libs: Import upstream code from gsm 1.0.19.
Signed-off-by: Alexandre Julliard <julliard@winehq.org>
This commit is contained in:
parent
bca1b7f2fa
commit
116ea9cec4
|
@ -709,6 +709,8 @@ LCMS2_PE_LIBS
|
|||
LCMS2_PE_CFLAGS
|
||||
JPEG_PE_LIBS
|
||||
JPEG_PE_CFLAGS
|
||||
GSM_PE_LIBS
|
||||
GSM_PE_CFLAGS
|
||||
EXCESS_PRECISION_CFLAGS
|
||||
CROSSDEBUG
|
||||
DELAYLOADFLAG
|
||||
|
@ -1781,6 +1783,7 @@ enable_dmoguids
|
|||
enable_dxerr8
|
||||
enable_dxerr9
|
||||
enable_dxguid
|
||||
enable_gsm
|
||||
enable_jpeg
|
||||
enable_lcms2
|
||||
enable_mfuuid
|
||||
|
@ -1924,6 +1927,8 @@ CPP
|
|||
OBJC
|
||||
OBJCFLAGS
|
||||
OBJCPP
|
||||
GSM_PE_CFLAGS
|
||||
GSM_PE_LIBS
|
||||
JPEG_PE_CFLAGS
|
||||
JPEG_PE_LIBS
|
||||
LCMS2_PE_CFLAGS
|
||||
|
@ -2707,6 +2712,9 @@ Some influential environment variables:
|
|||
OBJC Objective C compiler command
|
||||
OBJCFLAGS Objective C compiler flags
|
||||
OBJCPP Objective C preprocessor
|
||||
GSM_PE_CFLAGS
|
||||
C compiler flags for the PE gsm, overriding the bundled version
|
||||
GSM_PE_LIBS Linker flags for the PE gsm, overriding the bundled version
|
||||
JPEG_PE_CFLAGS
|
||||
C compiler flags for the PE jpeg, overriding the bundled version
|
||||
JPEG_PE_LIBS
|
||||
|
@ -10694,6 +10702,19 @@ esac
|
|||
fi
|
||||
|
||||
|
||||
if ${GSM_PE_CFLAGS:+false} :; then :
|
||||
GSM_PE_CFLAGS="-I\$(top_srcdir)/libs/gsm/inc"
|
||||
else
|
||||
enable_gsm=no
|
||||
fi
|
||||
if ${GSM_PE_LIBS:+false} :; then :
|
||||
GSM_PE_LIBS=gsm
|
||||
else
|
||||
enable_gsm=no
|
||||
fi
|
||||
$as_echo "$as_me:${as_lineno-$LINENO}: gsm cflags: $GSM_PE_CFLAGS" >&5
|
||||
$as_echo "$as_me:${as_lineno-$LINENO}: gsm libs: $GSM_PE_LIBS" >&5
|
||||
|
||||
if ${JPEG_PE_CFLAGS:+false} :; then :
|
||||
JPEG_PE_CFLAGS="-I\$(top_srcdir)/libs/jpeg"
|
||||
else
|
||||
|
@ -18995,6 +19016,8 @@ QUICKTIME_LIBS = $QUICKTIME_LIBS
|
|||
CARBON_LIBS = $CARBON_LIBS
|
||||
METAL_LIBS = $METAL_LIBS
|
||||
EXCESS_PRECISION_CFLAGS = $EXCESS_PRECISION_CFLAGS
|
||||
GSM_PE_CFLAGS = $GSM_PE_CFLAGS
|
||||
GSM_PE_LIBS = $GSM_PE_LIBS
|
||||
JPEG_PE_CFLAGS = $JPEG_PE_CFLAGS
|
||||
JPEG_PE_LIBS = $JPEG_PE_LIBS
|
||||
LCMS2_PE_CFLAGS = $LCMS2_PE_CFLAGS
|
||||
|
@ -20291,6 +20314,7 @@ wine_fn_config_makefile libs/dmoguids enable_dmoguids
|
|||
wine_fn_config_makefile libs/dxerr8 enable_dxerr8
|
||||
wine_fn_config_makefile libs/dxerr9 enable_dxerr9
|
||||
wine_fn_config_makefile libs/dxguid enable_dxguid
|
||||
wine_fn_config_makefile libs/gsm enable_gsm
|
||||
wine_fn_config_makefile libs/jpeg enable_jpeg
|
||||
wine_fn_config_makefile libs/lcms2 enable_lcms2
|
||||
wine_fn_config_makefile libs/mfuuid enable_mfuuid
|
||||
|
|
|
@ -1058,6 +1058,7 @@ WINE_NOTICE_WITH(mingw,[test "x$CROSSTARGET" = "x"],
|
|||
|
||||
dnl **** External libraries ****
|
||||
|
||||
WINE_EXTLIB_FLAGS(GSM, gsm, gsm, "-I\$(top_srcdir)/libs/gsm/inc")
|
||||
WINE_EXTLIB_FLAGS(JPEG, jpeg, jpeg, "-I\$(top_srcdir)/libs/jpeg")
|
||||
WINE_EXTLIB_FLAGS(LCMS2, lcms2, lcms2, "-I\$(top_srcdir)/libs/lcms2/include")
|
||||
WINE_EXTLIB_FLAGS(PNG, png, "png \$(ZLIB_PE_LIBS)", "-I\$(top_srcdir)/libs/png")
|
||||
|
@ -3714,6 +3715,7 @@ WINE_CONFIG_MAKEFILE(libs/dmoguids)
|
|||
WINE_CONFIG_MAKEFILE(libs/dxerr8)
|
||||
WINE_CONFIG_MAKEFILE(libs/dxerr9)
|
||||
WINE_CONFIG_MAKEFILE(libs/dxguid)
|
||||
WINE_CONFIG_MAKEFILE(libs/gsm)
|
||||
WINE_CONFIG_MAKEFILE(libs/jpeg)
|
||||
WINE_CONFIG_MAKEFILE(libs/lcms2)
|
||||
WINE_CONFIG_MAKEFILE(libs/mfuuid)
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
Copyright 1992, 1993, 1994 by Jutta Degener and Carsten Bormann,
|
||||
Technische Universitaet Berlin
|
||||
|
||||
Any use of this software is permitted provided that this notice is not
|
||||
removed and that neither the authors nor the Technische Universitaet Berlin
|
||||
are deemed to have made any representations as to the suitability of this
|
||||
software for any purpose nor are held responsible for any defects of
|
||||
this software. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
|
||||
As a matter of courtesy, the authors request to be informed about uses
|
||||
this software has found, about bugs in this software, and about any
|
||||
improvements that may be of general interest.
|
||||
|
||||
Berlin, 28.11.1994
|
||||
Jutta Degener
|
||||
Carsten Bormann
|
||||
|
||||
oOo
|
||||
|
||||
Since the original terms of 15 years ago maybe do not make our
|
||||
intentions completely clear given today's refined usage of the legal
|
||||
terms, we append this additional permission:
|
||||
|
||||
Permission to use, copy, modify, and distribute this software
|
||||
for any purpose with or without fee is hereby granted,
|
||||
provided that this notice is not removed and that neither
|
||||
the authors nor the Technische Universitaet Berlin are
|
||||
deemed to have made any representations as to the suitability
|
||||
of this software for any purpose nor are held responsible
|
||||
for any defects of this software. THERE IS ABSOLUTELY NO
|
||||
WARRANTY FOR THIS SOFTWARE.
|
||||
|
||||
Berkeley/Bremen, 05.04.2009
|
||||
Jutta Degener
|
||||
Carsten Bormann
|
|
@ -0,0 +1,19 @@
|
|||
EXTLIB = libgsm.a
|
||||
EXTRAINCL = -I$(srcdir)/inc
|
||||
|
||||
C_SRCS = \
|
||||
src/add.c \
|
||||
src/code.c \
|
||||
src/decode.c \
|
||||
src/gsm_create.c \
|
||||
src/gsm_decode.c \
|
||||
src/gsm_destroy.c \
|
||||
src/gsm_encode.c \
|
||||
src/gsm_option.c \
|
||||
src/gsm_print.c \
|
||||
src/long_term.c \
|
||||
src/lpc.c \
|
||||
src/preprocess.c \
|
||||
src/rpe.c \
|
||||
src/short_term.c \
|
||||
src/table.c
|
|
@ -0,0 +1,79 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/*$Header: /home/kbs/jutta/src/gsm/gsm-1.0/inc/RCS/gsm.h,v 1.11 1996/07/05 18:02:56 jutta Exp $*/
|
||||
|
||||
#ifndef GSM_H
|
||||
#define GSM_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
# define NeedFunctionPrototypes 1
|
||||
#endif
|
||||
|
||||
#if __STDC__
|
||||
# define NeedFunctionPrototypes 1
|
||||
#endif
|
||||
|
||||
#ifdef _NO_PROTO
|
||||
# undef NeedFunctionPrototypes
|
||||
#endif
|
||||
|
||||
#ifdef NeedFunctionPrototypes
|
||||
# include <stdio.h> /* for FILE * */
|
||||
#endif
|
||||
|
||||
#undef GSM_P
|
||||
#if NeedFunctionPrototypes
|
||||
# define GSM_P( protos ) protos
|
||||
#else
|
||||
# define GSM_P( protos ) ( /* protos */ )
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Interface
|
||||
*/
|
||||
|
||||
typedef struct gsm_state * gsm;
|
||||
typedef short gsm_signal; /* signed 16 bit */
|
||||
typedef unsigned char gsm_byte;
|
||||
typedef gsm_byte gsm_frame[33]; /* 33 * 8 bits */
|
||||
|
||||
#define GSM_MAGIC 0xD /* 13 kbit/s RPE-LTP */
|
||||
|
||||
#define GSM_PATCHLEVEL 19
|
||||
#define GSM_MINOR 0
|
||||
#define GSM_MAJOR 1
|
||||
|
||||
#define GSM_OPT_VERBOSE 1
|
||||
#define GSM_OPT_FAST 2
|
||||
#define GSM_OPT_LTP_CUT 3
|
||||
#define GSM_OPT_WAV49 4
|
||||
#define GSM_OPT_FRAME_INDEX 5
|
||||
#define GSM_OPT_FRAME_CHAIN 6
|
||||
|
||||
extern gsm gsm_create GSM_P((void));
|
||||
extern void gsm_destroy GSM_P((gsm));
|
||||
|
||||
extern int gsm_print GSM_P((FILE *, gsm, gsm_byte *));
|
||||
extern int gsm_option GSM_P((gsm, int, int *));
|
||||
|
||||
extern void gsm_encode GSM_P((gsm, gsm_signal *, gsm_byte *));
|
||||
extern int gsm_decode GSM_P((gsm, gsm_byte *, gsm_signal *));
|
||||
|
||||
extern int gsm_explode GSM_P((gsm, gsm_byte *, gsm_signal *));
|
||||
extern void gsm_implode GSM_P((gsm, gsm_signal *, gsm_byte *));
|
||||
|
||||
#undef GSM_P
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* GSM_H */
|
|
@ -0,0 +1,277 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/*$Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/private.h,v 1.6 1996/07/02 10:15:26 jutta Exp $*/
|
||||
|
||||
#ifndef PRIVATE_H
|
||||
#define PRIVATE_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef short word; /* 16 bit signed int */
|
||||
typedef long longword; /* 32 bit signed int */
|
||||
|
||||
typedef unsigned short uword; /* unsigned word */
|
||||
typedef unsigned long ulongword; /* unsigned longword */
|
||||
|
||||
struct gsm_state {
|
||||
|
||||
word dp0[ 280 ];
|
||||
word e[ 50 ]; /* code.c */
|
||||
|
||||
word z1; /* preprocessing.c, Offset_com. */
|
||||
longword L_z2; /* Offset_com. */
|
||||
int mp; /* Preemphasis */
|
||||
|
||||
word u[8]; /* short_term_aly_filter.c */
|
||||
word LARpp[2][8]; /* */
|
||||
word j; /* */
|
||||
|
||||
word ltp_cut; /* long_term.c, LTP crosscorr. */
|
||||
word nrp; /* 40 */ /* long_term.c, synthesis */
|
||||
word v[9]; /* short_term.c, synthesis */
|
||||
word msr; /* decoder.c, Postprocessing */
|
||||
|
||||
char verbose; /* only used if !NDEBUG */
|
||||
char fast; /* only used if FAST */
|
||||
|
||||
char wav_fmt; /* only used if WAV49 defined */
|
||||
unsigned char frame_index; /* odd/even chaining */
|
||||
unsigned char frame_chain; /* half-byte to carry forward */
|
||||
};
|
||||
|
||||
|
||||
#define MIN_WORD (-32767 - 1)
|
||||
#define MAX_WORD 32767
|
||||
|
||||
#define MIN_LONGWORD (-2147483647 - 1)
|
||||
#define MAX_LONGWORD 2147483647
|
||||
|
||||
#ifdef SASR /* flag: >> is a signed arithmetic shift right */
|
||||
#undef SASR
|
||||
#define SASR(x, by) ((x) >> (by))
|
||||
#else
|
||||
#define SASR(x, by) ((x) >= 0 ? (x) >> (by) : (~(-((x) + 1) >> (by))))
|
||||
#endif /* SASR */
|
||||
|
||||
#include "proto.h"
|
||||
|
||||
/*
|
||||
* Prototypes from add.c
|
||||
*/
|
||||
extern word gsm_mult P((word a, word b));
|
||||
extern longword gsm_L_mult P((word a, word b));
|
||||
extern word gsm_mult_r P((word a, word b));
|
||||
|
||||
extern word gsm_div P((word num, word denum));
|
||||
|
||||
extern word gsm_add P(( word a, word b ));
|
||||
extern longword gsm_L_add P(( longword a, longword b ));
|
||||
|
||||
extern word gsm_sub P((word a, word b));
|
||||
extern longword gsm_L_sub P((longword a, longword b));
|
||||
|
||||
extern word gsm_abs P((word a));
|
||||
|
||||
extern word gsm_norm P(( longword a ));
|
||||
|
||||
extern longword gsm_L_asl P((longword a, int n));
|
||||
extern word gsm_asl P((word a, int n));
|
||||
|
||||
extern longword gsm_L_asr P((longword a, int n));
|
||||
extern word gsm_asr P((word a, int n));
|
||||
|
||||
/*
|
||||
* Inlined functions from add.h
|
||||
*/
|
||||
|
||||
/*
|
||||
* #define GSM_MULT_R(a, b) (* word a, word b, !(a == b == MIN_WORD) *) \
|
||||
* (0x0FFFF & SASR(((longword)(a) * (longword)(b) + 16384), 15))
|
||||
*/
|
||||
#define GSM_MULT_R(a, b) /* word a, word b, !(a == b == MIN_WORD) */ \
|
||||
(SASR( ((longword)(a) * (longword)(b) + 16384), 15 ))
|
||||
|
||||
# define GSM_MULT(a,b) /* word a, word b, !(a == b == MIN_WORD) */ \
|
||||
(SASR( ((longword)(a) * (longword)(b)), 15 ))
|
||||
|
||||
# define GSM_L_MULT(a, b) /* word a, word b */ \
|
||||
(((longword)(a) * (longword)(b)) << 1)
|
||||
|
||||
# define GSM_L_ADD(a, b) \
|
||||
( (a) < 0 ? ( (b) >= 0 ? (a) + (b) \
|
||||
: (utmp = (ulongword)-((a) + 1) + (ulongword)-((b) + 1)) \
|
||||
>= MAX_LONGWORD ? MIN_LONGWORD : -(longword)utmp-2 ) \
|
||||
: ((b) <= 0 ? (a) + (b) \
|
||||
: (utmp = (ulongword)(a) + (ulongword)(b)) >= MAX_LONGWORD \
|
||||
? MAX_LONGWORD : utmp))
|
||||
|
||||
/*
|
||||
* # define GSM_ADD(a, b) \
|
||||
* ((ltmp = (longword)(a) + (longword)(b)) >= MAX_WORD \
|
||||
* ? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp)
|
||||
*/
|
||||
/* Nonportable, but faster: */
|
||||
|
||||
#define GSM_ADD(a, b) \
|
||||
((ulongword)((ltmp = (longword)(a) + (longword)(b)) - MIN_WORD) > \
|
||||
MAX_WORD - MIN_WORD ? (ltmp > 0 ? MAX_WORD : MIN_WORD) : ltmp)
|
||||
|
||||
# define GSM_SUB(a, b) \
|
||||
((ltmp = (longword)(a) - (longword)(b)) >= MAX_WORD \
|
||||
? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp)
|
||||
|
||||
# define GSM_ABS(a) ((a) < 0 ? ((a) == MIN_WORD ? MAX_WORD : -(a)) : (a))
|
||||
|
||||
/* Use these if necessary:
|
||||
|
||||
# define GSM_MULT_R(a, b) gsm_mult_r(a, b)
|
||||
# define GSM_MULT(a, b) gsm_mult(a, b)
|
||||
# define GSM_L_MULT(a, b) gsm_L_mult(a, b)
|
||||
|
||||
# define GSM_L_ADD(a, b) gsm_L_add(a, b)
|
||||
# define GSM_ADD(a, b) gsm_add(a, b)
|
||||
# define GSM_SUB(a, b) gsm_sub(a, b)
|
||||
|
||||
# define GSM_ABS(a) gsm_abs(a)
|
||||
|
||||
*/
|
||||
|
||||
/*
|
||||
* More prototypes from implementations..
|
||||
*/
|
||||
extern void Gsm_Coder P((
|
||||
struct gsm_state * S,
|
||||
word * s, /* [0..159] samples IN */
|
||||
word * LARc, /* [0..7] LAR coefficients OUT */
|
||||
word * Nc, /* [0..3] LTP lag OUT */
|
||||
word * bc, /* [0..3] coded LTP gain OUT */
|
||||
word * Mc, /* [0..3] RPE grid selection OUT */
|
||||
word * xmaxc,/* [0..3] Coded maximum amplitude OUT */
|
||||
word * xMc /* [13*4] normalized RPE samples OUT */));
|
||||
|
||||
extern void Gsm_Long_Term_Predictor P(( /* 4x for 160 samples */
|
||||
struct gsm_state * S,
|
||||
word * d, /* [0..39] residual signal IN */
|
||||
word * dp, /* [-120..-1] d' IN */
|
||||
word * e, /* [0..40] OUT */
|
||||
word * dpp, /* [0..40] OUT */
|
||||
word * Nc, /* correlation lag OUT */
|
||||
word * bc /* gain factor OUT */));
|
||||
|
||||
extern void Gsm_LPC_Analysis P((
|
||||
struct gsm_state * S,
|
||||
word * s, /* 0..159 signals IN/OUT */
|
||||
word * LARc)); /* 0..7 LARc's OUT */
|
||||
|
||||
extern void Gsm_Preprocess P((
|
||||
struct gsm_state * S,
|
||||
word * s, word * so));
|
||||
|
||||
extern void Gsm_Encoding P((
|
||||
struct gsm_state * S,
|
||||
word * e,
|
||||
word * ep,
|
||||
word * xmaxc,
|
||||
word * Mc,
|
||||
word * xMc));
|
||||
|
||||
extern void Gsm_Short_Term_Analysis_Filter P((
|
||||
struct gsm_state * S,
|
||||
word * LARc, /* coded log area ratio [0..7] IN */
|
||||
word * d /* st res. signal [0..159] IN/OUT */));
|
||||
|
||||
extern void Gsm_Decoder P((
|
||||
struct gsm_state * S,
|
||||
word * LARcr, /* [0..7] IN */
|
||||
word * Ncr, /* [0..3] IN */
|
||||
word * bcr, /* [0..3] IN */
|
||||
word * Mcr, /* [0..3] IN */
|
||||
word * xmaxcr, /* [0..3] IN */
|
||||
word * xMcr, /* [0..13*4] IN */
|
||||
word * s)); /* [0..159] OUT */
|
||||
|
||||
extern void Gsm_Decoding P((
|
||||
struct gsm_state * S,
|
||||
word xmaxcr,
|
||||
word Mcr,
|
||||
word * xMcr, /* [0..12] IN */
|
||||
word * erp)); /* [0..39] OUT */
|
||||
|
||||
extern void Gsm_Long_Term_Synthesis_Filtering P((
|
||||
struct gsm_state* S,
|
||||
word Ncr,
|
||||
word bcr,
|
||||
word * erp, /* [0..39] IN */
|
||||
word * drp)); /* [-120..-1] IN, [0..40] OUT */
|
||||
|
||||
void Gsm_RPE_Decoding P((
|
||||
struct gsm_state *S,
|
||||
word xmaxcr,
|
||||
word Mcr,
|
||||
word * xMcr, /* [0..12], 3 bits IN */
|
||||
word * erp)); /* [0..39] OUT */
|
||||
|
||||
void Gsm_RPE_Encoding P((
|
||||
struct gsm_state * S,
|
||||
word * e, /* -5..-1][0..39][40..44 IN/OUT */
|
||||
word * xmaxc, /* OUT */
|
||||
word * Mc, /* OUT */
|
||||
word * xMc)); /* [0..12] OUT */
|
||||
|
||||
extern void Gsm_Short_Term_Synthesis_Filter P((
|
||||
struct gsm_state * S,
|
||||
word * LARcr, /* log area ratios [0..7] IN */
|
||||
word * drp, /* received d [0...39] IN */
|
||||
word * s)); /* signal s [0..159] OUT */
|
||||
|
||||
extern void Gsm_Update_of_reconstructed_short_time_residual_signal P((
|
||||
word * dpp, /* [0...39] IN */
|
||||
word * ep, /* [0...39] IN */
|
||||
word * dp)); /* [-120...-1] IN/OUT */
|
||||
|
||||
/*
|
||||
* Tables from table.c
|
||||
*/
|
||||
#ifndef GSM_TABLE_C
|
||||
|
||||
extern word gsm_A[8], gsm_B[8], gsm_MIC[8], gsm_MAC[8];
|
||||
extern word gsm_INVA[8];
|
||||
extern word gsm_DLB[4], gsm_QLB[4];
|
||||
extern word gsm_H[11];
|
||||
extern word gsm_NRFAC[8];
|
||||
extern word gsm_FAC[8];
|
||||
|
||||
#endif /* GSM_TABLE_C */
|
||||
|
||||
/*
|
||||
* Debugging
|
||||
*/
|
||||
#ifdef NDEBUG
|
||||
|
||||
# define gsm_debug_words(a, b, c, d) /* nil */
|
||||
# define gsm_debug_longwords(a, b, c, d) /* nil */
|
||||
# define gsm_debug_word(a, b) /* nil */
|
||||
# define gsm_debug_longword(a, b) /* nil */
|
||||
|
||||
#else /* !NDEBUG => DEBUG */
|
||||
|
||||
extern void gsm_debug_words P((char * name, int, int, word *));
|
||||
extern void gsm_debug_longwords P((char * name, int, int, longword *));
|
||||
extern void gsm_debug_longword P((char * name, longword));
|
||||
extern void gsm_debug_word P((char * name, word));
|
||||
|
||||
#endif /* !NDEBUG */
|
||||
|
||||
#include "unproto.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif /* PRIVATE_H */
|
|
@ -0,0 +1,65 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/*$Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/proto.h,v 1.1 1992/10/28 00:11:08 jutta Exp $*/
|
||||
|
||||
#ifndef PROTO_H
|
||||
#define PROTO_H
|
||||
|
||||
#if __cplusplus
|
||||
# define NeedFunctionPrototypes 1
|
||||
#endif
|
||||
|
||||
#if __STDC__
|
||||
# define NeedFunctionPrototypes 1
|
||||
#endif
|
||||
|
||||
#ifdef _NO_PROTO
|
||||
# undef NeedFunctionPrototypes
|
||||
#endif
|
||||
|
||||
#undef P /* gnu stdio.h actually defines this... */
|
||||
#undef P0
|
||||
#undef P1
|
||||
#undef P2
|
||||
#undef P3
|
||||
#undef P4
|
||||
#undef P5
|
||||
#undef P6
|
||||
#undef P7
|
||||
#undef P8
|
||||
|
||||
#if NeedFunctionPrototypes
|
||||
|
||||
# define P( protos ) protos
|
||||
|
||||
# define P0() (void)
|
||||
# define P1(x, a) (a)
|
||||
# define P2(x, a, b) (a, b)
|
||||
# define P3(x, a, b, c) (a, b, c)
|
||||
# define P4(x, a, b, c, d) (a, b, c, d)
|
||||
# define P5(x, a, b, c, d, e) (a, b, c, d, e)
|
||||
# define P6(x, a, b, c, d, e, f) (a, b, c, d, e, f)
|
||||
# define P7(x, a, b, c, d, e, f, g) (a, b, c, d, e, f, g)
|
||||
# define P8(x, a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g, h)
|
||||
|
||||
#else /* !NeedFunctionPrototypes */
|
||||
|
||||
# define P( protos ) ( /* protos */ )
|
||||
|
||||
# define P0() ()
|
||||
# define P1(x, a) x a;
|
||||
# define P2(x, a, b) x a; b;
|
||||
# define P3(x, a, b, c) x a; b; c;
|
||||
# define P4(x, a, b, c, d) x a; b; c; d;
|
||||
# define P5(x, a, b, c, d, e) x a; b; c; d; e;
|
||||
# define P6(x, a, b, c, d, e, f) x a; b; c; d; e; f;
|
||||
# define P7(x, a, b, c, d, e, f, g) x a; b; c; d; e; f; g;
|
||||
# define P8(x, a, b, c, d, e, f, g, h) x a; b; c; d; e; f; g; h;
|
||||
|
||||
#endif /* !NeedFunctionPrototypes */
|
||||
|
||||
#endif /* PROTO_H */
|
|
@ -0,0 +1,23 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/*$Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/unproto.h,v 1.1 1992/10/28 00:11:08 jutta Exp $*/
|
||||
|
||||
#ifdef PROTO_H /* sic */
|
||||
#undef PROTO_H
|
||||
|
||||
#undef P
|
||||
#undef P0
|
||||
#undef P1
|
||||
#undef P2
|
||||
#undef P3
|
||||
#undef P4
|
||||
#undef P5
|
||||
#undef P6
|
||||
#undef P7
|
||||
#undef P8
|
||||
|
||||
#endif /* PROTO_H */
|
|
@ -0,0 +1,235 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/add.c,v 1.6 1996/07/02 09:57:33 jutta Exp $ */
|
||||
|
||||
/*
|
||||
* See private.h for the more commonly used macro versions.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "private.h"
|
||||
#include "gsm.h"
|
||||
#include "proto.h"
|
||||
|
||||
#define saturate(x) \
|
||||
((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))
|
||||
|
||||
word gsm_add P2((a,b), word a, word b)
|
||||
{
|
||||
longword sum = (longword)a + (longword)b;
|
||||
return saturate(sum);
|
||||
}
|
||||
|
||||
word gsm_sub P2((a,b), word a, word b)
|
||||
{
|
||||
longword diff = (longword)a - (longword)b;
|
||||
return saturate(diff);
|
||||
}
|
||||
|
||||
word gsm_mult P2((a,b), word a, word b)
|
||||
{
|
||||
if (a == MIN_WORD && b == MIN_WORD) return MAX_WORD;
|
||||
else return SASR( (longword)a * (longword)b, 15 );
|
||||
}
|
||||
|
||||
word gsm_mult_r P2((a,b), word a, word b)
|
||||
{
|
||||
if (b == MIN_WORD && a == MIN_WORD) return MAX_WORD;
|
||||
else {
|
||||
longword prod = (longword)a * (longword)b + 16384;
|
||||
prod >>= 15;
|
||||
return prod & 0xFFFF;
|
||||
}
|
||||
}
|
||||
|
||||
word gsm_abs P1((a), word a)
|
||||
{
|
||||
return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
|
||||
}
|
||||
|
||||
longword gsm_L_mult P2((a,b),word a, word b)
|
||||
{
|
||||
assert( a != MIN_WORD || b != MIN_WORD );
|
||||
return ((longword)a * (longword)b) << 1;
|
||||
}
|
||||
|
||||
longword gsm_L_add P2((a,b), longword a, longword b)
|
||||
{
|
||||
if (a < 0) {
|
||||
if (b >= 0) return a + b;
|
||||
else {
|
||||
ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1);
|
||||
return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2;
|
||||
}
|
||||
}
|
||||
else if (b <= 0) return a + b;
|
||||
else {
|
||||
ulongword A = (ulongword)a + (ulongword)b;
|
||||
return A > MAX_LONGWORD ? MAX_LONGWORD : A;
|
||||
}
|
||||
}
|
||||
|
||||
longword gsm_L_sub P2((a,b), longword a, longword b)
|
||||
{
|
||||
if (a >= 0) {
|
||||
if (b >= 0) return a - b;
|
||||
else {
|
||||
/* a>=0, b<0 */
|
||||
|
||||
ulongword A = (ulongword)a + -(b + 1);
|
||||
return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
|
||||
}
|
||||
}
|
||||
else if (b <= 0) return a - b;
|
||||
else {
|
||||
/* a<0, b>0 */
|
||||
|
||||
ulongword A = (ulongword)-(a + 1) + b;
|
||||
return A >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)A - 1;
|
||||
}
|
||||
}
|
||||
|
||||
static unsigned char const bitoff[ 256 ] = {
|
||||
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
|
||||
word gsm_norm P1((a), longword a )
|
||||
/*
|
||||
* the number of left shifts needed to normalize the 32 bit
|
||||
* variable L_var1 for positive values on the interval
|
||||
*
|
||||
* with minimum of
|
||||
* minimum of 1073741824 (01000000000000000000000000000000) and
|
||||
* maximum of 2147483647 (01111111111111111111111111111111)
|
||||
*
|
||||
*
|
||||
* and for negative values on the interval with
|
||||
* minimum of -2147483648 (-10000000000000000000000000000000) and
|
||||
* maximum of -1073741824 ( -1000000000000000000000000000000).
|
||||
*
|
||||
* in order to normalize the result, the following
|
||||
* operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
|
||||
*
|
||||
* (That's 'ffs', only from the left, not the right..)
|
||||
*/
|
||||
{
|
||||
assert(a != 0);
|
||||
|
||||
if (a < 0) {
|
||||
if (a <= -1073741824) return 0;
|
||||
a = ~a;
|
||||
}
|
||||
|
||||
return a & 0xffff0000
|
||||
? ( a & 0xff000000
|
||||
? -1 + bitoff[ 0xFF & (a >> 24) ]
|
||||
: 7 + bitoff[ 0xFF & (a >> 16) ] )
|
||||
: ( a & 0xff00
|
||||
? 15 + bitoff[ 0xFF & (a >> 8) ]
|
||||
: 23 + bitoff[ 0xFF & a ] );
|
||||
}
|
||||
|
||||
longword gsm_L_asl P2((a,n), longword a, int n)
|
||||
{
|
||||
if (n >= 32) return 0;
|
||||
if (n <= -32) return -(a < 0);
|
||||
if (n < 0) return gsm_L_asr(a, -n);
|
||||
return a << n;
|
||||
}
|
||||
|
||||
word gsm_asl P2((a,n), word a, int n)
|
||||
{
|
||||
if (n >= 16) return 0;
|
||||
if (n <= -16) return -(a < 0);
|
||||
if (n < 0) return gsm_asr(a, -n);
|
||||
return a << n;
|
||||
}
|
||||
|
||||
longword gsm_L_asr P2((a,n), longword a, int n)
|
||||
{
|
||||
if (n >= 32) return -(a < 0);
|
||||
if (n <= -32) return 0;
|
||||
if (n < 0) return a << -n;
|
||||
|
||||
# ifdef SASR
|
||||
return a >> n;
|
||||
# else
|
||||
if (a >= 0) return a >> n;
|
||||
else return -(longword)( -(ulongword)a >> n );
|
||||
# endif
|
||||
}
|
||||
|
||||
word gsm_asr P2((a,n), word a, int n)
|
||||
{
|
||||
if (n >= 16) return -(a < 0);
|
||||
if (n <= -16) return 0;
|
||||
if (n < 0) return a << -n;
|
||||
|
||||
# ifdef SASR
|
||||
return a >> n;
|
||||
# else
|
||||
if (a >= 0) return a >> n;
|
||||
else return -(word)( -(uword)a >> n );
|
||||
# endif
|
||||
}
|
||||
|
||||
/*
|
||||
* (From p. 46, end of section 4.2.5)
|
||||
*
|
||||
* NOTE: The following lines gives [sic] one correct implementation
|
||||
* of the div(num, denum) arithmetic operation. Compute div
|
||||
* which is the integer division of num by denum: with denum
|
||||
* >= num > 0
|
||||
*/
|
||||
|
||||
word gsm_div P2((num,denum), word num, word denum)
|
||||
{
|
||||
longword L_num = num;
|
||||
longword L_denum = denum;
|
||||
word div = 0;
|
||||
int k = 15;
|
||||
|
||||
/* The parameter num sometimes becomes zero.
|
||||
* Although this is explicitly guarded against in 4.2.5,
|
||||
* we assume that the result should then be zero as well.
|
||||
*/
|
||||
|
||||
/* assert(num != 0); */
|
||||
|
||||
assert(num >= 0 && denum >= num);
|
||||
if (num == 0)
|
||||
return 0;
|
||||
|
||||
while (k--) {
|
||||
div <<= 1;
|
||||
L_num <<= 1;
|
||||
|
||||
if (L_num >= L_denum) {
|
||||
L_num -= L_denum;
|
||||
div++;
|
||||
}
|
||||
}
|
||||
|
||||
return div;
|
||||
}
|
|
@ -0,0 +1,89 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/code.c,v 1.3 1996/07/02 09:59:05 jutta Exp $ */
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include "private.h"
|
||||
#include "gsm.h"
|
||||
#include "proto.h"
|
||||
|
||||
/*
|
||||
* 4.2 FIXED POINT IMPLEMENTATION OF THE RPE-LTP CODER
|
||||
*/
|
||||
|
||||
void Gsm_Coder P8((S,s,LARc,Nc,bc,Mc,xmaxc,xMc),
|
||||
|
||||
struct gsm_state * S,
|
||||
|
||||
word * s, /* [0..159] samples IN */
|
||||
|
||||
/*
|
||||
* The RPE-LTD coder works on a frame by frame basis. The length of
|
||||
* the frame is equal to 160 samples. Some computations are done
|
||||
* once per frame to produce at the output of the coder the
|
||||
* LARc[1..8] parameters which are the coded LAR coefficients and
|
||||
* also to realize the inverse filtering operation for the entire
|
||||
* frame (160 samples of signal d[0..159]). These parts produce at
|
||||
* the output of the coder:
|
||||
*/
|
||||
|
||||
word * LARc, /* [0..7] LAR coefficients OUT */
|
||||
|
||||
/*
|
||||
* Procedure 4.2.11 to 4.2.18 are to be executed four times per
|
||||
* frame. That means once for each sub-segment RPE-LTP analysis of
|
||||
* 40 samples. These parts produce at the output of the coder:
|
||||
*/
|
||||
|
||||
word * Nc, /* [0..3] LTP lag OUT */
|
||||
word * bc, /* [0..3] coded LTP gain OUT */
|
||||
word * Mc, /* [0..3] RPE grid selection OUT */
|
||||
word * xmaxc,/* [0..3] Coded maximum amplitude OUT */
|
||||
word * xMc /* [13*4] normalized RPE samples OUT */
|
||||
)
|
||||
{
|
||||
int k;
|
||||
word * dp = S->dp0 + 120; /* [ -120...-1 ] */
|
||||
word * dpp = dp; /* [ 0...39 ] */
|
||||
|
||||
word so[160];
|
||||
|
||||
Gsm_Preprocess (S, s, so);
|
||||
Gsm_LPC_Analysis (S, so, LARc);
|
||||
Gsm_Short_Term_Analysis_Filter (S, LARc, so);
|
||||
|
||||
for (k = 0; k <= 3; k++, xMc += 13) {
|
||||
|
||||
Gsm_Long_Term_Predictor ( S,
|
||||
so+k*40, /* d [0..39] IN */
|
||||
dp, /* dp [-120..-1] IN */
|
||||
S->e + 5, /* e [0..39] OUT */
|
||||
dpp, /* dpp [0..39] OUT */
|
||||
Nc++,
|
||||
bc++);
|
||||
|
||||
Gsm_RPE_Encoding ( S,
|
||||
S->e + 5,/* e ][0..39][ IN/OUT */
|
||||
xmaxc++, Mc++, xMc );
|
||||
/*
|
||||
* Gsm_Update_of_reconstructed_short_time_residual_signal
|
||||
* ( dpp, S->e + 5, dp );
|
||||
*/
|
||||
|
||||
{ register int i;
|
||||
register longword ltmp;
|
||||
for (i = 0; i <= 39; i++)
|
||||
dp[ i ] = GSM_ADD( S->e[5 + i], dpp[i] );
|
||||
}
|
||||
dp += 40;
|
||||
dpp += 40;
|
||||
|
||||
}
|
||||
(void)memcpy( (char *)S->dp0, (char *)(S->dp0 + 160),
|
||||
120 * sizeof(*S->dp0) );
|
||||
}
|
|
@ -0,0 +1,63 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/decode.c,v 1.1 1992/10/28 00:15:50 jutta Exp $ */
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "private.h"
|
||||
#include "gsm.h"
|
||||
#include "proto.h"
|
||||
|
||||
/*
|
||||
* 4.3 FIXED POINT IMPLEMENTATION OF THE RPE-LTP DECODER
|
||||
*/
|
||||
|
||||
static void Postprocessing P2((S,s),
|
||||
struct gsm_state * S,
|
||||
register word * s)
|
||||
{
|
||||
register int k;
|
||||
register word msr = S->msr;
|
||||
register longword ltmp; /* for GSM_ADD */
|
||||
register word tmp;
|
||||
|
||||
for (k = 160; k--; s++) {
|
||||
tmp = GSM_MULT_R( msr, 28180 );
|
||||
msr = GSM_ADD(*s, tmp); /* Deemphasis */
|
||||
*s = GSM_ADD(msr, msr) & 0xFFF8; /* Truncation & Upscaling */
|
||||
}
|
||||
S->msr = msr;
|
||||
}
|
||||
|
||||
void Gsm_Decoder P8((S,LARcr, Ncr,bcr,Mcr,xmaxcr,xMcr,s),
|
||||
struct gsm_state * S,
|
||||
|
||||
word * LARcr, /* [0..7] IN */
|
||||
|
||||
word * Ncr, /* [0..3] IN */
|
||||
word * bcr, /* [0..3] IN */
|
||||
word * Mcr, /* [0..3] IN */
|
||||
word * xmaxcr, /* [0..3] IN */
|
||||
word * xMcr, /* [0..13*4] IN */
|
||||
|
||||
word * s) /* [0..159] OUT */
|
||||
{
|
||||
int j, k;
|
||||
word erp[40], wt[160];
|
||||
word * drp = S->dp0 + 120;
|
||||
|
||||
for (j=0; j <= 3; j++, xmaxcr++, bcr++, Ncr++, Mcr++, xMcr += 13) {
|
||||
|
||||
Gsm_RPE_Decoding( S, *xmaxcr, *Mcr, xMcr, erp );
|
||||
Gsm_Long_Term_Synthesis_Filtering( S, *Ncr, *bcr, erp, drp );
|
||||
|
||||
for (k = 0; k <= 39; k++) wt[ j * 40 + k ] = drp[ k ];
|
||||
}
|
||||
|
||||
Gsm_Short_Term_Synthesis_Filter( S, LARcr, wt, s );
|
||||
Postprocessing(S, s);
|
||||
}
|
|
@ -0,0 +1,28 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
static char const ident[] = "$Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/gsm_create.c,v 1.4 1996/07/02 09:59:05 jutta Exp $";
|
||||
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "gsm.h"
|
||||
#include "private.h"
|
||||
#include "proto.h"
|
||||
|
||||
gsm gsm_create P0()
|
||||
{
|
||||
gsm r;
|
||||
|
||||
r = (gsm)malloc(sizeof(struct gsm_state));
|
||||
if (!r) return r;
|
||||
|
||||
memset((char *)r, 0, sizeof(*r));
|
||||
r->nrp = 40;
|
||||
|
||||
return r;
|
||||
}
|
|
@ -0,0 +1,361 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/gsm_decode.c,v 1.2 1996/07/02 09:59:05 jutta Exp $ */
|
||||
|
||||
#include "private.h"
|
||||
|
||||
#include "gsm.h"
|
||||
#include "proto.h"
|
||||
|
||||
int gsm_decode P3((s, c, target), gsm s, gsm_byte * c, gsm_signal * target)
|
||||
{
|
||||
word LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4];
|
||||
|
||||
#ifdef WAV49
|
||||
if (s->wav_fmt) {
|
||||
|
||||
uword sr = 0;
|
||||
|
||||
s->frame_index = !s->frame_index;
|
||||
if (s->frame_index) {
|
||||
|
||||
sr = *c++;
|
||||
LARc[0] = sr & 0x3f; sr >>= 6;
|
||||
sr |= (uword)*c++ << 2;
|
||||
LARc[1] = sr & 0x3f; sr >>= 6;
|
||||
sr |= (uword)*c++ << 4;
|
||||
LARc[2] = sr & 0x1f; sr >>= 5;
|
||||
LARc[3] = sr & 0x1f; sr >>= 5;
|
||||
sr |= (uword)*c++ << 2;
|
||||
LARc[4] = sr & 0xf; sr >>= 4;
|
||||
LARc[5] = sr & 0xf; sr >>= 4;
|
||||
sr |= (uword)*c++ << 2; /* 5 */
|
||||
LARc[6] = sr & 0x7; sr >>= 3;
|
||||
LARc[7] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 4;
|
||||
Nc[0] = sr & 0x7f; sr >>= 7;
|
||||
bc[0] = sr & 0x3; sr >>= 2;
|
||||
Mc[0] = sr & 0x3; sr >>= 2;
|
||||
sr |= (uword)*c++ << 1;
|
||||
xmaxc[0] = sr & 0x3f; sr >>= 6;
|
||||
xmc[0] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++;
|
||||
xmc[1] = sr & 0x7; sr >>= 3;
|
||||
xmc[2] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 2;
|
||||
xmc[3] = sr & 0x7; sr >>= 3;
|
||||
xmc[4] = sr & 0x7; sr >>= 3;
|
||||
xmc[5] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 1; /* 10 */
|
||||
xmc[6] = sr & 0x7; sr >>= 3;
|
||||
xmc[7] = sr & 0x7; sr >>= 3;
|
||||
xmc[8] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++;
|
||||
xmc[9] = sr & 0x7; sr >>= 3;
|
||||
xmc[10] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 2;
|
||||
xmc[11] = sr & 0x7; sr >>= 3;
|
||||
xmc[12] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 4;
|
||||
Nc[1] = sr & 0x7f; sr >>= 7;
|
||||
bc[1] = sr & 0x3; sr >>= 2;
|
||||
Mc[1] = sr & 0x3; sr >>= 2;
|
||||
sr |= (uword)*c++ << 1;
|
||||
xmaxc[1] = sr & 0x3f; sr >>= 6;
|
||||
xmc[13] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++; /* 15 */
|
||||
xmc[14] = sr & 0x7; sr >>= 3;
|
||||
xmc[15] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 2;
|
||||
xmc[16] = sr & 0x7; sr >>= 3;
|
||||
xmc[17] = sr & 0x7; sr >>= 3;
|
||||
xmc[18] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 1;
|
||||
xmc[19] = sr & 0x7; sr >>= 3;
|
||||
xmc[20] = sr & 0x7; sr >>= 3;
|
||||
xmc[21] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++;
|
||||
xmc[22] = sr & 0x7; sr >>= 3;
|
||||
xmc[23] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 2;
|
||||
xmc[24] = sr & 0x7; sr >>= 3;
|
||||
xmc[25] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 4; /* 20 */
|
||||
Nc[2] = sr & 0x7f; sr >>= 7;
|
||||
bc[2] = sr & 0x3; sr >>= 2;
|
||||
Mc[2] = sr & 0x3; sr >>= 2;
|
||||
sr |= (uword)*c++ << 1;
|
||||
xmaxc[2] = sr & 0x3f; sr >>= 6;
|
||||
xmc[26] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++;
|
||||
xmc[27] = sr & 0x7; sr >>= 3;
|
||||
xmc[28] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 2;
|
||||
xmc[29] = sr & 0x7; sr >>= 3;
|
||||
xmc[30] = sr & 0x7; sr >>= 3;
|
||||
xmc[31] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 1;
|
||||
xmc[32] = sr & 0x7; sr >>= 3;
|
||||
xmc[33] = sr & 0x7; sr >>= 3;
|
||||
xmc[34] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++; /* 25 */
|
||||
xmc[35] = sr & 0x7; sr >>= 3;
|
||||
xmc[36] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 2;
|
||||
xmc[37] = sr & 0x7; sr >>= 3;
|
||||
xmc[38] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 4;
|
||||
Nc[3] = sr & 0x7f; sr >>= 7;
|
||||
bc[3] = sr & 0x3; sr >>= 2;
|
||||
Mc[3] = sr & 0x3; sr >>= 2;
|
||||
sr |= (uword)*c++ << 1;
|
||||
xmaxc[3] = sr & 0x3f; sr >>= 6;
|
||||
xmc[39] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++;
|
||||
xmc[40] = sr & 0x7; sr >>= 3;
|
||||
xmc[41] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 2; /* 30 */
|
||||
xmc[42] = sr & 0x7; sr >>= 3;
|
||||
xmc[43] = sr & 0x7; sr >>= 3;
|
||||
xmc[44] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 1;
|
||||
xmc[45] = sr & 0x7; sr >>= 3;
|
||||
xmc[46] = sr & 0x7; sr >>= 3;
|
||||
xmc[47] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++;
|
||||
xmc[48] = sr & 0x7; sr >>= 3;
|
||||
xmc[49] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 2;
|
||||
xmc[50] = sr & 0x7; sr >>= 3;
|
||||
xmc[51] = sr & 0x7; sr >>= 3;
|
||||
|
||||
s->frame_chain = sr & 0xf;
|
||||
}
|
||||
else {
|
||||
sr = s->frame_chain;
|
||||
sr |= (uword)*c++ << 4; /* 1 */
|
||||
LARc[0] = sr & 0x3f; sr >>= 6;
|
||||
LARc[1] = sr & 0x3f; sr >>= 6;
|
||||
sr = *c++;
|
||||
LARc[2] = sr & 0x1f; sr >>= 5;
|
||||
sr |= (uword)*c++ << 3;
|
||||
LARc[3] = sr & 0x1f; sr >>= 5;
|
||||
LARc[4] = sr & 0xf; sr >>= 4;
|
||||
sr |= (uword)*c++ << 2;
|
||||
LARc[5] = sr & 0xf; sr >>= 4;
|
||||
LARc[6] = sr & 0x7; sr >>= 3;
|
||||
LARc[7] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++; /* 5 */
|
||||
Nc[0] = sr & 0x7f; sr >>= 7;
|
||||
sr |= (uword)*c++ << 1;
|
||||
bc[0] = sr & 0x3; sr >>= 2;
|
||||
Mc[0] = sr & 0x3; sr >>= 2;
|
||||
sr |= (uword)*c++ << 5;
|
||||
xmaxc[0] = sr & 0x3f; sr >>= 6;
|
||||
xmc[0] = sr & 0x7; sr >>= 3;
|
||||
xmc[1] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 1;
|
||||
xmc[2] = sr & 0x7; sr >>= 3;
|
||||
xmc[3] = sr & 0x7; sr >>= 3;
|
||||
xmc[4] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++;
|
||||
xmc[5] = sr & 0x7; sr >>= 3;
|
||||
xmc[6] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 2; /* 10 */
|
||||
xmc[7] = sr & 0x7; sr >>= 3;
|
||||
xmc[8] = sr & 0x7; sr >>= 3;
|
||||
xmc[9] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 1;
|
||||
xmc[10] = sr & 0x7; sr >>= 3;
|
||||
xmc[11] = sr & 0x7; sr >>= 3;
|
||||
xmc[12] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++;
|
||||
Nc[1] = sr & 0x7f; sr >>= 7;
|
||||
sr |= (uword)*c++ << 1;
|
||||
bc[1] = sr & 0x3; sr >>= 2;
|
||||
Mc[1] = sr & 0x3; sr >>= 2;
|
||||
sr |= (uword)*c++ << 5;
|
||||
xmaxc[1] = sr & 0x3f; sr >>= 6;
|
||||
xmc[13] = sr & 0x7; sr >>= 3;
|
||||
xmc[14] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 1; /* 15 */
|
||||
xmc[15] = sr & 0x7; sr >>= 3;
|
||||
xmc[16] = sr & 0x7; sr >>= 3;
|
||||
xmc[17] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++;
|
||||
xmc[18] = sr & 0x7; sr >>= 3;
|
||||
xmc[19] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 2;
|
||||
xmc[20] = sr & 0x7; sr >>= 3;
|
||||
xmc[21] = sr & 0x7; sr >>= 3;
|
||||
xmc[22] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 1;
|
||||
xmc[23] = sr & 0x7; sr >>= 3;
|
||||
xmc[24] = sr & 0x7; sr >>= 3;
|
||||
xmc[25] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++;
|
||||
Nc[2] = sr & 0x7f; sr >>= 7;
|
||||
sr |= (uword)*c++ << 1; /* 20 */
|
||||
bc[2] = sr & 0x3; sr >>= 2;
|
||||
Mc[2] = sr & 0x3; sr >>= 2;
|
||||
sr |= (uword)*c++ << 5;
|
||||
xmaxc[2] = sr & 0x3f; sr >>= 6;
|
||||
xmc[26] = sr & 0x7; sr >>= 3;
|
||||
xmc[27] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 1;
|
||||
xmc[28] = sr & 0x7; sr >>= 3;
|
||||
xmc[29] = sr & 0x7; sr >>= 3;
|
||||
xmc[30] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++;
|
||||
xmc[31] = sr & 0x7; sr >>= 3;
|
||||
xmc[32] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 2;
|
||||
xmc[33] = sr & 0x7; sr >>= 3;
|
||||
xmc[34] = sr & 0x7; sr >>= 3;
|
||||
xmc[35] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 1; /* 25 */
|
||||
xmc[36] = sr & 0x7; sr >>= 3;
|
||||
xmc[37] = sr & 0x7; sr >>= 3;
|
||||
xmc[38] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++;
|
||||
Nc[3] = sr & 0x7f; sr >>= 7;
|
||||
sr |= (uword)*c++ << 1;
|
||||
bc[3] = sr & 0x3; sr >>= 2;
|
||||
Mc[3] = sr & 0x3; sr >>= 2;
|
||||
sr |= (uword)*c++ << 5;
|
||||
xmaxc[3] = sr & 0x3f; sr >>= 6;
|
||||
xmc[39] = sr & 0x7; sr >>= 3;
|
||||
xmc[40] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 1;
|
||||
xmc[41] = sr & 0x7; sr >>= 3;
|
||||
xmc[42] = sr & 0x7; sr >>= 3;
|
||||
xmc[43] = sr & 0x7; sr >>= 3;
|
||||
sr = *c++; /* 30 */
|
||||
xmc[44] = sr & 0x7; sr >>= 3;
|
||||
xmc[45] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 2;
|
||||
xmc[46] = sr & 0x7; sr >>= 3;
|
||||
xmc[47] = sr & 0x7; sr >>= 3;
|
||||
xmc[48] = sr & 0x7; sr >>= 3;
|
||||
sr |= (uword)*c++ << 1;
|
||||
xmc[49] = sr & 0x7; sr >>= 3;
|
||||
xmc[50] = sr & 0x7; sr >>= 3;
|
||||
xmc[51] = sr & 0x7; sr >>= 3;
|
||||
}
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
/* GSM_MAGIC = (*c >> 4) & 0xF; */
|
||||
|
||||
if (((*c >> 4) & 0x0F) != GSM_MAGIC) return -1;
|
||||
|
||||
LARc[0] = (*c++ & 0xF) << 2; /* 1 */
|
||||
LARc[0] |= (*c >> 6) & 0x3;
|
||||
LARc[1] = *c++ & 0x3F;
|
||||
LARc[2] = (*c >> 3) & 0x1F;
|
||||
LARc[3] = (*c++ & 0x7) << 2;
|
||||
LARc[3] |= (*c >> 6) & 0x3;
|
||||
LARc[4] = (*c >> 2) & 0xF;
|
||||
LARc[5] = (*c++ & 0x3) << 2;
|
||||
LARc[5] |= (*c >> 6) & 0x3;
|
||||
LARc[6] = (*c >> 3) & 0x7;
|
||||
LARc[7] = *c++ & 0x7;
|
||||
Nc[0] = (*c >> 1) & 0x7F;
|
||||
bc[0] = (*c++ & 0x1) << 1;
|
||||
bc[0] |= (*c >> 7) & 0x1;
|
||||
Mc[0] = (*c >> 5) & 0x3;
|
||||
xmaxc[0] = (*c++ & 0x1F) << 1;
|
||||
xmaxc[0] |= (*c >> 7) & 0x1;
|
||||
xmc[0] = (*c >> 4) & 0x7;
|
||||
xmc[1] = (*c >> 1) & 0x7;
|
||||
xmc[2] = (*c++ & 0x1) << 2;
|
||||
xmc[2] |= (*c >> 6) & 0x3;
|
||||
xmc[3] = (*c >> 3) & 0x7;
|
||||
xmc[4] = *c++ & 0x7;
|
||||
xmc[5] = (*c >> 5) & 0x7;
|
||||
xmc[6] = (*c >> 2) & 0x7;
|
||||
xmc[7] = (*c++ & 0x3) << 1; /* 10 */
|
||||
xmc[7] |= (*c >> 7) & 0x1;
|
||||
xmc[8] = (*c >> 4) & 0x7;
|
||||
xmc[9] = (*c >> 1) & 0x7;
|
||||
xmc[10] = (*c++ & 0x1) << 2;
|
||||
xmc[10] |= (*c >> 6) & 0x3;
|
||||
xmc[11] = (*c >> 3) & 0x7;
|
||||
xmc[12] = *c++ & 0x7;
|
||||
Nc[1] = (*c >> 1) & 0x7F;
|
||||
bc[1] = (*c++ & 0x1) << 1;
|
||||
bc[1] |= (*c >> 7) & 0x1;
|
||||
Mc[1] = (*c >> 5) & 0x3;
|
||||
xmaxc[1] = (*c++ & 0x1F) << 1;
|
||||
xmaxc[1] |= (*c >> 7) & 0x1;
|
||||
xmc[13] = (*c >> 4) & 0x7;
|
||||
xmc[14] = (*c >> 1) & 0x7;
|
||||
xmc[15] = (*c++ & 0x1) << 2;
|
||||
xmc[15] |= (*c >> 6) & 0x3;
|
||||
xmc[16] = (*c >> 3) & 0x7;
|
||||
xmc[17] = *c++ & 0x7;
|
||||
xmc[18] = (*c >> 5) & 0x7;
|
||||
xmc[19] = (*c >> 2) & 0x7;
|
||||
xmc[20] = (*c++ & 0x3) << 1;
|
||||
xmc[20] |= (*c >> 7) & 0x1;
|
||||
xmc[21] = (*c >> 4) & 0x7;
|
||||
xmc[22] = (*c >> 1) & 0x7;
|
||||
xmc[23] = (*c++ & 0x1) << 2;
|
||||
xmc[23] |= (*c >> 6) & 0x3;
|
||||
xmc[24] = (*c >> 3) & 0x7;
|
||||
xmc[25] = *c++ & 0x7;
|
||||
Nc[2] = (*c >> 1) & 0x7F;
|
||||
bc[2] = (*c++ & 0x1) << 1; /* 20 */
|
||||
bc[2] |= (*c >> 7) & 0x1;
|
||||
Mc[2] = (*c >> 5) & 0x3;
|
||||
xmaxc[2] = (*c++ & 0x1F) << 1;
|
||||
xmaxc[2] |= (*c >> 7) & 0x1;
|
||||
xmc[26] = (*c >> 4) & 0x7;
|
||||
xmc[27] = (*c >> 1) & 0x7;
|
||||
xmc[28] = (*c++ & 0x1) << 2;
|
||||
xmc[28] |= (*c >> 6) & 0x3;
|
||||
xmc[29] = (*c >> 3) & 0x7;
|
||||
xmc[30] = *c++ & 0x7;
|
||||
xmc[31] = (*c >> 5) & 0x7;
|
||||
xmc[32] = (*c >> 2) & 0x7;
|
||||
xmc[33] = (*c++ & 0x3) << 1;
|
||||
xmc[33] |= (*c >> 7) & 0x1;
|
||||
xmc[34] = (*c >> 4) & 0x7;
|
||||
xmc[35] = (*c >> 1) & 0x7;
|
||||
xmc[36] = (*c++ & 0x1) << 2;
|
||||
xmc[36] |= (*c >> 6) & 0x3;
|
||||
xmc[37] = (*c >> 3) & 0x7;
|
||||
xmc[38] = *c++ & 0x7;
|
||||
Nc[3] = (*c >> 1) & 0x7F;
|
||||
bc[3] = (*c++ & 0x1) << 1;
|
||||
bc[3] |= (*c >> 7) & 0x1;
|
||||
Mc[3] = (*c >> 5) & 0x3;
|
||||
xmaxc[3] = (*c++ & 0x1F) << 1;
|
||||
xmaxc[3] |= (*c >> 7) & 0x1;
|
||||
xmc[39] = (*c >> 4) & 0x7;
|
||||
xmc[40] = (*c >> 1) & 0x7;
|
||||
xmc[41] = (*c++ & 0x1) << 2;
|
||||
xmc[41] |= (*c >> 6) & 0x3;
|
||||
xmc[42] = (*c >> 3) & 0x7;
|
||||
xmc[43] = *c++ & 0x7; /* 30 */
|
||||
xmc[44] = (*c >> 5) & 0x7;
|
||||
xmc[45] = (*c >> 2) & 0x7;
|
||||
xmc[46] = (*c++ & 0x3) << 1;
|
||||
xmc[46] |= (*c >> 7) & 0x1;
|
||||
xmc[47] = (*c >> 4) & 0x7;
|
||||
xmc[48] = (*c >> 1) & 0x7;
|
||||
xmc[49] = (*c++ & 0x1) << 2;
|
||||
xmc[49] |= (*c >> 6) & 0x3;
|
||||
xmc[50] = (*c >> 3) & 0x7;
|
||||
xmc[51] = *c & 0x7; /* 33 */
|
||||
}
|
||||
|
||||
Gsm_Decoder(s, LARc, Nc, bc, Mc, xmaxc, xmc, target);
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,16 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/gsm_destroy.c,v 1.3 1994/11/28 19:52:25 jutta Exp $ */
|
||||
|
||||
#include "gsm.h"
|
||||
#include "proto.h"
|
||||
#include <stdlib.h>
|
||||
|
||||
void gsm_destroy P1((S), gsm S)
|
||||
{
|
||||
if (S) free((char *)S);
|
||||
}
|
|
@ -0,0 +1,451 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/gsm_encode.c,v 1.2 1996/07/02 09:59:05 jutta Exp $ */
|
||||
|
||||
#include "private.h"
|
||||
#include "gsm.h"
|
||||
#include "proto.h"
|
||||
|
||||
void gsm_encode P3((s, source, c), gsm s, gsm_signal * source, gsm_byte * c)
|
||||
{
|
||||
word LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4];
|
||||
|
||||
Gsm_Coder(s, source, LARc, Nc, bc, Mc, xmaxc, xmc);
|
||||
|
||||
|
||||
/* variable size
|
||||
|
||||
GSM_MAGIC 4
|
||||
|
||||
LARc[0] 6
|
||||
LARc[1] 6
|
||||
LARc[2] 5
|
||||
LARc[3] 5
|
||||
LARc[4] 4
|
||||
LARc[5] 4
|
||||
LARc[6] 3
|
||||
LARc[7] 3
|
||||
|
||||
Nc[0] 7
|
||||
bc[0] 2
|
||||
Mc[0] 2
|
||||
xmaxc[0] 6
|
||||
xmc[0] 3
|
||||
xmc[1] 3
|
||||
xmc[2] 3
|
||||
xmc[3] 3
|
||||
xmc[4] 3
|
||||
xmc[5] 3
|
||||
xmc[6] 3
|
||||
xmc[7] 3
|
||||
xmc[8] 3
|
||||
xmc[9] 3
|
||||
xmc[10] 3
|
||||
xmc[11] 3
|
||||
xmc[12] 3
|
||||
|
||||
Nc[1] 7
|
||||
bc[1] 2
|
||||
Mc[1] 2
|
||||
xmaxc[1] 6
|
||||
xmc[13] 3
|
||||
xmc[14] 3
|
||||
xmc[15] 3
|
||||
xmc[16] 3
|
||||
xmc[17] 3
|
||||
xmc[18] 3
|
||||
xmc[19] 3
|
||||
xmc[20] 3
|
||||
xmc[21] 3
|
||||
xmc[22] 3
|
||||
xmc[23] 3
|
||||
xmc[24] 3
|
||||
xmc[25] 3
|
||||
|
||||
Nc[2] 7
|
||||
bc[2] 2
|
||||
Mc[2] 2
|
||||
xmaxc[2] 6
|
||||
xmc[26] 3
|
||||
xmc[27] 3
|
||||
xmc[28] 3
|
||||
xmc[29] 3
|
||||
xmc[30] 3
|
||||
xmc[31] 3
|
||||
xmc[32] 3
|
||||
xmc[33] 3
|
||||
xmc[34] 3
|
||||
xmc[35] 3
|
||||
xmc[36] 3
|
||||
xmc[37] 3
|
||||
xmc[38] 3
|
||||
|
||||
Nc[3] 7
|
||||
bc[3] 2
|
||||
Mc[3] 2
|
||||
xmaxc[3] 6
|
||||
xmc[39] 3
|
||||
xmc[40] 3
|
||||
xmc[41] 3
|
||||
xmc[42] 3
|
||||
xmc[43] 3
|
||||
xmc[44] 3
|
||||
xmc[45] 3
|
||||
xmc[46] 3
|
||||
xmc[47] 3
|
||||
xmc[48] 3
|
||||
xmc[49] 3
|
||||
xmc[50] 3
|
||||
xmc[51] 3
|
||||
*/
|
||||
|
||||
#ifdef WAV49
|
||||
|
||||
if (s->wav_fmt) {
|
||||
s->frame_index = !s->frame_index;
|
||||
if (s->frame_index) {
|
||||
|
||||
uword sr;
|
||||
|
||||
sr = 0;
|
||||
sr = sr >> 6 | LARc[0] << 10;
|
||||
sr = sr >> 6 | LARc[1] << 10;
|
||||
*c++ = sr >> 4;
|
||||
sr = sr >> 5 | LARc[2] << 11;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 5 | LARc[3] << 11;
|
||||
sr = sr >> 4 | LARc[4] << 12;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 4 | LARc[5] << 12;
|
||||
sr = sr >> 3 | LARc[6] << 13;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | LARc[7] << 13;
|
||||
sr = sr >> 7 | Nc[0] << 9;
|
||||
*c++ = sr >> 5;
|
||||
sr = sr >> 2 | bc[0] << 14;
|
||||
sr = sr >> 2 | Mc[0] << 14;
|
||||
sr = sr >> 6 | xmaxc[0] << 10;
|
||||
*c++ = sr >> 3;
|
||||
sr = sr >> 3 | xmc[0] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 3 | xmc[1] << 13;
|
||||
sr = sr >> 3 | xmc[2] << 13;
|
||||
sr = sr >> 3 | xmc[3] << 13;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[4] << 13;
|
||||
sr = sr >> 3 | xmc[5] << 13;
|
||||
sr = sr >> 3 | xmc[6] << 13;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 3 | xmc[7] << 13;
|
||||
sr = sr >> 3 | xmc[8] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 3 | xmc[9] << 13;
|
||||
sr = sr >> 3 | xmc[10] << 13;
|
||||
sr = sr >> 3 | xmc[11] << 13;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[12] << 13;
|
||||
sr = sr >> 7 | Nc[1] << 9;
|
||||
*c++ = sr >> 5;
|
||||
sr = sr >> 2 | bc[1] << 14;
|
||||
sr = sr >> 2 | Mc[1] << 14;
|
||||
sr = sr >> 6 | xmaxc[1] << 10;
|
||||
*c++ = sr >> 3;
|
||||
sr = sr >> 3 | xmc[13] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 3 | xmc[14] << 13;
|
||||
sr = sr >> 3 | xmc[15] << 13;
|
||||
sr = sr >> 3 | xmc[16] << 13;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[17] << 13;
|
||||
sr = sr >> 3 | xmc[18] << 13;
|
||||
sr = sr >> 3 | xmc[19] << 13;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 3 | xmc[20] << 13;
|
||||
sr = sr >> 3 | xmc[21] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 3 | xmc[22] << 13;
|
||||
sr = sr >> 3 | xmc[23] << 13;
|
||||
sr = sr >> 3 | xmc[24] << 13;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[25] << 13;
|
||||
sr = sr >> 7 | Nc[2] << 9;
|
||||
*c++ = sr >> 5;
|
||||
sr = sr >> 2 | bc[2] << 14;
|
||||
sr = sr >> 2 | Mc[2] << 14;
|
||||
sr = sr >> 6 | xmaxc[2] << 10;
|
||||
*c++ = sr >> 3;
|
||||
sr = sr >> 3 | xmc[26] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 3 | xmc[27] << 13;
|
||||
sr = sr >> 3 | xmc[28] << 13;
|
||||
sr = sr >> 3 | xmc[29] << 13;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[30] << 13;
|
||||
sr = sr >> 3 | xmc[31] << 13;
|
||||
sr = sr >> 3 | xmc[32] << 13;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 3 | xmc[33] << 13;
|
||||
sr = sr >> 3 | xmc[34] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 3 | xmc[35] << 13;
|
||||
sr = sr >> 3 | xmc[36] << 13;
|
||||
sr = sr >> 3 | xmc[37] << 13;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[38] << 13;
|
||||
sr = sr >> 7 | Nc[3] << 9;
|
||||
*c++ = sr >> 5;
|
||||
sr = sr >> 2 | bc[3] << 14;
|
||||
sr = sr >> 2 | Mc[3] << 14;
|
||||
sr = sr >> 6 | xmaxc[3] << 10;
|
||||
*c++ = sr >> 3;
|
||||
sr = sr >> 3 | xmc[39] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 3 | xmc[40] << 13;
|
||||
sr = sr >> 3 | xmc[41] << 13;
|
||||
sr = sr >> 3 | xmc[42] << 13;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[43] << 13;
|
||||
sr = sr >> 3 | xmc[44] << 13;
|
||||
sr = sr >> 3 | xmc[45] << 13;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 3 | xmc[46] << 13;
|
||||
sr = sr >> 3 | xmc[47] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 3 | xmc[48] << 13;
|
||||
sr = sr >> 3 | xmc[49] << 13;
|
||||
sr = sr >> 3 | xmc[50] << 13;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[51] << 13;
|
||||
sr = sr >> 4;
|
||||
*c = sr >> 8;
|
||||
s->frame_chain = *c;
|
||||
}
|
||||
else {
|
||||
uword sr;
|
||||
|
||||
sr = 0;
|
||||
sr = sr >> 4 | s->frame_chain << 12;
|
||||
sr = sr >> 6 | LARc[0] << 10;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 6 | LARc[1] << 10;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 5 | LARc[2] << 11;
|
||||
sr = sr >> 5 | LARc[3] << 11;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 4 | LARc[4] << 12;
|
||||
sr = sr >> 4 | LARc[5] << 12;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 3 | LARc[6] << 13;
|
||||
sr = sr >> 3 | LARc[7] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 7 | Nc[0] << 9;
|
||||
sr = sr >> 2 | bc[0] << 14;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 2 | Mc[0] << 14;
|
||||
sr = sr >> 6 | xmaxc[0] << 10;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[0] << 13;
|
||||
sr = sr >> 3 | xmc[1] << 13;
|
||||
sr = sr >> 3 | xmc[2] << 13;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 3 | xmc[3] << 13;
|
||||
sr = sr >> 3 | xmc[4] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 3 | xmc[5] << 13;
|
||||
sr = sr >> 3 | xmc[6] << 13;
|
||||
sr = sr >> 3 | xmc[7] << 13;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[8] << 13;
|
||||
sr = sr >> 3 | xmc[9] << 13;
|
||||
sr = sr >> 3 | xmc[10] << 13;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 3 | xmc[11] << 13;
|
||||
sr = sr >> 3 | xmc[12] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 7 | Nc[1] << 9;
|
||||
sr = sr >> 2 | bc[1] << 14;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 2 | Mc[1] << 14;
|
||||
sr = sr >> 6 | xmaxc[1] << 10;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[13] << 13;
|
||||
sr = sr >> 3 | xmc[14] << 13;
|
||||
sr = sr >> 3 | xmc[15] << 13;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 3 | xmc[16] << 13;
|
||||
sr = sr >> 3 | xmc[17] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 3 | xmc[18] << 13;
|
||||
sr = sr >> 3 | xmc[19] << 13;
|
||||
sr = sr >> 3 | xmc[20] << 13;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[21] << 13;
|
||||
sr = sr >> 3 | xmc[22] << 13;
|
||||
sr = sr >> 3 | xmc[23] << 13;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 3 | xmc[24] << 13;
|
||||
sr = sr >> 3 | xmc[25] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 7 | Nc[2] << 9;
|
||||
sr = sr >> 2 | bc[2] << 14;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 2 | Mc[2] << 14;
|
||||
sr = sr >> 6 | xmaxc[2] << 10;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[26] << 13;
|
||||
sr = sr >> 3 | xmc[27] << 13;
|
||||
sr = sr >> 3 | xmc[28] << 13;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 3 | xmc[29] << 13;
|
||||
sr = sr >> 3 | xmc[30] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 3 | xmc[31] << 13;
|
||||
sr = sr >> 3 | xmc[32] << 13;
|
||||
sr = sr >> 3 | xmc[33] << 13;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[34] << 13;
|
||||
sr = sr >> 3 | xmc[35] << 13;
|
||||
sr = sr >> 3 | xmc[36] << 13;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 3 | xmc[37] << 13;
|
||||
sr = sr >> 3 | xmc[38] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 7 | Nc[3] << 9;
|
||||
sr = sr >> 2 | bc[3] << 14;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 2 | Mc[3] << 14;
|
||||
sr = sr >> 6 | xmaxc[3] << 10;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[39] << 13;
|
||||
sr = sr >> 3 | xmc[40] << 13;
|
||||
sr = sr >> 3 | xmc[41] << 13;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 3 | xmc[42] << 13;
|
||||
sr = sr >> 3 | xmc[43] << 13;
|
||||
*c++ = sr >> 8;
|
||||
sr = sr >> 3 | xmc[44] << 13;
|
||||
sr = sr >> 3 | xmc[45] << 13;
|
||||
sr = sr >> 3 | xmc[46] << 13;
|
||||
*c++ = sr >> 7;
|
||||
sr = sr >> 3 | xmc[47] << 13;
|
||||
sr = sr >> 3 | xmc[48] << 13;
|
||||
sr = sr >> 3 | xmc[49] << 13;
|
||||
*c++ = sr >> 6;
|
||||
sr = sr >> 3 | xmc[50] << 13;
|
||||
sr = sr >> 3 | xmc[51] << 13;
|
||||
*c++ = sr >> 8;
|
||||
}
|
||||
}
|
||||
|
||||
else
|
||||
|
||||
#endif /* WAV49 */
|
||||
{
|
||||
|
||||
*c++ = ((GSM_MAGIC & 0xF) << 4) /* 1 */
|
||||
| ((LARc[0] >> 2) & 0xF);
|
||||
*c++ = ((LARc[0] & 0x3) << 6)
|
||||
| (LARc[1] & 0x3F);
|
||||
*c++ = ((LARc[2] & 0x1F) << 3)
|
||||
| ((LARc[3] >> 2) & 0x7);
|
||||
*c++ = ((LARc[3] & 0x3) << 6)
|
||||
| ((LARc[4] & 0xF) << 2)
|
||||
| ((LARc[5] >> 2) & 0x3);
|
||||
*c++ = ((LARc[5] & 0x3) << 6)
|
||||
| ((LARc[6] & 0x7) << 3)
|
||||
| (LARc[7] & 0x7);
|
||||
*c++ = ((Nc[0] & 0x7F) << 1)
|
||||
| ((bc[0] >> 1) & 0x1);
|
||||
*c++ = ((bc[0] & 0x1) << 7)
|
||||
| ((Mc[0] & 0x3) << 5)
|
||||
| ((xmaxc[0] >> 1) & 0x1F);
|
||||
*c++ = ((xmaxc[0] & 0x1) << 7)
|
||||
| ((xmc[0] & 0x7) << 4)
|
||||
| ((xmc[1] & 0x7) << 1)
|
||||
| ((xmc[2] >> 2) & 0x1);
|
||||
*c++ = ((xmc[2] & 0x3) << 6)
|
||||
| ((xmc[3] & 0x7) << 3)
|
||||
| (xmc[4] & 0x7);
|
||||
*c++ = ((xmc[5] & 0x7) << 5) /* 10 */
|
||||
| ((xmc[6] & 0x7) << 2)
|
||||
| ((xmc[7] >> 1) & 0x3);
|
||||
*c++ = ((xmc[7] & 0x1) << 7)
|
||||
| ((xmc[8] & 0x7) << 4)
|
||||
| ((xmc[9] & 0x7) << 1)
|
||||
| ((xmc[10] >> 2) & 0x1);
|
||||
*c++ = ((xmc[10] & 0x3) << 6)
|
||||
| ((xmc[11] & 0x7) << 3)
|
||||
| (xmc[12] & 0x7);
|
||||
*c++ = ((Nc[1] & 0x7F) << 1)
|
||||
| ((bc[1] >> 1) & 0x1);
|
||||
*c++ = ((bc[1] & 0x1) << 7)
|
||||
| ((Mc[1] & 0x3) << 5)
|
||||
| ((xmaxc[1] >> 1) & 0x1F);
|
||||
*c++ = ((xmaxc[1] & 0x1) << 7)
|
||||
| ((xmc[13] & 0x7) << 4)
|
||||
| ((xmc[14] & 0x7) << 1)
|
||||
| ((xmc[15] >> 2) & 0x1);
|
||||
*c++ = ((xmc[15] & 0x3) << 6)
|
||||
| ((xmc[16] & 0x7) << 3)
|
||||
| (xmc[17] & 0x7);
|
||||
*c++ = ((xmc[18] & 0x7) << 5)
|
||||
| ((xmc[19] & 0x7) << 2)
|
||||
| ((xmc[20] >> 1) & 0x3);
|
||||
*c++ = ((xmc[20] & 0x1) << 7)
|
||||
| ((xmc[21] & 0x7) << 4)
|
||||
| ((xmc[22] & 0x7) << 1)
|
||||
| ((xmc[23] >> 2) & 0x1);
|
||||
*c++ = ((xmc[23] & 0x3) << 6)
|
||||
| ((xmc[24] & 0x7) << 3)
|
||||
| (xmc[25] & 0x7);
|
||||
*c++ = ((Nc[2] & 0x7F) << 1) /* 20 */
|
||||
| ((bc[2] >> 1) & 0x1);
|
||||
*c++ = ((bc[2] & 0x1) << 7)
|
||||
| ((Mc[2] & 0x3) << 5)
|
||||
| ((xmaxc[2] >> 1) & 0x1F);
|
||||
*c++ = ((xmaxc[2] & 0x1) << 7)
|
||||
| ((xmc[26] & 0x7) << 4)
|
||||
| ((xmc[27] & 0x7) << 1)
|
||||
| ((xmc[28] >> 2) & 0x1);
|
||||
*c++ = ((xmc[28] & 0x3) << 6)
|
||||
| ((xmc[29] & 0x7) << 3)
|
||||
| (xmc[30] & 0x7);
|
||||
*c++ = ((xmc[31] & 0x7) << 5)
|
||||
| ((xmc[32] & 0x7) << 2)
|
||||
| ((xmc[33] >> 1) & 0x3);
|
||||
*c++ = ((xmc[33] & 0x1) << 7)
|
||||
| ((xmc[34] & 0x7) << 4)
|
||||
| ((xmc[35] & 0x7) << 1)
|
||||
| ((xmc[36] >> 2) & 0x1);
|
||||
*c++ = ((xmc[36] & 0x3) << 6)
|
||||
| ((xmc[37] & 0x7) << 3)
|
||||
| (xmc[38] & 0x7);
|
||||
*c++ = ((Nc[3] & 0x7F) << 1)
|
||||
| ((bc[3] >> 1) & 0x1);
|
||||
*c++ = ((bc[3] & 0x1) << 7)
|
||||
| ((Mc[3] & 0x3) << 5)
|
||||
| ((xmaxc[3] >> 1) & 0x1F);
|
||||
*c++ = ((xmaxc[3] & 0x1) << 7)
|
||||
| ((xmc[39] & 0x7) << 4)
|
||||
| ((xmc[40] & 0x7) << 1)
|
||||
| ((xmc[41] >> 2) & 0x1);
|
||||
*c++ = ((xmc[41] & 0x3) << 6) /* 30 */
|
||||
| ((xmc[42] & 0x7) << 3)
|
||||
| (xmc[43] & 0x7);
|
||||
*c++ = ((xmc[44] & 0x7) << 5)
|
||||
| ((xmc[45] & 0x7) << 2)
|
||||
| ((xmc[46] >> 1) & 0x3);
|
||||
*c++ = ((xmc[46] & 0x1) << 7)
|
||||
| ((xmc[47] & 0x7) << 4)
|
||||
| ((xmc[48] & 0x7) << 1)
|
||||
| ((xmc[49] >> 2) & 0x1);
|
||||
*c++ = ((xmc[49] & 0x3) << 6)
|
||||
| ((xmc[50] & 0x7) << 3)
|
||||
| (xmc[51] & 0x7);
|
||||
|
||||
}
|
||||
}
|
|
@ -0,0 +1,69 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/gsm_option.c,v 1.3 1996/07/02 09:59:05 jutta Exp $ */
|
||||
|
||||
#include "private.h"
|
||||
|
||||
#include "gsm.h"
|
||||
#include "proto.h"
|
||||
|
||||
int gsm_option P3((r, opt, val), gsm r, int opt, int * val)
|
||||
{
|
||||
int result = -1;
|
||||
|
||||
switch (opt) {
|
||||
case GSM_OPT_LTP_CUT:
|
||||
#ifdef LTP_CUT
|
||||
result = r->ltp_cut;
|
||||
if (val) r->ltp_cut = *val;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case GSM_OPT_VERBOSE:
|
||||
#ifndef NDEBUG
|
||||
result = r->verbose;
|
||||
if (val) r->verbose = *val;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case GSM_OPT_FAST:
|
||||
|
||||
#if defined(FAST) && defined(USE_FLOAT_MUL)
|
||||
result = r->fast;
|
||||
if (val) r->fast = !!*val;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case GSM_OPT_FRAME_CHAIN:
|
||||
|
||||
#ifdef WAV49
|
||||
result = r->frame_chain;
|
||||
if (val) r->frame_chain = *val;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case GSM_OPT_FRAME_INDEX:
|
||||
|
||||
#ifdef WAV49
|
||||
result = r->frame_index;
|
||||
if (val) r->frame_index = *val;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case GSM_OPT_WAV49:
|
||||
|
||||
#ifdef WAV49
|
||||
result = r->wav_fmt;
|
||||
if (val) r->wav_fmt = !!*val;
|
||||
#endif
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return result;
|
||||
}
|
|
@ -0,0 +1,167 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/gsm_print.c,v 1.1 1992/10/28 00:15:50 jutta Exp $ */
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "private.h"
|
||||
|
||||
#include "gsm.h"
|
||||
#include "proto.h"
|
||||
|
||||
int gsm_print P3((f, s, c), FILE * f, gsm s, gsm_byte * c)
|
||||
{
|
||||
word LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4];
|
||||
|
||||
/* GSM_MAGIC = (*c >> 4) & 0xF; */
|
||||
|
||||
if (((*c >> 4) & 0x0F) != GSM_MAGIC) return -1;
|
||||
|
||||
LARc[0] = (*c++ & 0xF) << 2; /* 1 */
|
||||
LARc[0] |= (*c >> 6) & 0x3;
|
||||
LARc[1] = *c++ & 0x3F;
|
||||
LARc[2] = (*c >> 3) & 0x1F;
|
||||
LARc[3] = (*c++ & 0x7) << 2;
|
||||
LARc[3] |= (*c >> 6) & 0x3;
|
||||
LARc[4] = (*c >> 2) & 0xF;
|
||||
LARc[5] = (*c++ & 0x3) << 2;
|
||||
LARc[5] |= (*c >> 6) & 0x3;
|
||||
LARc[6] = (*c >> 3) & 0x7;
|
||||
LARc[7] = *c++ & 0x7;
|
||||
|
||||
|
||||
Nc[0] = (*c >> 1) & 0x7F;
|
||||
bc[0] = (*c++ & 0x1) << 1;
|
||||
bc[0] |= (*c >> 7) & 0x1;
|
||||
Mc[0] = (*c >> 5) & 0x3;
|
||||
xmaxc[0] = (*c++ & 0x1F) << 1;
|
||||
xmaxc[0] |= (*c >> 7) & 0x1;
|
||||
xmc[0] = (*c >> 4) & 0x7;
|
||||
xmc[1] = (*c >> 1) & 0x7;
|
||||
xmc[2] = (*c++ & 0x1) << 2;
|
||||
xmc[2] |= (*c >> 6) & 0x3;
|
||||
xmc[3] = (*c >> 3) & 0x7;
|
||||
xmc[4] = *c++ & 0x7;
|
||||
xmc[5] = (*c >> 5) & 0x7;
|
||||
xmc[6] = (*c >> 2) & 0x7;
|
||||
xmc[7] = (*c++ & 0x3) << 1; /* 10 */
|
||||
xmc[7] |= (*c >> 7) & 0x1;
|
||||
xmc[8] = (*c >> 4) & 0x7;
|
||||
xmc[9] = (*c >> 1) & 0x7;
|
||||
xmc[10] = (*c++ & 0x1) << 2;
|
||||
xmc[10] |= (*c >> 6) & 0x3;
|
||||
xmc[11] = (*c >> 3) & 0x7;
|
||||
xmc[12] = *c++ & 0x7;
|
||||
|
||||
Nc[1] = (*c >> 1) & 0x7F;
|
||||
bc[1] = (*c++ & 0x1) << 1;
|
||||
bc[1] |= (*c >> 7) & 0x1;
|
||||
Mc[1] = (*c >> 5) & 0x3;
|
||||
xmaxc[1] = (*c++ & 0x1F) << 1;
|
||||
xmaxc[1] |= (*c >> 7) & 0x1;
|
||||
xmc[13] = (*c >> 4) & 0x7;
|
||||
xmc[14] = (*c >> 1) & 0x7;
|
||||
xmc[15] = (*c++ & 0x1) << 2;
|
||||
xmc[15] |= (*c >> 6) & 0x3;
|
||||
xmc[16] = (*c >> 3) & 0x7;
|
||||
xmc[17] = *c++ & 0x7;
|
||||
xmc[18] = (*c >> 5) & 0x7;
|
||||
xmc[19] = (*c >> 2) & 0x7;
|
||||
xmc[20] = (*c++ & 0x3) << 1;
|
||||
xmc[20] |= (*c >> 7) & 0x1;
|
||||
xmc[21] = (*c >> 4) & 0x7;
|
||||
xmc[22] = (*c >> 1) & 0x7;
|
||||
xmc[23] = (*c++ & 0x1) << 2;
|
||||
xmc[23] |= (*c >> 6) & 0x3;
|
||||
xmc[24] = (*c >> 3) & 0x7;
|
||||
xmc[25] = *c++ & 0x7;
|
||||
|
||||
|
||||
Nc[2] = (*c >> 1) & 0x7F;
|
||||
bc[2] = (*c++ & 0x1) << 1; /* 20 */
|
||||
bc[2] |= (*c >> 7) & 0x1;
|
||||
Mc[2] = (*c >> 5) & 0x3;
|
||||
xmaxc[2] = (*c++ & 0x1F) << 1;
|
||||
xmaxc[2] |= (*c >> 7) & 0x1;
|
||||
xmc[26] = (*c >> 4) & 0x7;
|
||||
xmc[27] = (*c >> 1) & 0x7;
|
||||
xmc[28] = (*c++ & 0x1) << 2;
|
||||
xmc[28] |= (*c >> 6) & 0x3;
|
||||
xmc[29] = (*c >> 3) & 0x7;
|
||||
xmc[30] = *c++ & 0x7;
|
||||
xmc[31] = (*c >> 5) & 0x7;
|
||||
xmc[32] = (*c >> 2) & 0x7;
|
||||
xmc[33] = (*c++ & 0x3) << 1;
|
||||
xmc[33] |= (*c >> 7) & 0x1;
|
||||
xmc[34] = (*c >> 4) & 0x7;
|
||||
xmc[35] = (*c >> 1) & 0x7;
|
||||
xmc[36] = (*c++ & 0x1) << 2;
|
||||
xmc[36] |= (*c >> 6) & 0x3;
|
||||
xmc[37] = (*c >> 3) & 0x7;
|
||||
xmc[38] = *c++ & 0x7;
|
||||
|
||||
Nc[3] = (*c >> 1) & 0x7F;
|
||||
bc[3] = (*c++ & 0x1) << 1;
|
||||
bc[3] |= (*c >> 7) & 0x1;
|
||||
Mc[3] = (*c >> 5) & 0x3;
|
||||
xmaxc[3] = (*c++ & 0x1F) << 1;
|
||||
xmaxc[3] |= (*c >> 7) & 0x1;
|
||||
|
||||
xmc[39] = (*c >> 4) & 0x7;
|
||||
xmc[40] = (*c >> 1) & 0x7;
|
||||
xmc[41] = (*c++ & 0x1) << 2;
|
||||
xmc[41] |= (*c >> 6) & 0x3;
|
||||
xmc[42] = (*c >> 3) & 0x7;
|
||||
xmc[43] = *c++ & 0x7; /* 30 */
|
||||
xmc[44] = (*c >> 5) & 0x7;
|
||||
xmc[45] = (*c >> 2) & 0x7;
|
||||
xmc[46] = (*c++ & 0x3) << 1;
|
||||
xmc[46] |= (*c >> 7) & 0x1;
|
||||
xmc[47] = (*c >> 4) & 0x7;
|
||||
xmc[48] = (*c >> 1) & 0x7;
|
||||
xmc[49] = (*c++ & 0x1) << 2;
|
||||
xmc[49] |= (*c >> 6) & 0x3;
|
||||
xmc[50] = (*c >> 3) & 0x7;
|
||||
xmc[51] = *c & 0x7; /* 33 */
|
||||
|
||||
fprintf(f,
|
||||
"LARc:\t%2.2d %2.2d %2.2d %2.2d %2.2d %2.2d %2.2d %2.2d\n",
|
||||
LARc[0],LARc[1],LARc[2],LARc[3],LARc[4],LARc[5],LARc[6],LARc[7]);
|
||||
|
||||
fprintf(f, "#1: Nc %4.4d bc %d Mc %d xmaxc %d\n",
|
||||
Nc[0], bc[0], Mc[0], xmaxc[0]);
|
||||
fprintf(f,
|
||||
"\t%.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d\n",
|
||||
xmc[0],xmc[1],xmc[2],xmc[3],xmc[4],xmc[5],xmc[6],
|
||||
xmc[7],xmc[8],xmc[9],xmc[10],xmc[11],xmc[12] );
|
||||
|
||||
fprintf(f, "#2: Nc %4.4d bc %d Mc %d xmaxc %d\n",
|
||||
Nc[1], bc[1], Mc[1], xmaxc[1]);
|
||||
fprintf(f,
|
||||
"\t%.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d\n",
|
||||
xmc[13+0],xmc[13+1],xmc[13+2],xmc[13+3],xmc[13+4],xmc[13+5],
|
||||
xmc[13+6], xmc[13+7],xmc[13+8],xmc[13+9],xmc[13+10],xmc[13+11],
|
||||
xmc[13+12] );
|
||||
|
||||
fprintf(f, "#3: Nc %4.4d bc %d Mc %d xmaxc %d\n",
|
||||
Nc[2], bc[2], Mc[2], xmaxc[2]);
|
||||
fprintf(f,
|
||||
"\t%.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d\n",
|
||||
xmc[26+0],xmc[26+1],xmc[26+2],xmc[26+3],xmc[26+4],xmc[26+5],
|
||||
xmc[26+6], xmc[26+7],xmc[26+8],xmc[26+9],xmc[26+10],xmc[26+11],
|
||||
xmc[26+12] );
|
||||
|
||||
fprintf(f, "#4: Nc %4.4d bc %d Mc %d xmaxc %d\n",
|
||||
Nc[3], bc[3], Mc[3], xmaxc[3]);
|
||||
fprintf(f,
|
||||
"\t%.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d %.2d\n",
|
||||
xmc[39+0],xmc[39+1],xmc[39+2],xmc[39+3],xmc[39+4],xmc[39+5],
|
||||
xmc[39+6], xmc[39+7],xmc[39+8],xmc[39+9],xmc[39+10],xmc[39+11],
|
||||
xmc[39+12] );
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,949 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/long_term.c,v 1.6 1996/07/02 12:33:19 jutta Exp $ */
|
||||
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "private.h"
|
||||
|
||||
#include "gsm.h"
|
||||
#include "proto.h"
|
||||
|
||||
/*
|
||||
* 4.2.11 .. 4.2.12 LONG TERM PREDICTOR (LTP) SECTION
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* This module computes the LTP gain (bc) and the LTP lag (Nc)
|
||||
* for the long term analysis filter. This is done by calculating a
|
||||
* maximum of the cross-correlation function between the current
|
||||
* sub-segment short term residual signal d[0..39] (output of
|
||||
* the short term analysis filter; for simplification the index
|
||||
* of this array begins at 0 and ends at 39 for each sub-segment of the
|
||||
* RPE-LTP analysis) and the previous reconstructed short term
|
||||
* residual signal dp[ -120 .. -1 ]. A dynamic scaling must be
|
||||
* performed to avoid overflow.
|
||||
*/
|
||||
|
||||
/* The next procedure exists in six versions. First two integer
|
||||
* version (if USE_FLOAT_MUL is not defined); then four floating
|
||||
* point versions, twice with proper scaling (USE_FLOAT_MUL defined),
|
||||
* once without (USE_FLOAT_MUL and FAST defined, and fast run-time
|
||||
* option used). Every pair has first a Cut version (see the -C
|
||||
* option to toast or the LTP_CUT option to gsm_option()), then the
|
||||
* uncut one. (For a detailed explanation of why this is altogether
|
||||
* a bad idea, see Henry Spencer and Geoff Collyer, ``#ifdef Considered
|
||||
* Harmful''.)
|
||||
*/
|
||||
|
||||
#ifndef USE_FLOAT_MUL
|
||||
|
||||
#ifdef LTP_CUT
|
||||
|
||||
static void Cut_Calculation_of_the_LTP_parameters P5((st, d,dp,bc_out,Nc_out),
|
||||
|
||||
struct gsm_state * st,
|
||||
|
||||
register word * d, /* [0..39] IN */
|
||||
register word * dp, /* [-120..-1] IN */
|
||||
word * bc_out, /* OUT */
|
||||
word * Nc_out /* OUT */
|
||||
)
|
||||
{
|
||||
register int k, lambda;
|
||||
word Nc, bc;
|
||||
word wt[40];
|
||||
|
||||
longword L_result;
|
||||
longword L_max, L_power;
|
||||
word R, S, dmax, scal, best_k;
|
||||
word ltp_cut;
|
||||
|
||||
register word temp, wt_k;
|
||||
|
||||
/* Search of the optimum scaling of d[0..39].
|
||||
*/
|
||||
dmax = 0;
|
||||
for (k = 0; k <= 39; k++) {
|
||||
temp = d[k];
|
||||
temp = GSM_ABS( temp );
|
||||
if (temp > dmax) {
|
||||
dmax = temp;
|
||||
best_k = k;
|
||||
}
|
||||
}
|
||||
temp = 0;
|
||||
if (dmax == 0) scal = 0;
|
||||
else {
|
||||
assert(dmax > 0);
|
||||
temp = gsm_norm( (longword)dmax << 16 );
|
||||
}
|
||||
if (temp > 6) scal = 0;
|
||||
else scal = 6 - temp;
|
||||
assert(scal >= 0);
|
||||
|
||||
/* Search for the maximum cross-correlation and coding of the LTP lag
|
||||
*/
|
||||
L_max = 0;
|
||||
Nc = 40; /* index for the maximum cross-correlation */
|
||||
wt_k = SASR(d[best_k], scal);
|
||||
|
||||
for (lambda = 40; lambda <= 120; lambda++) {
|
||||
L_result = (longword)wt_k * dp[best_k - lambda];
|
||||
if (L_result > L_max) {
|
||||
Nc = lambda;
|
||||
L_max = L_result;
|
||||
}
|
||||
}
|
||||
*Nc_out = Nc;
|
||||
L_max <<= 1;
|
||||
|
||||
/* Rescaling of L_max
|
||||
*/
|
||||
assert(scal <= 100 && scal >= -100);
|
||||
L_max = L_max >> (6 - scal); /* sub(6, scal) */
|
||||
|
||||
assert( Nc <= 120 && Nc >= 40);
|
||||
|
||||
/* Compute the power of the reconstructed short term residual
|
||||
* signal dp[..]
|
||||
*/
|
||||
L_power = 0;
|
||||
for (k = 0; k <= 39; k++) {
|
||||
|
||||
register longword L_temp;
|
||||
|
||||
L_temp = SASR( dp[k - Nc], 3 );
|
||||
L_power += L_temp * L_temp;
|
||||
}
|
||||
L_power <<= 1; /* from L_MULT */
|
||||
|
||||
/* Normalization of L_max and L_power
|
||||
*/
|
||||
|
||||
if (L_max <= 0) {
|
||||
*bc_out = 0;
|
||||
return;
|
||||
}
|
||||
if (L_max >= L_power) {
|
||||
*bc_out = 3;
|
||||
return;
|
||||
}
|
||||
|
||||
temp = gsm_norm( L_power );
|
||||
|
||||
R = SASR( L_max << temp, 16 );
|
||||
S = SASR( L_power << temp, 16 );
|
||||
|
||||
/* Coding of the LTP gain
|
||||
*/
|
||||
|
||||
/* Table 4.3a must be used to obtain the level DLB[i] for the
|
||||
* quantization of the LTP gain b to get the coded version bc.
|
||||
*/
|
||||
for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
|
||||
*bc_out = bc;
|
||||
}
|
||||
|
||||
#endif /* LTP_CUT */
|
||||
|
||||
static void Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out),
|
||||
register word * d, /* [0..39] IN */
|
||||
register word * dp, /* [-120..-1] IN */
|
||||
word * bc_out, /* OUT */
|
||||
word * Nc_out /* OUT */
|
||||
)
|
||||
{
|
||||
register int k, lambda;
|
||||
word Nc, bc;
|
||||
word wt[40];
|
||||
|
||||
longword L_max, L_power;
|
||||
word R, S, dmax, scal;
|
||||
register word temp;
|
||||
|
||||
/* Search of the optimum scaling of d[0..39].
|
||||
*/
|
||||
dmax = 0;
|
||||
|
||||
for (k = 0; k <= 39; k++) {
|
||||
temp = d[k];
|
||||
temp = GSM_ABS( temp );
|
||||
if (temp > dmax) dmax = temp;
|
||||
}
|
||||
|
||||
temp = 0;
|
||||
if (dmax == 0) scal = 0;
|
||||
else {
|
||||
assert(dmax > 0);
|
||||
temp = gsm_norm( (longword)dmax << 16 );
|
||||
}
|
||||
|
||||
if (temp > 6) scal = 0;
|
||||
else scal = 6 - temp;
|
||||
|
||||
assert(scal >= 0);
|
||||
|
||||
/* Initialization of a working array wt
|
||||
*/
|
||||
|
||||
for (k = 0; k <= 39; k++) wt[k] = SASR( d[k], scal );
|
||||
|
||||
/* Search for the maximum cross-correlation and coding of the LTP lag
|
||||
*/
|
||||
L_max = 0;
|
||||
Nc = 40; /* index for the maximum cross-correlation */
|
||||
|
||||
for (lambda = 40; lambda <= 120; lambda++) {
|
||||
|
||||
# undef STEP
|
||||
# define STEP(k) (longword)wt[k] * dp[k - lambda]
|
||||
|
||||
register longword L_result;
|
||||
|
||||
L_result = STEP(0) ; L_result += STEP(1) ;
|
||||
L_result += STEP(2) ; L_result += STEP(3) ;
|
||||
L_result += STEP(4) ; L_result += STEP(5) ;
|
||||
L_result += STEP(6) ; L_result += STEP(7) ;
|
||||
L_result += STEP(8) ; L_result += STEP(9) ;
|
||||
L_result += STEP(10) ; L_result += STEP(11) ;
|
||||
L_result += STEP(12) ; L_result += STEP(13) ;
|
||||
L_result += STEP(14) ; L_result += STEP(15) ;
|
||||
L_result += STEP(16) ; L_result += STEP(17) ;
|
||||
L_result += STEP(18) ; L_result += STEP(19) ;
|
||||
L_result += STEP(20) ; L_result += STEP(21) ;
|
||||
L_result += STEP(22) ; L_result += STEP(23) ;
|
||||
L_result += STEP(24) ; L_result += STEP(25) ;
|
||||
L_result += STEP(26) ; L_result += STEP(27) ;
|
||||
L_result += STEP(28) ; L_result += STEP(29) ;
|
||||
L_result += STEP(30) ; L_result += STEP(31) ;
|
||||
L_result += STEP(32) ; L_result += STEP(33) ;
|
||||
L_result += STEP(34) ; L_result += STEP(35) ;
|
||||
L_result += STEP(36) ; L_result += STEP(37) ;
|
||||
L_result += STEP(38) ; L_result += STEP(39) ;
|
||||
|
||||
if (L_result > L_max) {
|
||||
|
||||
Nc = lambda;
|
||||
L_max = L_result;
|
||||
}
|
||||
}
|
||||
|
||||
*Nc_out = Nc;
|
||||
|
||||
L_max <<= 1;
|
||||
|
||||
/* Rescaling of L_max
|
||||
*/
|
||||
assert(scal <= 100 && scal >= -100);
|
||||
L_max = L_max >> (6 - scal); /* sub(6, scal) */
|
||||
|
||||
assert( Nc <= 120 && Nc >= 40);
|
||||
|
||||
/* Compute the power of the reconstructed short term residual
|
||||
* signal dp[..]
|
||||
*/
|
||||
L_power = 0;
|
||||
for (k = 0; k <= 39; k++) {
|
||||
|
||||
register longword L_temp;
|
||||
|
||||
L_temp = SASR( dp[k - Nc], 3 );
|
||||
L_power += L_temp * L_temp;
|
||||
}
|
||||
L_power <<= 1; /* from L_MULT */
|
||||
|
||||
/* Normalization of L_max and L_power
|
||||
*/
|
||||
|
||||
if (L_max <= 0) {
|
||||
*bc_out = 0;
|
||||
return;
|
||||
}
|
||||
if (L_max >= L_power) {
|
||||
*bc_out = 3;
|
||||
return;
|
||||
}
|
||||
|
||||
temp = gsm_norm( L_power );
|
||||
|
||||
R = SASR( L_max << temp, 16 );
|
||||
S = SASR( L_power << temp, 16 );
|
||||
|
||||
/* Coding of the LTP gain
|
||||
*/
|
||||
|
||||
/* Table 4.3a must be used to obtain the level DLB[i] for the
|
||||
* quantization of the LTP gain b to get the coded version bc.
|
||||
*/
|
||||
for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
|
||||
*bc_out = bc;
|
||||
}
|
||||
|
||||
#else /* USE_FLOAT_MUL */
|
||||
|
||||
#ifdef LTP_CUT
|
||||
|
||||
static void Cut_Calculation_of_the_LTP_parameters P5((st, d,dp,bc_out,Nc_out),
|
||||
struct gsm_state * st, /* IN */
|
||||
register word * d, /* [0..39] IN */
|
||||
register word * dp, /* [-120..-1] IN */
|
||||
word * bc_out, /* OUT */
|
||||
word * Nc_out /* OUT */
|
||||
)
|
||||
{
|
||||
register int k, lambda;
|
||||
word Nc, bc;
|
||||
word ltp_cut;
|
||||
|
||||
float wt_float[40];
|
||||
float dp_float_base[120], * dp_float = dp_float_base + 120;
|
||||
|
||||
longword L_max, L_power;
|
||||
word R, S, dmax, scal;
|
||||
register word temp;
|
||||
|
||||
/* Search of the optimum scaling of d[0..39].
|
||||
*/
|
||||
dmax = 0;
|
||||
|
||||
for (k = 0; k <= 39; k++) {
|
||||
temp = d[k];
|
||||
temp = GSM_ABS( temp );
|
||||
if (temp > dmax) dmax = temp;
|
||||
}
|
||||
|
||||
temp = 0;
|
||||
if (dmax == 0) scal = 0;
|
||||
else {
|
||||
assert(dmax > 0);
|
||||
temp = gsm_norm( (longword)dmax << 16 );
|
||||
}
|
||||
|
||||
if (temp > 6) scal = 0;
|
||||
else scal = 6 - temp;
|
||||
|
||||
assert(scal >= 0);
|
||||
ltp_cut = (longword)SASR(dmax, scal) * st->ltp_cut / 100;
|
||||
|
||||
|
||||
/* Initialization of a working array wt
|
||||
*/
|
||||
|
||||
for (k = 0; k < 40; k++) {
|
||||
register word w = SASR( d[k], scal );
|
||||
if (w < 0 ? w > -ltp_cut : w < ltp_cut) {
|
||||
wt_float[k] = 0.0;
|
||||
}
|
||||
else {
|
||||
wt_float[k] = w;
|
||||
}
|
||||
}
|
||||
for (k = -120; k < 0; k++) dp_float[k] = dp[k];
|
||||
|
||||
/* Search for the maximum cross-correlation and coding of the LTP lag
|
||||
*/
|
||||
L_max = 0;
|
||||
Nc = 40; /* index for the maximum cross-correlation */
|
||||
|
||||
for (lambda = 40; lambda <= 120; lambda += 9) {
|
||||
|
||||
/* Calculate L_result for l = lambda .. lambda + 9.
|
||||
*/
|
||||
register float *lp = dp_float - lambda;
|
||||
|
||||
register float W;
|
||||
register float a = lp[-8], b = lp[-7], c = lp[-6],
|
||||
d = lp[-5], e = lp[-4], f = lp[-3],
|
||||
g = lp[-2], h = lp[-1];
|
||||
register float E;
|
||||
register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
|
||||
S5 = 0, S6 = 0, S7 = 0, S8 = 0;
|
||||
|
||||
# undef STEP
|
||||
# define STEP(K, a, b, c, d, e, f, g, h) \
|
||||
if ((W = wt_float[K]) != 0.0) { \
|
||||
E = W * a; S8 += E; \
|
||||
E = W * b; S7 += E; \
|
||||
E = W * c; S6 += E; \
|
||||
E = W * d; S5 += E; \
|
||||
E = W * e; S4 += E; \
|
||||
E = W * f; S3 += E; \
|
||||
E = W * g; S2 += E; \
|
||||
E = W * h; S1 += E; \
|
||||
a = lp[K]; \
|
||||
E = W * a; S0 += E; } else (a = lp[K])
|
||||
|
||||
# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
|
||||
# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
|
||||
# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
|
||||
# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
|
||||
# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
|
||||
# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
|
||||
# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
|
||||
# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
|
||||
|
||||
STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
|
||||
STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
|
||||
|
||||
STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
|
||||
STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
|
||||
|
||||
STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
|
||||
STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
|
||||
|
||||
STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
|
||||
STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
|
||||
|
||||
STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
|
||||
STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
|
||||
|
||||
if (S0 > L_max) { L_max = S0; Nc = lambda; }
|
||||
if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
|
||||
if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
|
||||
if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
|
||||
if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
|
||||
if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
|
||||
if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
|
||||
if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
|
||||
if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
|
||||
|
||||
}
|
||||
*Nc_out = Nc;
|
||||
|
||||
L_max <<= 1;
|
||||
|
||||
/* Rescaling of L_max
|
||||
*/
|
||||
assert(scal <= 100 && scal >= -100);
|
||||
L_max = L_max >> (6 - scal); /* sub(6, scal) */
|
||||
|
||||
assert( Nc <= 120 && Nc >= 40);
|
||||
|
||||
/* Compute the power of the reconstructed short term residual
|
||||
* signal dp[..]
|
||||
*/
|
||||
L_power = 0;
|
||||
for (k = 0; k <= 39; k++) {
|
||||
|
||||
register longword L_temp;
|
||||
|
||||
L_temp = SASR( dp[k - Nc], 3 );
|
||||
L_power += L_temp * L_temp;
|
||||
}
|
||||
L_power <<= 1; /* from L_MULT */
|
||||
|
||||
/* Normalization of L_max and L_power
|
||||
*/
|
||||
|
||||
if (L_max <= 0) {
|
||||
*bc_out = 0;
|
||||
return;
|
||||
}
|
||||
if (L_max >= L_power) {
|
||||
*bc_out = 3;
|
||||
return;
|
||||
}
|
||||
|
||||
temp = gsm_norm( L_power );
|
||||
|
||||
R = SASR( L_max << temp, 16 );
|
||||
S = SASR( L_power << temp, 16 );
|
||||
|
||||
/* Coding of the LTP gain
|
||||
*/
|
||||
|
||||
/* Table 4.3a must be used to obtain the level DLB[i] for the
|
||||
* quantization of the LTP gain b to get the coded version bc.
|
||||
*/
|
||||
for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
|
||||
*bc_out = bc;
|
||||
}
|
||||
|
||||
#endif /* LTP_CUT */
|
||||
|
||||
static void Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out),
|
||||
register word * d, /* [0..39] IN */
|
||||
register word * dp, /* [-120..-1] IN */
|
||||
word * bc_out, /* OUT */
|
||||
word * Nc_out /* OUT */
|
||||
)
|
||||
{
|
||||
register int k, lambda;
|
||||
word Nc, bc;
|
||||
|
||||
float wt_float[40];
|
||||
float dp_float_base[120], * dp_float = dp_float_base + 120;
|
||||
|
||||
longword L_max, L_power;
|
||||
word R, S, dmax, scal;
|
||||
register word temp;
|
||||
|
||||
/* Search of the optimum scaling of d[0..39].
|
||||
*/
|
||||
dmax = 0;
|
||||
|
||||
for (k = 0; k <= 39; k++) {
|
||||
temp = d[k];
|
||||
temp = GSM_ABS( temp );
|
||||
if (temp > dmax) dmax = temp;
|
||||
}
|
||||
|
||||
temp = 0;
|
||||
if (dmax == 0) scal = 0;
|
||||
else {
|
||||
assert(dmax > 0);
|
||||
temp = gsm_norm( (longword)dmax << 16 );
|
||||
}
|
||||
|
||||
if (temp > 6) scal = 0;
|
||||
else scal = 6 - temp;
|
||||
|
||||
assert(scal >= 0);
|
||||
|
||||
/* Initialization of a working array wt
|
||||
*/
|
||||
|
||||
for (k = 0; k < 40; k++) wt_float[k] = SASR( d[k], scal );
|
||||
for (k = -120; k < 0; k++) dp_float[k] = dp[k];
|
||||
|
||||
/* Search for the maximum cross-correlation and coding of the LTP lag
|
||||
*/
|
||||
L_max = 0;
|
||||
Nc = 40; /* index for the maximum cross-correlation */
|
||||
|
||||
for (lambda = 40; lambda <= 120; lambda += 9) {
|
||||
|
||||
/* Calculate L_result for l = lambda .. lambda + 9.
|
||||
*/
|
||||
register float *lp = dp_float - lambda;
|
||||
|
||||
register float W;
|
||||
register float a = lp[-8], b = lp[-7], c = lp[-6],
|
||||
d = lp[-5], e = lp[-4], f = lp[-3],
|
||||
g = lp[-2], h = lp[-1];
|
||||
register float E;
|
||||
register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
|
||||
S5 = 0, S6 = 0, S7 = 0, S8 = 0;
|
||||
|
||||
# undef STEP
|
||||
# define STEP(K, a, b, c, d, e, f, g, h) \
|
||||
W = wt_float[K]; \
|
||||
E = W * a; S8 += E; \
|
||||
E = W * b; S7 += E; \
|
||||
E = W * c; S6 += E; \
|
||||
E = W * d; S5 += E; \
|
||||
E = W * e; S4 += E; \
|
||||
E = W * f; S3 += E; \
|
||||
E = W * g; S2 += E; \
|
||||
E = W * h; S1 += E; \
|
||||
a = lp[K]; \
|
||||
E = W * a; S0 += E
|
||||
|
||||
# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
|
||||
# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
|
||||
# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
|
||||
# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
|
||||
# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
|
||||
# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
|
||||
# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
|
||||
# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
|
||||
|
||||
STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
|
||||
STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
|
||||
|
||||
STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
|
||||
STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
|
||||
|
||||
STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
|
||||
STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
|
||||
|
||||
STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
|
||||
STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
|
||||
|
||||
STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
|
||||
STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
|
||||
|
||||
if (S0 > L_max) { L_max = S0; Nc = lambda; }
|
||||
if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
|
||||
if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
|
||||
if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
|
||||
if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
|
||||
if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
|
||||
if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
|
||||
if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
|
||||
if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
|
||||
}
|
||||
*Nc_out = Nc;
|
||||
|
||||
L_max <<= 1;
|
||||
|
||||
/* Rescaling of L_max
|
||||
*/
|
||||
assert(scal <= 100 && scal >= -100);
|
||||
L_max = L_max >> (6 - scal); /* sub(6, scal) */
|
||||
|
||||
assert( Nc <= 120 && Nc >= 40);
|
||||
|
||||
/* Compute the power of the reconstructed short term residual
|
||||
* signal dp[..]
|
||||
*/
|
||||
L_power = 0;
|
||||
for (k = 0; k <= 39; k++) {
|
||||
|
||||
register longword L_temp;
|
||||
|
||||
L_temp = SASR( dp[k - Nc], 3 );
|
||||
L_power += L_temp * L_temp;
|
||||
}
|
||||
L_power <<= 1; /* from L_MULT */
|
||||
|
||||
/* Normalization of L_max and L_power
|
||||
*/
|
||||
|
||||
if (L_max <= 0) {
|
||||
*bc_out = 0;
|
||||
return;
|
||||
}
|
||||
if (L_max >= L_power) {
|
||||
*bc_out = 3;
|
||||
return;
|
||||
}
|
||||
|
||||
temp = gsm_norm( L_power );
|
||||
|
||||
R = SASR( L_max << temp, 16 );
|
||||
S = SASR( L_power << temp, 16 );
|
||||
|
||||
/* Coding of the LTP gain
|
||||
*/
|
||||
|
||||
/* Table 4.3a must be used to obtain the level DLB[i] for the
|
||||
* quantization of the LTP gain b to get the coded version bc.
|
||||
*/
|
||||
for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
|
||||
*bc_out = bc;
|
||||
}
|
||||
|
||||
#ifdef FAST
|
||||
#ifdef LTP_CUT
|
||||
|
||||
static void Cut_Fast_Calculation_of_the_LTP_parameters P5((st,
|
||||
d,dp,bc_out,Nc_out),
|
||||
struct gsm_state * st, /* IN */
|
||||
register word * d, /* [0..39] IN */
|
||||
register word * dp, /* [-120..-1] IN */
|
||||
word * bc_out, /* OUT */
|
||||
word * Nc_out /* OUT */
|
||||
)
|
||||
{
|
||||
register int k, lambda;
|
||||
register float wt_float;
|
||||
word Nc, bc;
|
||||
word wt_max, best_k, ltp_cut;
|
||||
|
||||
float dp_float_base[120], * dp_float = dp_float_base + 120;
|
||||
|
||||
register float L_result, L_max, L_power;
|
||||
|
||||
wt_max = 0;
|
||||
|
||||
for (k = 0; k < 40; ++k) {
|
||||
if ( d[k] > wt_max) wt_max = d[best_k = k];
|
||||
else if (-d[k] > wt_max) wt_max = -d[best_k = k];
|
||||
}
|
||||
|
||||
assert(wt_max >= 0);
|
||||
wt_float = (float)wt_max;
|
||||
|
||||
for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k];
|
||||
|
||||
/* Search for the maximum cross-correlation and coding of the LTP lag
|
||||
*/
|
||||
L_max = 0;
|
||||
Nc = 40; /* index for the maximum cross-correlation */
|
||||
|
||||
for (lambda = 40; lambda <= 120; lambda++) {
|
||||
L_result = wt_float * dp_float[best_k - lambda];
|
||||
if (L_result > L_max) {
|
||||
Nc = lambda;
|
||||
L_max = L_result;
|
||||
}
|
||||
}
|
||||
|
||||
*Nc_out = Nc;
|
||||
if (L_max <= 0.) {
|
||||
*bc_out = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/* Compute the power of the reconstructed short term residual
|
||||
* signal dp[..]
|
||||
*/
|
||||
dp_float -= Nc;
|
||||
L_power = 0;
|
||||
for (k = 0; k < 40; ++k) {
|
||||
register float f = dp_float[k];
|
||||
L_power += f * f;
|
||||
}
|
||||
|
||||
if (L_max >= L_power) {
|
||||
*bc_out = 3;
|
||||
return;
|
||||
}
|
||||
|
||||
/* Coding of the LTP gain
|
||||
* Table 4.3a must be used to obtain the level DLB[i] for the
|
||||
* quantization of the LTP gain b to get the coded version bc.
|
||||
*/
|
||||
lambda = L_max / L_power * 32768.;
|
||||
for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;
|
||||
*bc_out = bc;
|
||||
}
|
||||
|
||||
#endif /* LTP_CUT */
|
||||
|
||||
static void Fast_Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out),
|
||||
register word * d, /* [0..39] IN */
|
||||
register word * dp, /* [-120..-1] IN */
|
||||
word * bc_out, /* OUT */
|
||||
word * Nc_out /* OUT */
|
||||
)
|
||||
{
|
||||
register int k, lambda;
|
||||
word Nc, bc;
|
||||
|
||||
float wt_float[40];
|
||||
float dp_float_base[120], * dp_float = dp_float_base + 120;
|
||||
|
||||
register float L_max, L_power;
|
||||
|
||||
for (k = 0; k < 40; ++k) wt_float[k] = (float)d[k];
|
||||
for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k];
|
||||
|
||||
/* Search for the maximum cross-correlation and coding of the LTP lag
|
||||
*/
|
||||
L_max = 0;
|
||||
Nc = 40; /* index for the maximum cross-correlation */
|
||||
|
||||
for (lambda = 40; lambda <= 120; lambda += 9) {
|
||||
|
||||
/* Calculate L_result for l = lambda .. lambda + 9.
|
||||
*/
|
||||
register float *lp = dp_float - lambda;
|
||||
|
||||
register float W;
|
||||
register float a = lp[-8], b = lp[-7], c = lp[-6],
|
||||
d = lp[-5], e = lp[-4], f = lp[-3],
|
||||
g = lp[-2], h = lp[-1];
|
||||
register float E;
|
||||
register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
|
||||
S5 = 0, S6 = 0, S7 = 0, S8 = 0;
|
||||
|
||||
# undef STEP
|
||||
# define STEP(K, a, b, c, d, e, f, g, h) \
|
||||
W = wt_float[K]; \
|
||||
E = W * a; S8 += E; \
|
||||
E = W * b; S7 += E; \
|
||||
E = W * c; S6 += E; \
|
||||
E = W * d; S5 += E; \
|
||||
E = W * e; S4 += E; \
|
||||
E = W * f; S3 += E; \
|
||||
E = W * g; S2 += E; \
|
||||
E = W * h; S1 += E; \
|
||||
a = lp[K]; \
|
||||
E = W * a; S0 += E
|
||||
|
||||
# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
|
||||
# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
|
||||
# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
|
||||
# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
|
||||
# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
|
||||
# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
|
||||
# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
|
||||
# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
|
||||
|
||||
STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
|
||||
STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
|
||||
|
||||
STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
|
||||
STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
|
||||
|
||||
STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
|
||||
STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
|
||||
|
||||
STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
|
||||
STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
|
||||
|
||||
STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
|
||||
STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
|
||||
|
||||
if (S0 > L_max) { L_max = S0; Nc = lambda; }
|
||||
if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
|
||||
if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
|
||||
if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
|
||||
if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
|
||||
if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
|
||||
if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
|
||||
if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
|
||||
if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
|
||||
}
|
||||
*Nc_out = Nc;
|
||||
|
||||
if (L_max <= 0.) {
|
||||
*bc_out = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/* Compute the power of the reconstructed short term residual
|
||||
* signal dp[..]
|
||||
*/
|
||||
dp_float -= Nc;
|
||||
L_power = 0;
|
||||
for (k = 0; k < 40; ++k) {
|
||||
register float f = dp_float[k];
|
||||
L_power += f * f;
|
||||
}
|
||||
|
||||
if (L_max >= L_power) {
|
||||
*bc_out = 3;
|
||||
return;
|
||||
}
|
||||
|
||||
/* Coding of the LTP gain
|
||||
* Table 4.3a must be used to obtain the level DLB[i] for the
|
||||
* quantization of the LTP gain b to get the coded version bc.
|
||||
*/
|
||||
lambda = L_max / L_power * 32768.;
|
||||
for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;
|
||||
*bc_out = bc;
|
||||
}
|
||||
|
||||
#endif /* FAST */
|
||||
#endif /* USE_FLOAT_MUL */
|
||||
|
||||
|
||||
/* 4.2.12 */
|
||||
|
||||
static void Long_term_analysis_filtering P6((bc,Nc,dp,d,dpp,e),
|
||||
word bc, /* IN */
|
||||
word Nc, /* IN */
|
||||
register word * dp, /* previous d [-120..-1] IN */
|
||||
register word * d, /* d [0..39] IN */
|
||||
register word * dpp, /* estimate [0..39] OUT */
|
||||
register word * e /* long term res. signal [0..39] OUT */
|
||||
)
|
||||
/*
|
||||
* In this part, we have to decode the bc parameter to compute
|
||||
* the samples of the estimate dpp[0..39]. The decoding of bc needs the
|
||||
* use of table 4.3b. The long term residual signal e[0..39]
|
||||
* is then calculated to be fed to the RPE encoding section.
|
||||
*/
|
||||
{
|
||||
register int k;
|
||||
register longword ltmp;
|
||||
|
||||
# undef STEP
|
||||
# define STEP(BP) \
|
||||
for (k = 0; k <= 39; k++) { \
|
||||
dpp[k] = GSM_MULT_R( BP, dp[k - Nc]); \
|
||||
e[k] = GSM_SUB( d[k], dpp[k] ); \
|
||||
}
|
||||
|
||||
switch (bc) {
|
||||
case 0: STEP( 3277 ); break;
|
||||
case 1: STEP( 11469 ); break;
|
||||
case 2: STEP( 21299 ); break;
|
||||
case 3: STEP( 32767 ); break;
|
||||
}
|
||||
}
|
||||
|
||||
void Gsm_Long_Term_Predictor P7((S,d,dp,e,dpp,Nc,bc), /* 4x for 160 samples */
|
||||
|
||||
struct gsm_state * S,
|
||||
|
||||
word * d, /* [0..39] residual signal IN */
|
||||
word * dp, /* [-120..-1] d' IN */
|
||||
|
||||
word * e, /* [0..39] OUT */
|
||||
word * dpp, /* [0..39] OUT */
|
||||
word * Nc, /* correlation lag OUT */
|
||||
word * bc /* gain factor OUT */
|
||||
)
|
||||
{
|
||||
assert( d ); assert( dp ); assert( e );
|
||||
assert( dpp); assert( Nc ); assert( bc );
|
||||
|
||||
#if defined(FAST) && defined(USE_FLOAT_MUL)
|
||||
if (S->fast)
|
||||
#if defined (LTP_CUT)
|
||||
if (S->ltp_cut)
|
||||
Cut_Fast_Calculation_of_the_LTP_parameters(S,
|
||||
d, dp, bc, Nc);
|
||||
else
|
||||
#endif /* LTP_CUT */
|
||||
Fast_Calculation_of_the_LTP_parameters(d, dp, bc, Nc );
|
||||
else
|
||||
#endif /* FAST & USE_FLOAT_MUL */
|
||||
#ifdef LTP_CUT
|
||||
if (S->ltp_cut)
|
||||
Cut_Calculation_of_the_LTP_parameters(S, d, dp, bc, Nc);
|
||||
else
|
||||
#endif
|
||||
Calculation_of_the_LTP_parameters(d, dp, bc, Nc);
|
||||
|
||||
Long_term_analysis_filtering( *bc, *Nc, dp, d, dpp, e );
|
||||
}
|
||||
|
||||
/* 4.3.2 */
|
||||
void Gsm_Long_Term_Synthesis_Filtering P5((S,Ncr,bcr,erp,drp),
|
||||
struct gsm_state * S,
|
||||
|
||||
word Ncr,
|
||||
word bcr,
|
||||
register word * erp, /* [0..39] IN */
|
||||
register word * drp /* [-120..-1] IN, [-120..40] OUT */
|
||||
)
|
||||
/*
|
||||
* This procedure uses the bcr and Ncr parameter to realize the
|
||||
* long term synthesis filtering. The decoding of bcr needs
|
||||
* table 4.3b.
|
||||
*/
|
||||
{
|
||||
register longword ltmp; /* for ADD */
|
||||
register int k;
|
||||
word brp, drpp, Nr;
|
||||
|
||||
/* Check the limits of Nr.
|
||||
*/
|
||||
Nr = Ncr < 40 || Ncr > 120 ? S->nrp : Ncr;
|
||||
S->nrp = Nr;
|
||||
assert(Nr >= 40 && Nr <= 120);
|
||||
|
||||
/* Decoding of the LTP gain bcr
|
||||
*/
|
||||
brp = gsm_QLB[ bcr ];
|
||||
|
||||
/* Computation of the reconstructed short term residual
|
||||
* signal drp[0..39]
|
||||
*/
|
||||
assert(brp != MIN_WORD);
|
||||
|
||||
for (k = 0; k <= 39; k++) {
|
||||
drpp = GSM_MULT_R( brp, drp[ k - Nr ] );
|
||||
drp[k] = GSM_ADD( erp[k], drpp );
|
||||
}
|
||||
|
||||
/*
|
||||
* Update of the reconstructed short term residual signal
|
||||
* drp[ -1..-120 ]
|
||||
*/
|
||||
|
||||
for (k = 0; k <= 119; k++) drp[ -120 + k ] = drp[ -80 + k ];
|
||||
}
|
|
@ -0,0 +1,341 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/lpc.c,v 1.5 1994/12/30 23:14:54 jutta Exp $ */
|
||||
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "private.h"
|
||||
|
||||
#include "gsm.h"
|
||||
#include "proto.h"
|
||||
|
||||
#undef P
|
||||
|
||||
/*
|
||||
* 4.2.4 .. 4.2.7 LPC ANALYSIS SECTION
|
||||
*/
|
||||
|
||||
/* 4.2.4 */
|
||||
|
||||
|
||||
static void Autocorrelation P2((s, L_ACF),
|
||||
word * s, /* [0..159] IN/OUT */
|
||||
longword * L_ACF) /* [0..8] OUT */
|
||||
/*
|
||||
* The goal is to compute the array L_ACF[k]. The signal s[i] must
|
||||
* be scaled in order to avoid an overflow situation.
|
||||
*/
|
||||
{
|
||||
register int k, i;
|
||||
|
||||
word temp, smax, scalauto;
|
||||
|
||||
#ifdef USE_FLOAT_MUL
|
||||
float float_s[160];
|
||||
#endif
|
||||
|
||||
/* Dynamic scaling of the array s[0..159]
|
||||
*/
|
||||
|
||||
/* Search for the maximum.
|
||||
*/
|
||||
smax = 0;
|
||||
for (k = 0; k <= 159; k++) {
|
||||
temp = GSM_ABS( s[k] );
|
||||
if (temp > smax) smax = temp;
|
||||
}
|
||||
|
||||
/* Computation of the scaling factor.
|
||||
*/
|
||||
if (smax == 0) scalauto = 0;
|
||||
else {
|
||||
assert(smax > 0);
|
||||
scalauto = 4 - gsm_norm( (longword)smax << 16 );/* sub(4,..) */
|
||||
}
|
||||
|
||||
/* Scaling of the array s[0...159]
|
||||
*/
|
||||
|
||||
if (scalauto > 0) {
|
||||
|
||||
# ifdef USE_FLOAT_MUL
|
||||
# define SCALE(n) \
|
||||
case n: for (k = 0; k <= 159; k++) \
|
||||
float_s[k] = (float) \
|
||||
(s[k] = GSM_MULT_R(s[k], 16384 >> (n-1)));\
|
||||
break;
|
||||
# else
|
||||
# define SCALE(n) \
|
||||
case n: for (k = 0; k <= 159; k++) \
|
||||
s[k] = GSM_MULT_R( s[k], 16384 >> (n-1) );\
|
||||
break;
|
||||
# endif /* USE_FLOAT_MUL */
|
||||
|
||||
switch (scalauto) {
|
||||
SCALE(1)
|
||||
SCALE(2)
|
||||
SCALE(3)
|
||||
SCALE(4)
|
||||
}
|
||||
# undef SCALE
|
||||
}
|
||||
# ifdef USE_FLOAT_MUL
|
||||
else for (k = 0; k <= 159; k++) float_s[k] = (float) s[k];
|
||||
# endif
|
||||
|
||||
/* Compute the L_ACF[..].
|
||||
*/
|
||||
{
|
||||
# ifdef USE_FLOAT_MUL
|
||||
register float * sp = float_s;
|
||||
register float sl = *sp;
|
||||
|
||||
# define STEP(k) L_ACF[k] += (longword)(sl * sp[ -(k) ]);
|
||||
# else
|
||||
word * sp = s;
|
||||
word sl = *sp;
|
||||
|
||||
# define STEP(k) L_ACF[k] += ((longword)sl * sp[ -(k) ]);
|
||||
# endif
|
||||
|
||||
# define NEXTI sl = *++sp
|
||||
|
||||
|
||||
for (k = 9; k--; L_ACF[k] = 0) ;
|
||||
|
||||
STEP (0);
|
||||
NEXTI;
|
||||
STEP(0); STEP(1);
|
||||
NEXTI;
|
||||
STEP(0); STEP(1); STEP(2);
|
||||
NEXTI;
|
||||
STEP(0); STEP(1); STEP(2); STEP(3);
|
||||
NEXTI;
|
||||
STEP(0); STEP(1); STEP(2); STEP(3); STEP(4);
|
||||
NEXTI;
|
||||
STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5);
|
||||
NEXTI;
|
||||
STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6);
|
||||
NEXTI;
|
||||
STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); STEP(7);
|
||||
|
||||
for (i = 8; i <= 159; i++) {
|
||||
|
||||
NEXTI;
|
||||
|
||||
STEP(0);
|
||||
STEP(1); STEP(2); STEP(3); STEP(4);
|
||||
STEP(5); STEP(6); STEP(7); STEP(8);
|
||||
}
|
||||
|
||||
for (k = 9; k--; L_ACF[k] <<= 1) ;
|
||||
|
||||
}
|
||||
/* Rescaling of the array s[0..159]
|
||||
*/
|
||||
if (scalauto > 0) {
|
||||
assert(scalauto <= 4);
|
||||
for (k = 160; k--; *s++ <<= scalauto) ;
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(USE_FLOAT_MUL) && defined(FAST)
|
||||
|
||||
static void Fast_Autocorrelation P2((s, L_ACF),
|
||||
word * s, /* [0..159] IN/OUT */
|
||||
longword * L_ACF) /* [0..8] OUT */
|
||||
{
|
||||
register int k, i;
|
||||
float f_L_ACF[9];
|
||||
float scale;
|
||||
|
||||
float s_f[160];
|
||||
register float *sf = s_f;
|
||||
|
||||
for (i = 0; i < 160; ++i) sf[i] = s[i];
|
||||
for (k = 0; k <= 8; k++) {
|
||||
register float L_temp2 = 0;
|
||||
register float *sfl = sf - k;
|
||||
for (i = k; i < 160; ++i) L_temp2 += sf[i] * sfl[i];
|
||||
f_L_ACF[k] = L_temp2;
|
||||
}
|
||||
scale = MAX_LONGWORD / f_L_ACF[0];
|
||||
|
||||
for (k = 0; k <= 8; k++) {
|
||||
L_ACF[k] = f_L_ACF[k] * scale;
|
||||
}
|
||||
}
|
||||
#endif /* defined (USE_FLOAT_MUL) && defined (FAST) */
|
||||
|
||||
/* 4.2.5 */
|
||||
|
||||
static void Reflection_coefficients P2( (L_ACF, r),
|
||||
longword * L_ACF, /* 0...8 IN */
|
||||
register word * r /* 0...7 OUT */
|
||||
)
|
||||
{
|
||||
register int i, m, n;
|
||||
register word temp;
|
||||
register longword ltmp;
|
||||
word ACF[9]; /* 0..8 */
|
||||
word P[ 9]; /* 0..8 */
|
||||
word K[ 9]; /* 2..8 */
|
||||
|
||||
/* Schur recursion with 16 bits arithmetic.
|
||||
*/
|
||||
|
||||
if (L_ACF[0] == 0) {
|
||||
for (i = 8; i--; *r++ = 0) ;
|
||||
return;
|
||||
}
|
||||
|
||||
assert( L_ACF[0] != 0 );
|
||||
temp = gsm_norm( L_ACF[0] );
|
||||
|
||||
assert(temp >= 0 && temp < 32);
|
||||
|
||||
/* ? overflow ? */
|
||||
for (i = 0; i <= 8; i++) ACF[i] = SASR( L_ACF[i] << temp, 16 );
|
||||
|
||||
/* Initialize array P[..] and K[..] for the recursion.
|
||||
*/
|
||||
|
||||
for (i = 1; i <= 7; i++) K[ i ] = ACF[ i ];
|
||||
for (i = 0; i <= 8; i++) P[ i ] = ACF[ i ];
|
||||
|
||||
/* Compute reflection coefficients
|
||||
*/
|
||||
for (n = 1; n <= 8; n++, r++) {
|
||||
|
||||
temp = P[1];
|
||||
temp = GSM_ABS(temp);
|
||||
if (P[0] < temp) {
|
||||
for (i = n; i <= 8; i++) *r++ = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
*r = gsm_div( temp, P[0] );
|
||||
|
||||
assert(*r >= 0);
|
||||
if (P[1] > 0) *r = -*r; /* r[n] = sub(0, r[n]) */
|
||||
assert (*r != MIN_WORD);
|
||||
if (n == 8) return;
|
||||
|
||||
/* Schur recursion
|
||||
*/
|
||||
temp = GSM_MULT_R( P[1], *r );
|
||||
P[0] = GSM_ADD( P[0], temp );
|
||||
|
||||
for (m = 1; m <= 8 - n; m++) {
|
||||
temp = GSM_MULT_R( K[ m ], *r );
|
||||
P[m] = GSM_ADD( P[ m+1 ], temp );
|
||||
|
||||
temp = GSM_MULT_R( P[ m+1 ], *r );
|
||||
K[m] = GSM_ADD( K[ m ], temp );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* 4.2.6 */
|
||||
|
||||
static void Transformation_to_Log_Area_Ratios P1((r),
|
||||
register word * r /* 0..7 IN/OUT */
|
||||
)
|
||||
/*
|
||||
* The following scaling for r[..] and LAR[..] has been used:
|
||||
*
|
||||
* r[..] = integer( real_r[..]*32768. ); -1 <= real_r < 1.
|
||||
* LAR[..] = integer( real_LAR[..] * 16384 );
|
||||
* with -1.625 <= real_LAR <= 1.625
|
||||
*/
|
||||
{
|
||||
register word temp;
|
||||
register int i;
|
||||
|
||||
|
||||
/* Computation of the LAR[0..7] from the r[0..7]
|
||||
*/
|
||||
for (i = 1; i <= 8; i++, r++) {
|
||||
|
||||
temp = *r;
|
||||
temp = GSM_ABS(temp);
|
||||
assert(temp >= 0);
|
||||
|
||||
if (temp < 22118) {
|
||||
temp >>= 1;
|
||||
} else if (temp < 31130) {
|
||||
assert( temp >= 11059 );
|
||||
temp -= 11059;
|
||||
} else {
|
||||
assert( temp >= 26112 );
|
||||
temp -= 26112;
|
||||
temp <<= 2;
|
||||
}
|
||||
|
||||
*r = *r < 0 ? -temp : temp;
|
||||
assert( *r != MIN_WORD );
|
||||
}
|
||||
}
|
||||
|
||||
/* 4.2.7 */
|
||||
|
||||
static void Quantization_and_coding P1((LAR),
|
||||
register word * LAR /* [0..7] IN/OUT */
|
||||
)
|
||||
{
|
||||
register word temp;
|
||||
longword ltmp;
|
||||
|
||||
|
||||
/* This procedure needs four tables; the following equations
|
||||
* give the optimum scaling for the constants:
|
||||
*
|
||||
* A[0..7] = integer( real_A[0..7] * 1024 )
|
||||
* B[0..7] = integer( real_B[0..7] * 512 )
|
||||
* MAC[0..7] = maximum of the LARc[0..7]
|
||||
* MIC[0..7] = minimum of the LARc[0..7]
|
||||
*/
|
||||
|
||||
# undef STEP
|
||||
# define STEP( A, B, MAC, MIC ) \
|
||||
temp = GSM_MULT( A, *LAR ); \
|
||||
temp = GSM_ADD( temp, B ); \
|
||||
temp = GSM_ADD( temp, 256 ); \
|
||||
temp = SASR( temp, 9 ); \
|
||||
*LAR = temp>MAC ? MAC - MIC : (temp<MIC ? 0 : temp - MIC); \
|
||||
LAR++;
|
||||
|
||||
STEP( 20480, 0, 31, -32 );
|
||||
STEP( 20480, 0, 31, -32 );
|
||||
STEP( 20480, 2048, 15, -16 );
|
||||
STEP( 20480, -2560, 15, -16 );
|
||||
|
||||
STEP( 13964, 94, 7, -8 );
|
||||
STEP( 15360, -1792, 7, -8 );
|
||||
STEP( 8534, -341, 3, -4 );
|
||||
STEP( 9036, -1144, 3, -4 );
|
||||
|
||||
# undef STEP
|
||||
}
|
||||
|
||||
void Gsm_LPC_Analysis P3((S, s,LARc),
|
||||
struct gsm_state *S,
|
||||
word * s, /* 0..159 signals IN/OUT */
|
||||
word * LARc) /* 0..7 LARc's OUT */
|
||||
{
|
||||
longword L_ACF[9];
|
||||
|
||||
#if defined(USE_FLOAT_MUL) && defined(FAST)
|
||||
if (S->fast) Fast_Autocorrelation (s, L_ACF );
|
||||
else
|
||||
#endif
|
||||
Autocorrelation (s, L_ACF );
|
||||
Reflection_coefficients (L_ACF, LARc );
|
||||
Transformation_to_Log_Area_Ratios (LARc);
|
||||
Quantization_and_coding (LARc);
|
||||
}
|
|
@ -0,0 +1,113 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/preprocess.c,v 1.2 1994/05/10 20:18:45 jutta Exp $ */
|
||||
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "private.h"
|
||||
|
||||
#include "gsm.h"
|
||||
#include "proto.h"
|
||||
|
||||
/* 4.2.0 .. 4.2.3 PREPROCESSING SECTION
|
||||
*
|
||||
* After A-law to linear conversion (or directly from the
|
||||
* Ato D converter) the following scaling is assumed for
|
||||
* input to the RPE-LTP algorithm:
|
||||
*
|
||||
* in: 0.1.....................12
|
||||
* S.v.v.v.v.v.v.v.v.v.v.v.v.*.*.*
|
||||
*
|
||||
* Where S is the sign bit, v a valid bit, and * a "don't care" bit.
|
||||
* The original signal is called sop[..]
|
||||
*
|
||||
* out: 0.1................... 12
|
||||
* S.S.v.v.v.v.v.v.v.v.v.v.v.v.0.0
|
||||
*/
|
||||
|
||||
|
||||
void Gsm_Preprocess P3((S, s, so),
|
||||
struct gsm_state * S,
|
||||
word * s,
|
||||
word * so ) /* [0..159] IN/OUT */
|
||||
{
|
||||
|
||||
word z1 = S->z1;
|
||||
longword L_z2 = S->L_z2;
|
||||
word mp = S->mp;
|
||||
|
||||
word s1;
|
||||
longword L_s2;
|
||||
|
||||
longword L_temp;
|
||||
|
||||
word msp, lsp;
|
||||
word SO;
|
||||
|
||||
longword ltmp; /* for ADD */
|
||||
ulongword utmp; /* for L_ADD */
|
||||
|
||||
register int k = 160;
|
||||
|
||||
while (k--) {
|
||||
|
||||
/* 4.2.1 Downscaling of the input signal
|
||||
*/
|
||||
SO = SASR( *s, 3 ) << 2;
|
||||
s++;
|
||||
|
||||
assert (SO >= -0x4000); /* downscaled by */
|
||||
assert (SO <= 0x3FFC); /* previous routine. */
|
||||
|
||||
|
||||
/* 4.2.2 Offset compensation
|
||||
*
|
||||
* This part implements a high-pass filter and requires extended
|
||||
* arithmetic precision for the recursive part of this filter.
|
||||
* The input of this procedure is the array so[0...159] and the
|
||||
* output the array sof[ 0...159 ].
|
||||
*/
|
||||
/* Compute the non-recursive part
|
||||
*/
|
||||
|
||||
s1 = SO - z1; /* s1 = gsm_sub( *so, z1 ); */
|
||||
z1 = SO;
|
||||
|
||||
assert(s1 != MIN_WORD);
|
||||
|
||||
/* Compute the recursive part
|
||||
*/
|
||||
L_s2 = s1;
|
||||
L_s2 <<= 15;
|
||||
|
||||
/* Execution of a 31 bv 16 bits multiplication
|
||||
*/
|
||||
|
||||
msp = SASR( L_z2, 15 );
|
||||
lsp = L_z2-((longword)msp<<15); /* gsm_L_sub(L_z2,(msp<<15)); */
|
||||
|
||||
L_s2 += GSM_MULT_R( lsp, 32735 );
|
||||
L_temp = (longword)msp * 32735; /* GSM_L_MULT(msp,32735) >> 1;*/
|
||||
L_z2 = GSM_L_ADD( L_temp, L_s2 );
|
||||
|
||||
/* Compute sof[k] with rounding
|
||||
*/
|
||||
L_temp = GSM_L_ADD( L_z2, 16384 );
|
||||
|
||||
/* 4.2.3 Preemphasis
|
||||
*/
|
||||
|
||||
msp = GSM_MULT_R( mp, -28180 );
|
||||
mp = SASR( L_temp, 15 );
|
||||
*so++ = GSM_ADD( mp, msp );
|
||||
}
|
||||
|
||||
S->z1 = z1;
|
||||
S->L_z2 = L_z2;
|
||||
S->mp = mp;
|
||||
}
|
|
@ -0,0 +1,488 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/rpe.c,v 1.3 1994/05/10 20:18:46 jutta Exp $ */
|
||||
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "private.h"
|
||||
|
||||
#include "gsm.h"
|
||||
#include "proto.h"
|
||||
|
||||
/* 4.2.13 .. 4.2.17 RPE ENCODING SECTION
|
||||
*/
|
||||
|
||||
/* 4.2.13 */
|
||||
|
||||
static void Weighting_filter P2((e, x),
|
||||
register word * e, /* signal [-5..0.39.44] IN */
|
||||
word * x /* signal [0..39] OUT */
|
||||
)
|
||||
/*
|
||||
* The coefficients of the weighting filter are stored in a table
|
||||
* (see table 4.4). The following scaling is used:
|
||||
*
|
||||
* H[0..10] = integer( real_H[ 0..10] * 8192 );
|
||||
*/
|
||||
{
|
||||
/* word wt[ 50 ]; */
|
||||
|
||||
register longword L_result;
|
||||
register int k /* , i */ ;
|
||||
|
||||
/* Initialization of a temporary working array wt[0...49]
|
||||
*/
|
||||
|
||||
/* for (k = 0; k <= 4; k++) wt[k] = 0;
|
||||
* for (k = 5; k <= 44; k++) wt[k] = *e++;
|
||||
* for (k = 45; k <= 49; k++) wt[k] = 0;
|
||||
*
|
||||
* (e[-5..-1] and e[40..44] are allocated by the caller,
|
||||
* are initially zero and are not written anywhere.)
|
||||
*/
|
||||
e -= 5;
|
||||
|
||||
/* Compute the signal x[0..39]
|
||||
*/
|
||||
for (k = 0; k <= 39; k++) {
|
||||
|
||||
L_result = 8192 >> 1;
|
||||
|
||||
/* for (i = 0; i <= 10; i++) {
|
||||
* L_temp = GSM_L_MULT( wt[k+i], gsm_H[i] );
|
||||
* L_result = GSM_L_ADD( L_result, L_temp );
|
||||
* }
|
||||
*/
|
||||
|
||||
#undef STEP
|
||||
#define STEP( i, H ) (e[ k + i ] * (longword)H)
|
||||
|
||||
/* Every one of these multiplications is done twice --
|
||||
* but I don't see an elegant way to optimize this.
|
||||
* Do you?
|
||||
*/
|
||||
|
||||
#ifdef STUPID_COMPILER
|
||||
L_result += STEP( 0, -134 ) ;
|
||||
L_result += STEP( 1, -374 ) ;
|
||||
/* + STEP( 2, 0 ) */
|
||||
L_result += STEP( 3, 2054 ) ;
|
||||
L_result += STEP( 4, 5741 ) ;
|
||||
L_result += STEP( 5, 8192 ) ;
|
||||
L_result += STEP( 6, 5741 ) ;
|
||||
L_result += STEP( 7, 2054 ) ;
|
||||
/* + STEP( 8, 0 ) */
|
||||
L_result += STEP( 9, -374 ) ;
|
||||
L_result += STEP( 10, -134 ) ;
|
||||
#else
|
||||
L_result +=
|
||||
STEP( 0, -134 )
|
||||
+ STEP( 1, -374 )
|
||||
/* + STEP( 2, 0 ) */
|
||||
+ STEP( 3, 2054 )
|
||||
+ STEP( 4, 5741 )
|
||||
+ STEP( 5, 8192 )
|
||||
+ STEP( 6, 5741 )
|
||||
+ STEP( 7, 2054 )
|
||||
/* + STEP( 8, 0 ) */
|
||||
+ STEP( 9, -374 )
|
||||
+ STEP(10, -134 )
|
||||
;
|
||||
#endif
|
||||
|
||||
/* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *)
|
||||
* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *)
|
||||
*
|
||||
* x[k] = SASR( L_result, 16 );
|
||||
*/
|
||||
|
||||
/* 2 adds vs. >>16 => 14, minus one shift to compensate for
|
||||
* those we lost when replacing L_MULT by '*'.
|
||||
*/
|
||||
|
||||
L_result = SASR( L_result, 13 );
|
||||
x[k] = ( L_result < MIN_WORD ? MIN_WORD
|
||||
: (L_result > MAX_WORD ? MAX_WORD : L_result ));
|
||||
}
|
||||
}
|
||||
|
||||
/* 4.2.14 */
|
||||
|
||||
static void RPE_grid_selection P3((x,xM,Mc_out),
|
||||
word * x, /* [0..39] IN */
|
||||
word * xM, /* [0..12] OUT */
|
||||
word * Mc_out /* OUT */
|
||||
)
|
||||
/*
|
||||
* The signal x[0..39] is used to select the RPE grid which is
|
||||
* represented by Mc.
|
||||
*/
|
||||
{
|
||||
/* register word temp1; */
|
||||
register int /* m, */ i;
|
||||
register longword L_result, L_temp;
|
||||
longword EM; /* xxx should be L_EM? */
|
||||
word Mc;
|
||||
|
||||
longword L_common_0_3;
|
||||
|
||||
EM = 0;
|
||||
Mc = 0;
|
||||
|
||||
/* for (m = 0; m <= 3; m++) {
|
||||
* L_result = 0;
|
||||
*
|
||||
*
|
||||
* for (i = 0; i <= 12; i++) {
|
||||
*
|
||||
* temp1 = SASR( x[m + 3*i], 2 );
|
||||
*
|
||||
* assert(temp1 != MIN_WORD);
|
||||
*
|
||||
* L_temp = GSM_L_MULT( temp1, temp1 );
|
||||
* L_result = GSM_L_ADD( L_temp, L_result );
|
||||
* }
|
||||
*
|
||||
* if (L_result > EM) {
|
||||
* Mc = m;
|
||||
* EM = L_result;
|
||||
* }
|
||||
* }
|
||||
*/
|
||||
|
||||
#undef STEP
|
||||
#define STEP( m, i ) L_temp = SASR( x[m + 3 * i], 2 ); \
|
||||
L_result += L_temp * L_temp;
|
||||
|
||||
/* common part of 0 and 3 */
|
||||
|
||||
L_result = 0;
|
||||
STEP( 0, 1 ); STEP( 0, 2 ); STEP( 0, 3 ); STEP( 0, 4 );
|
||||
STEP( 0, 5 ); STEP( 0, 6 ); STEP( 0, 7 ); STEP( 0, 8 );
|
||||
STEP( 0, 9 ); STEP( 0, 10); STEP( 0, 11); STEP( 0, 12);
|
||||
L_common_0_3 = L_result;
|
||||
|
||||
/* i = 0 */
|
||||
|
||||
STEP( 0, 0 );
|
||||
L_result <<= 1; /* implicit in L_MULT */
|
||||
EM = L_result;
|
||||
|
||||
/* i = 1 */
|
||||
|
||||
L_result = 0;
|
||||
STEP( 1, 0 );
|
||||
STEP( 1, 1 ); STEP( 1, 2 ); STEP( 1, 3 ); STEP( 1, 4 );
|
||||
STEP( 1, 5 ); STEP( 1, 6 ); STEP( 1, 7 ); STEP( 1, 8 );
|
||||
STEP( 1, 9 ); STEP( 1, 10); STEP( 1, 11); STEP( 1, 12);
|
||||
L_result <<= 1;
|
||||
if (L_result > EM) {
|
||||
Mc = 1;
|
||||
EM = L_result;
|
||||
}
|
||||
|
||||
/* i = 2 */
|
||||
|
||||
L_result = 0;
|
||||
STEP( 2, 0 );
|
||||
STEP( 2, 1 ); STEP( 2, 2 ); STEP( 2, 3 ); STEP( 2, 4 );
|
||||
STEP( 2, 5 ); STEP( 2, 6 ); STEP( 2, 7 ); STEP( 2, 8 );
|
||||
STEP( 2, 9 ); STEP( 2, 10); STEP( 2, 11); STEP( 2, 12);
|
||||
L_result <<= 1;
|
||||
if (L_result > EM) {
|
||||
Mc = 2;
|
||||
EM = L_result;
|
||||
}
|
||||
|
||||
/* i = 3 */
|
||||
|
||||
L_result = L_common_0_3;
|
||||
STEP( 3, 12 );
|
||||
L_result <<= 1;
|
||||
if (L_result > EM) {
|
||||
Mc = 3;
|
||||
EM = L_result;
|
||||
}
|
||||
|
||||
/**/
|
||||
|
||||
/* Down-sampling by a factor 3 to get the selected xM[0..12]
|
||||
* RPE sequence.
|
||||
*/
|
||||
for (i = 0; i <= 12; i ++) xM[i] = x[Mc + 3*i];
|
||||
*Mc_out = Mc;
|
||||
}
|
||||
|
||||
/* 4.12.15 */
|
||||
|
||||
static void APCM_quantization_xmaxc_to_exp_mant P3((xmaxc,exp_out,mant_out),
|
||||
word xmaxc, /* IN */
|
||||
word * exp_out, /* OUT */
|
||||
word * mant_out ) /* OUT */
|
||||
{
|
||||
word exp, mant;
|
||||
|
||||
/* Compute exponent and mantissa of the decoded version of xmaxc
|
||||
*/
|
||||
|
||||
exp = 0;
|
||||
if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1;
|
||||
mant = xmaxc - (exp << 3);
|
||||
|
||||
if (mant == 0) {
|
||||
exp = -4;
|
||||
mant = 7;
|
||||
}
|
||||
else {
|
||||
while (mant <= 7) {
|
||||
mant = mant << 1 | 1;
|
||||
exp--;
|
||||
}
|
||||
mant -= 8;
|
||||
}
|
||||
|
||||
assert( exp >= -4 && exp <= 6 );
|
||||
assert( mant >= 0 && mant <= 7 );
|
||||
|
||||
*exp_out = exp;
|
||||
*mant_out = mant;
|
||||
}
|
||||
|
||||
static void APCM_quantization P5((xM,xMc,mant_out,exp_out,xmaxc_out),
|
||||
word * xM, /* [0..12] IN */
|
||||
|
||||
word * xMc, /* [0..12] OUT */
|
||||
word * mant_out, /* OUT */
|
||||
word * exp_out, /* OUT */
|
||||
word * xmaxc_out /* OUT */
|
||||
)
|
||||
{
|
||||
int i, itest;
|
||||
|
||||
word xmax, xmaxc, temp, temp1, temp2;
|
||||
word exp, mant;
|
||||
|
||||
|
||||
/* Find the maximum absolute value xmax of xM[0..12].
|
||||
*/
|
||||
|
||||
xmax = 0;
|
||||
for (i = 0; i <= 12; i++) {
|
||||
temp = xM[i];
|
||||
temp = GSM_ABS(temp);
|
||||
if (temp > xmax) xmax = temp;
|
||||
}
|
||||
|
||||
/* Qantizing and coding of xmax to get xmaxc.
|
||||
*/
|
||||
|
||||
exp = 0;
|
||||
temp = SASR( xmax, 9 );
|
||||
itest = 0;
|
||||
|
||||
for (i = 0; i <= 5; i++) {
|
||||
|
||||
itest |= (temp <= 0);
|
||||
temp = SASR( temp, 1 );
|
||||
|
||||
assert(exp <= 5);
|
||||
if (itest == 0) exp++; /* exp = add (exp, 1) */
|
||||
}
|
||||
|
||||
assert(exp <= 6 && exp >= 0);
|
||||
temp = exp + 5;
|
||||
|
||||
assert(temp <= 11 && temp >= 0);
|
||||
xmaxc = gsm_add( SASR(xmax, temp), exp << 3 );
|
||||
|
||||
/* Quantizing and coding of the xM[0..12] RPE sequence
|
||||
* to get the xMc[0..12]
|
||||
*/
|
||||
|
||||
APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant );
|
||||
|
||||
/* This computation uses the fact that the decoded version of xmaxc
|
||||
* can be calculated by using the exponent and the mantissa part of
|
||||
* xmaxc (logarithmic table).
|
||||
* So, this method avoids any division and uses only a scaling
|
||||
* of the RPE samples by a function of the exponent. A direct
|
||||
* multiplication by the inverse of the mantissa (NRFAC[0..7]
|
||||
* found in table 4.5) gives the 3 bit coded version xMc[0..12]
|
||||
* of the RPE samples.
|
||||
*/
|
||||
|
||||
|
||||
/* Direct computation of xMc[0..12] using table 4.5
|
||||
*/
|
||||
|
||||
assert( exp <= 4096 && exp >= -4096);
|
||||
assert( mant >= 0 && mant <= 7 );
|
||||
|
||||
temp1 = 6 - exp; /* normalization by the exponent */
|
||||
temp2 = gsm_NRFAC[ mant ]; /* inverse mantissa */
|
||||
|
||||
for (i = 0; i <= 12; i++) {
|
||||
|
||||
assert(temp1 >= 0 && temp1 < 16);
|
||||
|
||||
temp = xM[i] << temp1;
|
||||
temp = GSM_MULT( temp, temp2 );
|
||||
temp = SASR(temp, 12);
|
||||
xMc[i] = temp + 4; /* see note below */
|
||||
}
|
||||
|
||||
/* NOTE: This equation is used to make all the xMc[i] positive.
|
||||
*/
|
||||
|
||||
*mant_out = mant;
|
||||
*exp_out = exp;
|
||||
*xmaxc_out = xmaxc;
|
||||
}
|
||||
|
||||
/* 4.2.16 */
|
||||
|
||||
static void APCM_inverse_quantization P4((xMc,mant,exp,xMp),
|
||||
register word * xMc, /* [0..12] IN */
|
||||
word mant,
|
||||
word exp,
|
||||
register word * xMp) /* [0..12] OUT */
|
||||
/*
|
||||
* This part is for decoding the RPE sequence of coded xMc[0..12]
|
||||
* samples to obtain the xMp[0..12] array. Table 4.6 is used to get
|
||||
* the mantissa of xmaxc (FAC[0..7]).
|
||||
*/
|
||||
{
|
||||
int i;
|
||||
word temp, temp1, temp2, temp3;
|
||||
longword ltmp;
|
||||
|
||||
assert( mant >= 0 && mant <= 7 );
|
||||
|
||||
temp1 = gsm_FAC[ mant ]; /* see 4.2-15 for mant */
|
||||
temp2 = gsm_sub( 6, exp ); /* see 4.2-15 for exp */
|
||||
temp3 = gsm_asl( 1, gsm_sub( temp2, 1 ));
|
||||
|
||||
for (i = 13; i--;) {
|
||||
|
||||
assert( *xMc <= 7 && *xMc >= 0 ); /* 3 bit unsigned */
|
||||
|
||||
/* temp = gsm_sub( *xMc++ << 1, 7 ); */
|
||||
temp = (*xMc++ << 1) - 7; /* restore sign */
|
||||
assert( temp <= 7 && temp >= -7 ); /* 4 bit signed */
|
||||
|
||||
temp <<= 12; /* 16 bit signed */
|
||||
temp = GSM_MULT_R( temp1, temp );
|
||||
temp = GSM_ADD( temp, temp3 );
|
||||
*xMp++ = gsm_asr( temp, temp2 );
|
||||
}
|
||||
}
|
||||
|
||||
/* 4.2.17 */
|
||||
|
||||
static void RPE_grid_positioning P3((Mc,xMp,ep),
|
||||
word Mc, /* grid position IN */
|
||||
register word * xMp, /* [0..12] IN */
|
||||
register word * ep /* [0..39] OUT */
|
||||
)
|
||||
/*
|
||||
* This procedure computes the reconstructed long term residual signal
|
||||
* ep[0..39] for the LTP analysis filter. The inputs are the Mc
|
||||
* which is the grid position selection and the xMp[0..12] decoded
|
||||
* RPE samples which are upsampled by a factor of 3 by inserting zero
|
||||
* values.
|
||||
*/
|
||||
{
|
||||
int i = 13;
|
||||
|
||||
assert(0 <= Mc && Mc <= 3);
|
||||
|
||||
switch (Mc) {
|
||||
case 3: *ep++ = 0;
|
||||
case 2: do {
|
||||
*ep++ = 0;
|
||||
case 1: *ep++ = 0;
|
||||
case 0: *ep++ = *xMp++;
|
||||
} while (--i);
|
||||
}
|
||||
while (++Mc < 4) *ep++ = 0;
|
||||
|
||||
/*
|
||||
|
||||
int i, k;
|
||||
for (k = 0; k <= 39; k++) ep[k] = 0;
|
||||
for (i = 0; i <= 12; i++) {
|
||||
ep[ Mc + (3*i) ] = xMp[i];
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
/* 4.2.18 */
|
||||
|
||||
/* This procedure adds the reconstructed long term residual signal
|
||||
* ep[0..39] to the estimated signal dpp[0..39] from the long term
|
||||
* analysis filter to compute the reconstructed short term residual
|
||||
* signal dp[-40..-1]; also the reconstructed short term residual
|
||||
* array dp[-120..-41] is updated.
|
||||
*/
|
||||
|
||||
#if 0 /* Has been inlined in code.c */
|
||||
void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp),
|
||||
word * dpp, /* [0...39] IN */
|
||||
word * ep, /* [0...39] IN */
|
||||
word * dp) /* [-120...-1] IN/OUT */
|
||||
{
|
||||
int k;
|
||||
|
||||
for (k = 0; k <= 79; k++)
|
||||
dp[ -120 + k ] = dp[ -80 + k ];
|
||||
|
||||
for (k = 0; k <= 39; k++)
|
||||
dp[ -40 + k ] = gsm_add( ep[k], dpp[k] );
|
||||
}
|
||||
#endif /* Has been inlined in code.c */
|
||||
|
||||
void Gsm_RPE_Encoding P5((S,e,xmaxc,Mc,xMc),
|
||||
|
||||
struct gsm_state * S,
|
||||
|
||||
word * e, /* -5..-1][0..39][40..44 IN/OUT */
|
||||
word * xmaxc, /* OUT */
|
||||
word * Mc, /* OUT */
|
||||
word * xMc) /* [0..12] OUT */
|
||||
{
|
||||
word x[40];
|
||||
word xM[13], xMp[13];
|
||||
word mant, exp;
|
||||
|
||||
Weighting_filter(e, x);
|
||||
RPE_grid_selection(x, xM, Mc);
|
||||
|
||||
APCM_quantization( xM, xMc, &mant, &exp, xmaxc);
|
||||
APCM_inverse_quantization( xMc, mant, exp, xMp);
|
||||
|
||||
RPE_grid_positioning( *Mc, xMp, e );
|
||||
|
||||
}
|
||||
|
||||
void Gsm_RPE_Decoding P5((S, xmaxcr, Mcr, xMcr, erp),
|
||||
struct gsm_state * S,
|
||||
|
||||
word xmaxcr,
|
||||
word Mcr,
|
||||
word * xMcr, /* [0..12], 3 bits IN */
|
||||
word * erp /* [0..39] OUT */
|
||||
)
|
||||
{
|
||||
word exp, mant;
|
||||
word xMp[ 13 ];
|
||||
|
||||
APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant );
|
||||
APCM_inverse_quantization( xMcr, mant, exp, xMp );
|
||||
RPE_grid_positioning( Mcr, xMp, erp );
|
||||
|
||||
}
|
|
@ -0,0 +1,429 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/short_term.c,v 1.2 1994/05/10 20:18:47 jutta Exp $ */
|
||||
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "private.h"
|
||||
|
||||
#include "gsm.h"
|
||||
#include "proto.h"
|
||||
|
||||
/*
|
||||
* SHORT TERM ANALYSIS FILTERING SECTION
|
||||
*/
|
||||
|
||||
/* 4.2.8 */
|
||||
|
||||
static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp),
|
||||
word * LARc, /* coded log area ratio [0..7] IN */
|
||||
word * LARpp) /* out: decoded .. */
|
||||
{
|
||||
register word temp1 /* , temp2 */;
|
||||
register long ltmp; /* for GSM_ADD */
|
||||
|
||||
/* This procedure requires for efficient implementation
|
||||
* two tables.
|
||||
*
|
||||
* INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
|
||||
* MIC[1..8] = minimum value of the LARc[1..8]
|
||||
*/
|
||||
|
||||
/* Compute the LARpp[1..8]
|
||||
*/
|
||||
|
||||
/* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
|
||||
*
|
||||
* temp1 = GSM_ADD( *LARc, *MIC ) << 10;
|
||||
* temp2 = *B << 1;
|
||||
* temp1 = GSM_SUB( temp1, temp2 );
|
||||
*
|
||||
* assert(*INVA != MIN_WORD);
|
||||
*
|
||||
* temp1 = GSM_MULT_R( *INVA, temp1 );
|
||||
* *LARpp = GSM_ADD( temp1, temp1 );
|
||||
* }
|
||||
*/
|
||||
|
||||
#undef STEP
|
||||
#define STEP( B_TIMES_TWO, MIC, INVA ) \
|
||||
temp1 = GSM_ADD( *LARc++, MIC ) << 10; \
|
||||
temp1 = GSM_SUB( temp1, B_TIMES_TWO ); \
|
||||
temp1 = GSM_MULT_R( INVA, temp1 ); \
|
||||
*LARpp++ = GSM_ADD( temp1, temp1 );
|
||||
|
||||
STEP( 0, -32, 13107 );
|
||||
STEP( 0, -32, 13107 );
|
||||
STEP( 4096, -16, 13107 );
|
||||
STEP( -5120, -16, 13107 );
|
||||
|
||||
STEP( 188, -8, 19223 );
|
||||
STEP( -3584, -8, 17476 );
|
||||
STEP( -682, -4, 31454 );
|
||||
STEP( -2288, -4, 29708 );
|
||||
|
||||
/* NOTE: the addition of *MIC is used to restore
|
||||
* the sign of *LARc.
|
||||
*/
|
||||
}
|
||||
|
||||
/* 4.2.9 */
|
||||
/* Computation of the quantized reflection coefficients
|
||||
*/
|
||||
|
||||
/* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8]
|
||||
*/
|
||||
|
||||
/*
|
||||
* Within each frame of 160 analyzed speech samples the short term
|
||||
* analysis and synthesis filters operate with four different sets of
|
||||
* coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
|
||||
* and the actual set of decoded LARs (LARpp(j))
|
||||
*
|
||||
* (Initial value: LARpp(j-1)[1..8] = 0.)
|
||||
*/
|
||||
|
||||
static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp),
|
||||
register word * LARpp_j_1,
|
||||
register word * LARpp_j,
|
||||
register word * LARp)
|
||||
{
|
||||
register int i;
|
||||
register longword ltmp;
|
||||
|
||||
for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
|
||||
*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
|
||||
*LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1));
|
||||
}
|
||||
}
|
||||
|
||||
static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp),
|
||||
register word * LARpp_j_1,
|
||||
register word * LARpp_j,
|
||||
register word * LARp)
|
||||
{
|
||||
register int i;
|
||||
register longword ltmp;
|
||||
for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
|
||||
*LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
|
||||
}
|
||||
}
|
||||
|
||||
static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp),
|
||||
register word * LARpp_j_1,
|
||||
register word * LARpp_j,
|
||||
register word * LARp)
|
||||
{
|
||||
register int i;
|
||||
register longword ltmp;
|
||||
|
||||
for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
|
||||
*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
|
||||
*LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void Coefficients_40_159 P2((LARpp_j, LARp),
|
||||
register word * LARpp_j,
|
||||
register word * LARp)
|
||||
{
|
||||
register int i;
|
||||
|
||||
for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
|
||||
*LARp = *LARpp_j;
|
||||
}
|
||||
|
||||
/* 4.2.9.2 */
|
||||
|
||||
static void LARp_to_rp P1((LARp),
|
||||
register word * LARp) /* [0..7] IN/OUT */
|
||||
/*
|
||||
* The input of this procedure is the interpolated LARp[0..7] array.
|
||||
* The reflection coefficients, rp[i], are used in the analysis
|
||||
* filter and in the synthesis filter.
|
||||
*/
|
||||
{
|
||||
register int i;
|
||||
register word temp;
|
||||
register longword ltmp;
|
||||
|
||||
for (i = 1; i <= 8; i++, LARp++) {
|
||||
|
||||
/* temp = GSM_ABS( *LARp );
|
||||
*
|
||||
* if (temp < 11059) temp <<= 1;
|
||||
* else if (temp < 20070) temp += 11059;
|
||||
* else temp = GSM_ADD( temp >> 2, 26112 );
|
||||
*
|
||||
* *LARp = *LARp < 0 ? -temp : temp;
|
||||
*/
|
||||
|
||||
if (*LARp < 0) {
|
||||
temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
|
||||
*LARp = - ((temp < 11059) ? temp << 1
|
||||
: ((temp < 20070) ? temp + 11059
|
||||
: GSM_ADD( temp >> 2, 26112 )));
|
||||
} else {
|
||||
temp = *LARp;
|
||||
*LARp = (temp < 11059) ? temp << 1
|
||||
: ((temp < 20070) ? temp + 11059
|
||||
: GSM_ADD( temp >> 2, 26112 ));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* 4.2.10 */
|
||||
static void Short_term_analysis_filtering P4((S,rp,k_n,s),
|
||||
struct gsm_state * S,
|
||||
register word * rp, /* [0..7] IN */
|
||||
register int k_n, /* k_end - k_start */
|
||||
register word * s /* [0..n-1] IN/OUT */
|
||||
)
|
||||
/*
|
||||
* This procedure computes the short term residual signal d[..] to be fed
|
||||
* to the RPE-LTP loop from the s[..] signal and from the local rp[..]
|
||||
* array (quantized reflection coefficients). As the call of this
|
||||
* procedure can be done in many ways (see the interpolation of the LAR
|
||||
* coefficient), it is assumed that the computation begins with index
|
||||
* k_start (for arrays d[..] and s[..]) and stops with index k_end
|
||||
* (k_start and k_end are defined in 4.2.9.1). This procedure also
|
||||
* needs to keep the array u[0..7] in memory for each call.
|
||||
*/
|
||||
{
|
||||
register word * u = S->u;
|
||||
register int i;
|
||||
register word di, zzz, ui, sav, rpi;
|
||||
register longword ltmp;
|
||||
|
||||
for (; k_n--; s++) {
|
||||
|
||||
di = sav = *s;
|
||||
|
||||
for (i = 0; i < 8; i++) { /* YYY */
|
||||
|
||||
ui = u[i];
|
||||
rpi = rp[i];
|
||||
u[i] = sav;
|
||||
|
||||
zzz = GSM_MULT_R(rpi, di);
|
||||
sav = GSM_ADD( ui, zzz);
|
||||
|
||||
zzz = GSM_MULT_R(rpi, ui);
|
||||
di = GSM_ADD( di, zzz );
|
||||
}
|
||||
|
||||
*s = di;
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(USE_FLOAT_MUL) && defined(FAST)
|
||||
|
||||
static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s),
|
||||
struct gsm_state * S,
|
||||
register word * rp, /* [0..7] IN */
|
||||
register int k_n, /* k_end - k_start */
|
||||
register word * s /* [0..n-1] IN/OUT */
|
||||
)
|
||||
{
|
||||
register word * u = S->u;
|
||||
register int i;
|
||||
|
||||
float uf[8],
|
||||
rpf[8];
|
||||
|
||||
register float scalef = 3.0517578125e-5;
|
||||
register float sav, di, temp;
|
||||
|
||||
for (i = 0; i < 8; ++i) {
|
||||
uf[i] = u[i];
|
||||
rpf[i] = rp[i] * scalef;
|
||||
}
|
||||
for (; k_n--; s++) {
|
||||
sav = di = *s;
|
||||
for (i = 0; i < 8; ++i) {
|
||||
register float rpfi = rpf[i];
|
||||
register float ufi = uf[i];
|
||||
|
||||
uf[i] = sav;
|
||||
temp = rpfi * di + ufi;
|
||||
di += rpfi * ufi;
|
||||
sav = temp;
|
||||
}
|
||||
*s = di;
|
||||
}
|
||||
for (i = 0; i < 8; ++i) u[i] = uf[i];
|
||||
}
|
||||
#endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
|
||||
|
||||
static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
|
||||
struct gsm_state * S,
|
||||
register word * rrp, /* [0..7] IN */
|
||||
register int k, /* k_end - k_start */
|
||||
register word * wt, /* [0..k-1] IN */
|
||||
register word * sr /* [0..k-1] OUT */
|
||||
)
|
||||
{
|
||||
register word * v = S->v;
|
||||
register int i;
|
||||
register word sri, tmp1, tmp2;
|
||||
register longword ltmp; /* for GSM_ADD & GSM_SUB */
|
||||
|
||||
while (k--) {
|
||||
sri = *wt++;
|
||||
for (i = 8; i--;) {
|
||||
|
||||
/* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
|
||||
*/
|
||||
tmp1 = rrp[i];
|
||||
tmp2 = v[i];
|
||||
tmp2 = ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
|
||||
? MAX_WORD
|
||||
: 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
|
||||
+ 16384) >> 15)) ;
|
||||
|
||||
sri = GSM_SUB( sri, tmp2 );
|
||||
|
||||
/* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
|
||||
*/
|
||||
tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD
|
||||
? MAX_WORD
|
||||
: 0x0FFFF & (( (longword)tmp1 * (longword)sri
|
||||
+ 16384) >> 15)) ;
|
||||
|
||||
v[i+1] = GSM_ADD( v[i], tmp1);
|
||||
}
|
||||
*sr++ = v[0] = sri;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#if defined(FAST) && defined(USE_FLOAT_MUL)
|
||||
|
||||
static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
|
||||
struct gsm_state * S,
|
||||
register word * rrp, /* [0..7] IN */
|
||||
register int k, /* k_end - k_start */
|
||||
register word * wt, /* [0..k-1] IN */
|
||||
register word * sr /* [0..k-1] OUT */
|
||||
)
|
||||
{
|
||||
register word * v = S->v;
|
||||
register int i;
|
||||
|
||||
float va[9], rrpa[8];
|
||||
register float scalef = 3.0517578125e-5, temp;
|
||||
|
||||
for (i = 0; i < 8; ++i) {
|
||||
va[i] = v[i];
|
||||
rrpa[i] = (float)rrp[i] * scalef;
|
||||
}
|
||||
while (k--) {
|
||||
register float sri = *wt++;
|
||||
for (i = 8; i--;) {
|
||||
sri -= rrpa[i] * va[i];
|
||||
if (sri < -32768.) sri = -32768.;
|
||||
else if (sri > 32767.) sri = 32767.;
|
||||
|
||||
temp = va[i] + rrpa[i] * sri;
|
||||
if (temp < -32768.) temp = -32768.;
|
||||
else if (temp > 32767.) temp = 32767.;
|
||||
va[i+1] = temp;
|
||||
}
|
||||
*sr++ = va[0] = sri;
|
||||
}
|
||||
for (i = 0; i < 9; ++i) v[i] = va[i];
|
||||
}
|
||||
|
||||
#endif /* defined(FAST) && defined(USE_FLOAT_MUL) */
|
||||
|
||||
void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),
|
||||
|
||||
struct gsm_state * S,
|
||||
|
||||
word * LARc, /* coded log area ratio [0..7] IN */
|
||||
word * s /* signal [0..159] IN/OUT */
|
||||
)
|
||||
{
|
||||
word * LARpp_j = S->LARpp[ S->j ];
|
||||
word * LARpp_j_1 = S->LARpp[ S->j ^= 1 ];
|
||||
|
||||
word LARp[8];
|
||||
|
||||
#undef FILTER
|
||||
#if defined(FAST) && defined(USE_FLOAT_MUL)
|
||||
# define FILTER (* (S->fast \
|
||||
? Fast_Short_term_analysis_filtering \
|
||||
: Short_term_analysis_filtering ))
|
||||
|
||||
#else
|
||||
# define FILTER Short_term_analysis_filtering
|
||||
#endif
|
||||
|
||||
Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );
|
||||
|
||||
Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
|
||||
LARp_to_rp( LARp );
|
||||
FILTER( S, LARp, 13, s);
|
||||
|
||||
Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
|
||||
LARp_to_rp( LARp );
|
||||
FILTER( S, LARp, 14, s + 13);
|
||||
|
||||
Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
|
||||
LARp_to_rp( LARp );
|
||||
FILTER( S, LARp, 13, s + 27);
|
||||
|
||||
Coefficients_40_159( LARpp_j, LARp);
|
||||
LARp_to_rp( LARp );
|
||||
FILTER( S, LARp, 120, s + 40);
|
||||
}
|
||||
|
||||
void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s),
|
||||
struct gsm_state * S,
|
||||
|
||||
word * LARcr, /* received log area ratios [0..7] IN */
|
||||
word * wt, /* received d [0..159] IN */
|
||||
|
||||
word * s /* signal s [0..159] OUT */
|
||||
)
|
||||
{
|
||||
word * LARpp_j = S->LARpp[ S->j ];
|
||||
word * LARpp_j_1 = S->LARpp[ S->j ^=1 ];
|
||||
|
||||
word LARp[8];
|
||||
|
||||
#undef FILTER
|
||||
#if defined(FAST) && defined(USE_FLOAT_MUL)
|
||||
|
||||
# define FILTER (* (S->fast \
|
||||
? Fast_Short_term_synthesis_filtering \
|
||||
: Short_term_synthesis_filtering ))
|
||||
#else
|
||||
# define FILTER Short_term_synthesis_filtering
|
||||
#endif
|
||||
|
||||
Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
|
||||
|
||||
Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
|
||||
LARp_to_rp( LARp );
|
||||
FILTER( S, LARp, 13, wt, s );
|
||||
|
||||
Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
|
||||
LARp_to_rp( LARp );
|
||||
FILTER( S, LARp, 14, wt + 13, s + 13 );
|
||||
|
||||
Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
|
||||
LARp_to_rp( LARp );
|
||||
FILTER( S, LARp, 13, wt + 27, s + 27 );
|
||||
|
||||
Coefficients_40_159( LARpp_j, LARp );
|
||||
LARp_to_rp( LARp );
|
||||
FILTER(S, LARp, 120, wt + 40, s + 40);
|
||||
}
|
|
@ -0,0 +1,63 @@
|
|||
/*
|
||||
* Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
|
||||
* Universitaet Berlin. See the accompanying file "COPYRIGHT" for
|
||||
* details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/table.c,v 1.1 1992/10/28 00:15:50 jutta Exp $ */
|
||||
|
||||
/* Most of these tables are inlined at their point of use.
|
||||
*/
|
||||
|
||||
/* 4.4 TABLES USED IN THE FIXED POINT IMPLEMENTATION OF THE RPE-LTP
|
||||
* CODER AND DECODER
|
||||
*
|
||||
* (Most of them inlined, so watch out.)
|
||||
*/
|
||||
|
||||
#define GSM_TABLE_C
|
||||
#include "private.h"
|
||||
#include "gsm.h"
|
||||
|
||||
/* Table 4.1 Quantization of the Log.-Area Ratios
|
||||
*/
|
||||
/* i 1 2 3 4 5 6 7 8 */
|
||||
word gsm_A[8] = {20480, 20480, 20480, 20480, 13964, 15360, 8534, 9036};
|
||||
word gsm_B[8] = { 0, 0, 2048, -2560, 94, -1792, -341, -1144};
|
||||
word gsm_MIC[8] = { -32, -32, -16, -16, -8, -8, -4, -4 };
|
||||
word gsm_MAC[8] = { 31, 31, 15, 15, 7, 7, 3, 3 };
|
||||
|
||||
|
||||
/* Table 4.2 Tabulation of 1/A[1..8]
|
||||
*/
|
||||
word gsm_INVA[8]={ 13107, 13107, 13107, 13107, 19223, 17476, 31454, 29708 };
|
||||
|
||||
|
||||
/* Table 4.3a Decision level of the LTP gain quantizer
|
||||
*/
|
||||
/* bc 0 1 2 3 */
|
||||
word gsm_DLB[4] = { 6554, 16384, 26214, 32767 };
|
||||
|
||||
|
||||
/* Table 4.3b Quantization levels of the LTP gain quantizer
|
||||
*/
|
||||
/* bc 0 1 2 3 */
|
||||
word gsm_QLB[4] = { 3277, 11469, 21299, 32767 };
|
||||
|
||||
|
||||
/* Table 4.4 Coefficients of the weighting filter
|
||||
*/
|
||||
/* i 0 1 2 3 4 5 6 7 8 9 10 */
|
||||
word gsm_H[11] = {-134, -374, 0, 2054, 5741, 8192, 5741, 2054, 0, -374, -134 };
|
||||
|
||||
|
||||
/* Table 4.5 Normalized inverse mantissa used to compute xM/xmax
|
||||
*/
|
||||
/* i 0 1 2 3 4 5 6 7 */
|
||||
word gsm_NRFAC[8] = { 29128, 26215, 23832, 21846, 20165, 18725, 17476, 16384 };
|
||||
|
||||
|
||||
/* Table 4.6 Normalized direct mantissa used to compute xM/xmax
|
||||
*/
|
||||
/* i 0 1 2 3 4 5 6 7 */
|
||||
word gsm_FAC[8] = { 18431, 20479, 22527, 24575, 26623, 28671, 30719, 32767 };
|
Loading…
Reference in New Issue