Do you?
*/
#ifdef STUPID_COMPILER
L_result += STEP( 0, -134 ) ;
L_result += STEP( 1, -374 ) ;
/* + STEP( 2, 0 ) */
L_result += STEP( 3, 2054 ) ;
L_result += STEP( 4, 5741 ) ;
L_result += STEP( 5, 8192 ) ;
L_result += STEP( 6, 5741 ) ;
L_result += STEP( 7, 2054 ) ;
/* + STEP( 8, 0 ) */
L_result += STEP( 9, -374 ) ;
L_result += STEP( 10, -134 ) ;
#else
L_result +=
STEP( 0, -134 )
+ STEP( 1, -374 )
/* + STEP( 2, 0 ) */
+ STEP( 3, 2054 )
+ STEP( 4, 5741 )
+ STEP( 5, 8192 )
+ STEP( 6, 5741 )
+ STEP( 7, 2054 )
/* + STEP( 8, 0 ) */
+ STEP( 9, -374 )
+ STEP(10, -134 )
;
#endif
/* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *)
* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *)
*
* x[k] = SASR( L_result, 16 );
*/
/* 2 adds vs. >>16 => 14, minus one shift to compensate for
* those we lost when replacing L_MULT by '*'.
*/
L_result = SASR( L_result, 13 );
x[k] = ( L_result < MIN_WORD ? MIN_WORD
: (L_result > MAX_WORD ? MAX_WORD : L_result ));
}
}
/* 4.2.14 */
static void RPE_grid_selection P3((x,xM,Mc_out),
word * x, /* [0..39] IN */
word * xM, /* [0..12] OUT */
word * Mc_out /* OUT */
)
/*
* The signal x[0..39] is used to select the RPE grid which is
* represented by Mc.
*/
{
/* register word temp1; */
register int /* m, */ i;
register longword L_result, L_temp;
longword EM; /* xxx should be L_EM? */
word Mc;
longword L_common_0_3;
EM = 0;
Mc = 0;
/* for (m = 0; m <= 3; m++) {
* L_result = 0;
*
*
* for (i = 0; i <= 12; i++) {
*
* temp1 = SASR( x[m + 3*i], 2 );
*
* assert(temp1 != MIN_WORD);
*
* L_temp = GSM_L_MULT( temp1, temp1 );
* L_result = GSM_L_ADD( L_temp, L_result );
* }
*
* if (L_result > EM) {
* Mc = m;
* EM = L_result;
* }
* }
*/
#undef STEP
#define STEP( m, i ) L_temp = SASR( x[m + 3 * i], 2 ); \
L_result += L_temp * L_temp;
/* common part of 0 and 3 */
L_result = 0;
STEP( 0, 1 ); STEP( 0, 2 ); STEP( 0, 3 ); STEP( 0, 4 );
STEP( 0, 5 ); STEP( 0, 6 ); STEP( 0, 7 ); STEP( 0, 8 );
STEP( 0, 9 ); STEP( 0, 10); STEP( 0, 11); STEP( 0, 12);
L_common_0_3 = L_result;
/* i = 0 */
STEP( 0, 0 );
L_result <<= 1; /* implicit in L_MULT */
EM = L_result;
/* i = 1 */
L_result = 0;
STEP( 1, 0 );
STEP( 1, 1 ); STEP( 1, 2 ); STEP( 1, 3 ); STEP( 1, 4 );
STEP( 1, 5 ); STEP( 1, 6 ); STEP( 1, 7 ); STEP( 1, 8 );
STEP( 1, 9 ); STEP( 1, 10); STEP( 1, 11); STEP( 1, 12);
L_result <<= 1;
if (L_result > EM) {
Mc = 1;
EM = L_result;
}
/* i = 2 */
L_result = 0;
STEP( 2, 0 );
STEP( 2, 1 ); STEP( 2, 2 ); STEP( 2, 3 ); STEP( 2, 4 );
STEP( 2, 5 ); STEP( 2, 6 ); STEP( 2, 7 ); STEP( 2, 8 );
STEP( 2, 9 ); STEP( 2, 10); STEP( 2, 11); STEP( 2, 12);
L_result <<= 1;
if (L_result > EM) {
Mc = 2;
EM = L_result;
}
/* i = 3 */
L_result = L_common_0_3;
STEP( 3, 12 );
L_result <<= 1;
if (L_result > EM) {
Mc = 3;
EM = L_result;
}
/**/
/* Down-sampling by a factor 3 to get the selected xM[0..12]
* RPE sequence.
*/
for (i = 0; i <= 12; i ++) xM[i] = x[Mc + 3*i];
*Mc_out = Mc;
}
/* 4.12.15 */
static void APCM_quantization_xmaxc_to_exp_mant P3((xmaxc,exp_out,mant_out),
word xmaxc, /* IN */
word * exp_out, /* OUT */
word * mant_out ) /* OUT */
{
word exp, mant;
/* Compute exponent and mantissa of the decoded version of xmaxc
*/
exp = 0;
if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1;
mant = xmaxc - (exp << 3);
if (mant == 0) {
exp = -4;
mant = 7;
}
else {
while (mant <= 7) {
mant = mant << 1 | 1;
exp--;
}
mant -= 8;
}
assert( exp >= -4 && exp <= 6 );
assert( mant >= 0 && mant <= 7 );
*exp_out = exp;
*mant_out = mant;
}
static void APCM_quantization P5((xM,xMc,mant_out,exp_out,xmaxc_out),
word * xM, /* [0..12] IN */
word * xMc, /* [0..12] OUT */
word * mant_out, /* OUT */
word * exp_out, /* OUT */
word * xmaxc_out /* OUT */
)
{
int i, itest;
word xmax, xmaxc, temp, temp1, temp2;
word exp, mant;
/* Find the maximum absolute value xmax of xM[0..12].
*/
xmax = 0;
for (i = 0; i <= 12; i++) {
temp = xM[i];
temp = GSM_ABS(temp);
if (temp > xmax) xmax = temp;
}
/* Qantizing and coding of xmax to get xmaxc.
*/
exp = 0;
temp = SASR( xmax, 9 );
itest = 0;
for (i = 0; i <= 5; i++) {
itest |= (temp <= 0);
temp = SASR( temp, 1 );
assert(exp <= 5);
if (itest == 0) exp++; /* exp = add (exp, 1) */
}
assert(exp <= 6 && exp >= 0);
temp = exp + 5;
assert(temp <= 11 && temp >= 0);
xmaxc = gsm_add( SASR(xmax, temp), exp << 3 );
/* Quantizing and coding of the xM[0..12] RPE sequence
* to get the xMc[0..12]
*/
APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant );
/* This computation uses the fact that the decoded version of xmaxc
* can be calculated by using the exponent and the mantissa part of
* xmaxc (logarithmic table).
* So, this method avoids any division and uses only a scaling
* of the RPE samples by a function of the exponent. A direct
* multiplication by the inverse of the mantissa (NRFAC[0..7]
* found in table 4.5) gives the 3 bit coded version xMc[0..12]
* of the RPE samples.
*/
/* Direct computation of xMc[0..12] using table 4.5
*/
assert( exp <= 4096 && exp >= -4096);
assert( mant >= 0 && mant <= 7 );
temp1 = 6 - exp; /* normalization by the exponent */
temp2 = gsm_NRFAC[ mant ]; /* inverse mantissa */
for (i = 0; i <= 12; i++) {
assert(temp1 >= 0 && temp1 < 16);
temp = xM[i] << temp1;
temp = GSM_MULT( temp, temp2 );
temp = SASR(temp, 12);
xMc[i] = temp + 4; /* see note below */
}
/* NOTE: This equation is used to make all the xMc[i] positive.
*/
*mant_out = mant;
*exp_out = exp;
*xmaxc_out = xmaxc;
}
/* 4.2.16 */
static void APCM_inverse_quantization P4((xMc,mant,exp,xMp),
register word * xMc, /* [0..12] IN */
word mant,
word exp,
register word * xMp) /* [0..12] OUT */
/*
* This part is for decoding the RPE sequence of coded xMc[0..12]
* samples to obtain the xMp[0..12] array. Table 4.6 is used to get
* the mantissa of xmaxc (FAC[0..7]).
*/
{
int i;
word temp, temp1, temp2, temp3;
longword ltmp;
assert( mant >= 0 && mant <= 7 );
temp1 = gsm_FAC[ mant ]; /* see 4.2-15 for mant */
temp2 = gsm_sub( 6, exp ); /* see 4.2-15 for exp */
temp3 = gsm_asl( 1, gsm_sub( temp2, 1 ));
for (i = 13; i--;) {
assert( *xMc <= 7 && *xMc >= 0 ); /* 3 bit unsigned */
/* temp = gsm_sub( *xMc++ << 1, 7 ); */
temp = (*xMc++ << 1) - 7; /* restore sign */
assert( temp <= 7 && temp >= -7 ); /* 4 bit signed */
temp <<= 12; /* 16 bit signed */
temp = GSM_MULT_R( temp1, temp );
temp = GSM_ADD( temp, temp3 );
*xMp++ = gsm_asr( temp, temp2 );
}
}
/* 4.2.17 */
static void RPE_grid_positioning P3((Mc,xMp,ep),
word Mc, /* grid position IN */
register word * xMp, /* [0..12] IN */
register word * ep /* [0..39] OUT */
)
/*
* This procedure computes the reconstructed long term residual signal
* ep[0..39] for the LTP analysis filter. The inputs are the Mc
* which is the grid position selection and the xMp[0..12] decoded
* RPE samples which are upsampled by a factor of 3 by inserting zero
* values.
*/
{
int i = 13;
assert(0 <= Mc && Mc <= 3);
switch (Mc) {
case 3: *ep++ = 0;
case 2: do {
*ep++ = 0;
case 1: *ep++ = 0;
case 0: *ep++ = *xMp++;
} while (--i);
}
while (++Mc < 4) *ep++ = 0;
/*
int i, k;
for (k = 0; k <= 39; k++) ep[k] = 0;
for (i = 0; i <= 12; i++) {
ep[ Mc + (3*i) ] = xMp[i];
}
*/
}
/* 4.2.18 */
/* This procedure adds the reconstructed long term residual signal
* ep[0..39] to the estimated signal dpp[0..39] from the long term
* analysis filter to compute the reconstructed short term residual
* signal dp[-40..-1]; also the reconstructed short term residual
* array dp[-120..-41] is updated.
*/
#if 0 /* Has been inlined in code.c */
void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp),
word * dpp, /* [0...39] IN */
word * ep, /* [0...39] IN */
word * dp) /* [-120...-1] IN/OUT */
{
int k;
for (k = 0; k <= 79; k++)
dp[ -120 + k ] = dp[ -80 + k ];
for (k = 0; k <= 39; k++)
dp[ -40 + k ] = gsm_add( ep[k], dpp[k] );
}
#endif /* Has been inlined in code.c */
void Gsm_RPE_Encoding P5((S,e,xmaxc,Mc,xMc),
struct gsm_state * S,
word * e, /* -5..-1][0..39][40..44 IN/OUT */
word * xmaxc, /* OUT */
word * Mc, /* OUT */
word * xMc) /* [0..12] OUT */
{
word x[40];
word xM[13], xMp[13];
word mant, exp;
Weighting_filter(e, x);
RPE_grid_selection(x, xM, Mc);
APCM_quantization( xM, xMc, &mant, &exp, xmaxc);
APCM_inverse_quantization( xMc, mant, exp, xMp);
RPE_grid_positioning( *Mc, xMp, e );
}
void Gsm_RPE_Decoding P5((S, xmaxcr, Mcr, xMcr, erp),
struct gsm_state * S,
word xmaxcr,
word Mcr,
word * xMcr, /* [0..12], 3 bits IN */
word * erp /* [0..39] OUT */
)
{
word exp, mant;
word xMp[ 13 ];
APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant );
APCM_inverse_quantization( xMcr, mant, exp, xMp );
RPE_grid_positioning( Mcr, xMp, erp );
}

429
libs/gsm/src/short_term.c Normal file
View File

@ -0,0 +1,429 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/short_term.c,v 1.2 1994/05/10 20:18:47 jutta Exp $ */
#include <stdio.h>
#include <assert.h>
#include "private.h"
#include "gsm.h"
#include "proto.h"
/*
* SHORT TERM ANALYSIS FILTERING SECTION
*/
/* 4.2.8 */
static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp),
word * LARc, /* coded log area ratio [0..7] IN */
word * LARpp) /* out: decoded .. */
{
register word temp1 /* , temp2 */;
register long ltmp; /* for GSM_ADD */
/* This procedure requires for efficient implementation
* two tables.
*
* INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
* MIC[1..8] = minimum value of the LARc[1..8]
*/
/* Compute the LARpp[1..8]
*/
/* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
*
* temp1 = GSM_ADD( *LARc, *MIC ) << 10;
* temp2 = *B << 1;
* temp1 = GSM_SUB( temp1, temp2 );
*
* assert(*INVA != MIN_WORD);
*
* temp1 = GSM_MULT_R( *INVA, temp1 );
* *LARpp = GSM_ADD( temp1, temp1 );
* }
*/
#undef STEP
#define STEP( B_TIMES_TWO, MIC, INVA ) \
temp1 = GSM_ADD( *LARc++, MIC ) << 10; \
temp1 = GSM_SUB( temp1, B_TIMES_TWO ); \
temp1 = GSM_MULT_R( INVA, temp1 ); \
*LARpp++ = GSM_ADD( temp1, temp1 );
STEP( 0, -32, 13107 );
STEP( 0, -32, 13107 );
STEP( 4096, -16, 13107 );
STEP( -5120, -16, 13107 );
STEP( 188, -8, 19223 );
STEP( -3584, -8, 17476 );
STEP( -682, -4, 31454 );
STEP( -2288, -4, 29708 );
/* NOTE: the addition of *MIC is used to restore
* the sign of *LARc.
*/
}
/* 4.2.9 */
/* Computation of the quantized reflection coefficients
*/
/* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8]
*/
/*
* Within each frame of 160 analyzed speech samples the short term
* analysis and synthesis filters operate with four different sets of
* coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
* and the actual set of decoded LARs (LARpp(j))
*
* (Initial value: LARpp(j-1)[1..8] = 0.)
*/
static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp),
register word * LARpp_j_1,
register word * LARpp_j,
register word * LARp)
{
register int i;
register longword ltmp;
for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
*LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1));
}
}
static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp),
register word * LARpp_j_1,
register word * LARpp_j,
register word * LARp)
{
register int i;
register longword ltmp;
for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
*LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
}
}
static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp),
register word * LARpp_j_1,
register word * LARpp_j,
register word * LARp)
{
register int i;
register longword ltmp;
for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
*LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
}
}
static void Coefficients_40_159 P2((LARpp_j, LARp),
register word * LARpp_j,
register word * LARp)
{
register int i;
for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
*LARp = *LARpp_j;
}
/* 4.2.9.2 */
static void LARp_to_rp P1((LARp),
register word * LARp) /* [0..7] IN/OUT */
/*
* The input of this procedure is the interpolated LARp[0..7] array.
* The reflection coefficients, rp[i], are used in the analysis
* filter and in the synthesis filter.
*/
{
register int i;
register word temp;
register longword ltmp;
for (i = 1; i <= 8; i++, LARp++) {
/* temp = GSM_ABS( *LARp );
*
* if (temp < 11059) temp <<= 1;
* else if (temp < 20070) temp += 11059;
* else temp = GSM_ADD( temp >> 2, 26112 );
*
* *LARp = *LARp < 0 ? -temp : temp;
*/
if (*LARp < 0) {
temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
*LARp = - ((temp < 11059) ? temp << 1
: ((temp < 20070) ? temp + 11059
: GSM_ADD( temp >> 2, 26112 )));
} else {
temp = *LARp;
*LARp = (temp < 11059) ? temp << 1
: ((temp < 20070) ? temp + 11059
: GSM_ADD( temp >> 2, 26112 ));
}
}
}
/* 4.2.10 */
static void Short_term_analysis_filtering P4((S,rp,k_n,s),
struct gsm_state * S,
register word * rp, /* [0..7] IN */
register int k_n, /* k_end - k_start */
register word * s /* [0..n-1] IN/OUT */
)
/*
* This procedure computes the short term residual signal d[..] to be fed
* to the RPE-LTP loop from the s[..] signal and from the local rp[..]
* array (quantized reflection coefficients). As the call of this
* procedure can be done in many ways (see the interpolation of the LAR
* coefficient), it is assumed that the computation begins with index
* k_start (for arrays d[..] and s[..]) and stops with index k_end
* (k_start and k_end are defined in 4.2.9.1). This procedure also
* needs to keep the array u[0..7] in memory for each call.
*/
{
register word * u = S->u;
register int i;
register word di, zzz, ui, sav, rpi;
register longword ltmp;
for (; k_n--; s++) {
di = sav = *s;
for (i = 0; i < 8; i++) { /* YYY */
ui = u[i];
rpi = rp[i];
u[i] = sav;
zzz = GSM_MULT_R(rpi, di);
sav = GSM_ADD( ui, zzz);
zzz = GSM_MULT_R(rpi, ui);
di = GSM_ADD( di, zzz );
}
*s = di;
}
}
#if defined(USE_FLOAT_MUL) && defined(FAST)
static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s),
struct gsm_state * S,
register word * rp, /* [0..7] IN */
register int k_n, /* k_end - k_start */
register word * s /* [0..n-1] IN/OUT */
)
{
register word * u = S->u;
register int i;
float uf[8],
rpf[8];
register float scalef = 3.0517578125e-5;
register float sav, di, temp;
for (i = 0; i < 8; ++i) {
uf[i] = u[i];
rpf[i] = rp[i] * scalef;
}
for (; k_n--; s++) {
sav = di = *s;
for (i = 0; i < 8; ++i) {
register float rpfi = rpf[i];
register float ufi = uf[i];
uf[i] = sav;
temp = rpfi * di + ufi;
di += rpfi * ufi;
sav = temp;
}
*s = di;
}
for (i = 0; i < 8; ++i) u[i] = uf[i];
}
#endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
struct gsm_state * S,
register word * rrp, /* [0..7] IN */
register int k, /* k_end - k_start */
register word * wt, /* [0..k-1] IN */
register word * sr /* [0..k-1] OUT */
)
{
register word * v = S->v;
register int i;
register word sri, tmp1, tmp2;
register longword ltmp; /* for GSM_ADD & GSM_SUB */
while (k--) {
sri = *wt++;
for (i = 8; i--;) {
/* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
*/
tmp1 = rrp[i];
tmp2 = v[i];
tmp2 = ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
? MAX_WORD
: 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
+ 16384) >> 15)) ;
sri = GSM_SUB( sri, tmp2 );
/* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
*/
tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD
? MAX_WORD
: 0x0FFFF & (( (longword)tmp1 * (longword)sri
+ 16384) >> 15)) ;
v[i+1] = GSM_ADD( v[i], tmp1);
}
*sr++ = v[0] = sri;
}
}
#if defined(FAST) && defined(USE_FLOAT_MUL)
static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
struct gsm_state * S,
register word * rrp, /* [0..7] IN */
register int k, /* k_end - k_start */
register word * wt, /* [0..k-1] IN */
register word * sr /* [0..k-1] OUT */
)
{
register word * v = S->v;
register int i;
float va[9], rrpa[8];
register float scalef = 3.0517578125e-5, temp;
for (i = 0; i < 8; ++i) {
va[i] = v[i];
rrpa[i] = (float)rrp[i] * scalef;
}
while (k--) {
register float sri = *wt++;
for (i = 8; i--;) {
sri -= rrpa[i] * va[i];
if (sri < -32768.) sri = -32768.;
else if (sri > 32767.) sri = 32767.;
temp = va[i] + rrpa[i] * sri;
if (temp < -32768.) temp = -32768.;
else if (temp > 32767.) temp = 32767.;
va[i+1] = temp;
}
*sr++ = va[0] = sri;
}
for (i = 0; i < 9; ++i) v[i] = va[i];
}
#endif /* defined(FAST) && defined(USE_FLOAT_MUL) */
void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),
struct gsm_state * S,
word * LARc, /* coded log area ratio [0..7] IN */
word * s /* signal [0..159] IN/OUT */
)
{
word * LARpp_j = S->LARpp[ S->j ];
word * LARpp_j_1 = S->LARpp[ S->j ^= 1 ];
word LARp[8];
#undef FILTER
#if defined(FAST) && defined(USE_FLOAT_MUL)
# define FILTER (* (S->fast \
? Fast_Short_term_analysis_filtering \
: Short_term_analysis_filtering ))
#else
# define FILTER Short_term_analysis_filtering
#endif
Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );
Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
LARp_to_rp( LARp );
FILTER( S, LARp, 13, s);
Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
LARp_to_rp( LARp );
FILTER( S, LARp, 14, s + 13);
Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
LARp_to_rp( LARp );
FILTER( S, LARp, 13, s + 27);
Coefficients_40_159( LARpp_j, LARp);
LARp_to_rp( LARp );
FILTER( S, LARp, 120, s + 40);
}
void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s),
struct gsm_state * S,
word * LARcr, /* received log area ratios [0..7] IN */
word * wt, /* received d [0..159] IN */
word * s /* signal s [0..159] OUT */
)
{
word * LARpp_j = S->LARpp[ S->j ];
word * LARpp_j_1 = S->LARpp[ S->j ^=1 ];
word LARp[8];
#undef FILTER
#if defined(FAST) && defined(USE_FLOAT_MUL)
# define FILTER (* (S->fast \
? Fast_Short_term_synthesis_filtering \
: Short_term_synthesis_filtering ))
#else
# define FILTER Short_term_synthesis_filtering
#endif
Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
LARp_to_rp( LARp );
FILTER( S, LARp, 13, wt, s );
Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
LARp_to_rp( LARp );
FILTER( S, LARp, 14, wt + 13, s + 13 );
Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
LARp_to_rp( LARp );
FILTER( S, LARp, 13, wt + 27, s + 27 );
Coefficients_40_159( LARpp_j, LARp );
LARp_to_rp( LARp );
FILTER(S, LARp, 120, wt + 40, s + 40);
}

63
libs/gsm/src/table.c Normal file
View File

@ -0,0 +1,63 @@
/*
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/table.c,v 1.1 1992/10/28 00:15:50 jutta Exp $ */
/* Most of these tables are inlined at their point of use.
*/
/* 4.4 TABLES USED IN THE FIXED POINT IMPLEMENTATION OF THE RPE-LTP
* CODER AND DECODER
*
* (Most of them inlined, so watch out.)
*/
#define GSM_TABLE_C
#include "private.h"
#include "gsm.h"
/* Table 4.1 Quantization of the Log.-Area Ratios
*/
/* i 1 2 3 4 5 6 7 8 */
word gsm_A[8] = {20480, 20480, 20480, 20480, 13964, 15360, 8534, 9036};
word gsm_B[8] = { 0, 0, 2048, -2560, 94, -1792, -341, -1144};
word gsm_MIC[8] = { -32, -32, -16, -16, -8, -8, -4, -4 };
word gsm_MAC[8] = { 31, 31, 15, 15, 7, 7, 3, 3 };
/* Table 4.2 Tabulation of 1/A[1..8]
*/
word gsm_INVA[8]={ 13107, 13107, 13107, 13107, 19223, 17476, 31454, 29708 };
/* Table 4.3a Decision level of the LTP gain quantizer
*/
/* bc 0 1 2 3 */
word gsm_DLB[4] = { 6554, 16384, 26214, 32767 };
/* Table 4.3b Quantization levels of the LTP gain quantizer
*/
/* bc 0 1 2 3 */
word gsm_QLB[4] = { 3277, 11469, 21299, 32767 };
/* Table 4.4 Coefficients of the weighting filter
*/
/* i 0 1 2 3 4 5 6 7 8 9 10 */
word gsm_H[11] = {-134, -374, 0, 2054, 5741, 8192, 5741, 2054, 0, -374, -134 };
/* Table 4.5 Normalized inverse mantissa used to compute xM/xmax
*/
/* i 0 1 2 3 4 5 6 7 */
word gsm_NRFAC[8] = { 29128, 26215, 23832, 21846, 20165, 18725, 17476, 16384 };
/* Table 4.6 Normalized direct mantissa used to compute xM/xmax
*/
/* i 0 1 2 3 4 5 6 7 */
word gsm_FAC[8] = { 18431, 20479, 22527, 24575, 26623, 28671, 30719, 32767 };