Sweden-Number/dlls/rpcrt4/rpcrt4_main.c

1007 lines
32 KiB
C
Raw Normal View History

/*
* RPCRT4
*
* Copyright 2000 Huw D M Davies for CodeWeavers
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*
* WINE RPC TODO's (and a few TODONT's)
*
* - Statistics: we are supposed to be keeping various counters. we aren't.
*
2003-09-11 03:05:19 +02:00
* - Async RPC: Unimplemented.
*
2003-09-11 03:05:19 +02:00
* - The NT "ports" API, aka LPC. Greg claims this is on his radar. Might (or
* might not) enable users to get some kind of meaningful result out of
* NT-based native rpcrt4's. Commonly-used transport for self-to-self RPC's.
*/
#include "config.h"
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "ntstatus.h"
#define WIN32_NO_STATUS
#include "windef.h"
#include "winerror.h"
#include "winbase.h"
#include "winuser.h"
#include "winnt.h"
#include "winternl.h"
#include "iptypes.h"
#include "iphlpapi.h"
#include "wine/unicode.h"
#include "rpc.h"
#include "ole2.h"
#include "rpcndr.h"
#include "rpcproxy.h"
#include "rpc_binding.h"
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(rpc);
static UUID uuid_nil;
static CRITICAL_SECTION uuid_cs;
static CRITICAL_SECTION_DEBUG critsect_debug =
{
0, 0, &uuid_cs,
{ &critsect_debug.ProcessLocksList, &critsect_debug.ProcessLocksList },
0, 0, { (DWORD_PTR)(__FILE__ ": uuid_cs") }
};
static CRITICAL_SECTION uuid_cs = { &critsect_debug, -1, 0, 0, 0, 0 };
static CRITICAL_SECTION threaddata_cs;
static CRITICAL_SECTION_DEBUG threaddata_cs_debug =
{
0, 0, &threaddata_cs,
{ &threaddata_cs_debug.ProcessLocksList, &threaddata_cs_debug.ProcessLocksList },
0, 0, { (DWORD_PTR)(__FILE__ ": threaddata_cs") }
};
static CRITICAL_SECTION threaddata_cs = { &threaddata_cs_debug, -1, 0, 0, 0, 0 };
struct list threaddata_list = LIST_INIT(threaddata_list);
struct context_handle_list
{
struct context_handle_list *next;
NDR_SCONTEXT context_handle;
};
struct threaddata
{
struct list entry;
CRITICAL_SECTION cs;
DWORD thread_id;
RpcConnection *connection;
RpcBinding *server_binding;
struct context_handle_list *context_handle_list;
};
/***********************************************************************
* DllMain
*
* PARAMS
2000-07-16 17:44:22 +02:00
* hinstDLL [I] handle to the DLL's instance
* fdwReason [I]
2000-07-16 17:44:22 +02:00
* lpvReserved [I] reserved, must be NULL
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*/
BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved)
{
struct threaddata *tdata;
switch (fdwReason) {
case DLL_PROCESS_ATTACH:
break;
case DLL_THREAD_DETACH:
tdata = NtCurrentTeb()->ReservedForNtRpc;
if (tdata)
{
EnterCriticalSection(&threaddata_cs);
list_remove(&tdata->entry);
LeaveCriticalSection(&threaddata_cs);
DeleteCriticalSection(&tdata->cs);
if (tdata->connection)
ERR("tdata->connection should be NULL but is still set to %p\n", tdata->connection);
if (tdata->server_binding)
ERR("tdata->server_binding should be NULL but is still set to %p\n", tdata->server_binding);
HeapFree(GetProcessHeap(), 0, tdata);
}
break;
case DLL_PROCESS_DETACH:
break;
}
return TRUE;
}
/*************************************************************************
* RpcStringFreeA [RPCRT4.@]
*
* Frees a character string allocated by the RPC run-time library.
*
* RETURNS
*
* S_OK if successful.
*/
RPC_STATUS WINAPI RpcStringFreeA(RPC_CSTR* String)
{
HeapFree( GetProcessHeap(), 0, *String);
return RPC_S_OK;
}
/*************************************************************************
* RpcStringFreeW [RPCRT4.@]
*
* Frees a character string allocated by the RPC run-time library.
*
* RETURNS
*
* S_OK if successful.
*/
RPC_STATUS WINAPI RpcStringFreeW(RPC_WSTR* String)
{
HeapFree( GetProcessHeap(), 0, *String);
return RPC_S_OK;
}
2003-01-31 04:22:27 +01:00
/*************************************************************************
* RpcRaiseException [RPCRT4.@]
*
* Raises an exception.
*/
void DECLSPEC_NORETURN WINAPI RpcRaiseException(RPC_STATUS exception)
2003-01-31 04:22:27 +01:00
{
/* shouldn't return */
2003-01-31 04:22:27 +01:00
RaiseException(exception, 0, 0, NULL);
ERR("handler continued execution\n");
ExitProcess(1);
2003-01-31 04:22:27 +01:00
}
/*************************************************************************
* UuidCompare [RPCRT4.@]
*
* PARAMS
* UUID *Uuid1 [I] Uuid to compare
* UUID *Uuid2 [I] Uuid to compare
* RPC_STATUS *Status [O] returns RPC_S_OK
*
* RETURNS
* -1 if Uuid1 is less than Uuid2
* 0 if Uuid1 and Uuid2 are equal
* 1 if Uuid1 is greater than Uuid2
*/
int WINAPI UuidCompare(UUID *Uuid1, UUID *Uuid2, RPC_STATUS *Status)
{
int i;
2002-10-07 23:52:55 +02:00
TRACE("(%s,%s)\n", debugstr_guid(Uuid1), debugstr_guid(Uuid2));
*Status = RPC_S_OK;
2002-10-07 23:52:55 +02:00
if (!Uuid1) Uuid1 = &uuid_nil;
if (!Uuid2) Uuid2 = &uuid_nil;
if (Uuid1 == Uuid2) return 0;
if (Uuid1->Data1 != Uuid2->Data1)
return Uuid1->Data1 < Uuid2->Data1 ? -1 : 1;
if (Uuid1->Data2 != Uuid2->Data2)
return Uuid1->Data2 < Uuid2->Data2 ? -1 : 1;
if (Uuid1->Data3 != Uuid2->Data3)
return Uuid1->Data3 < Uuid2->Data3 ? -1 : 1;
for (i = 0; i < 8; i++) {
if (Uuid1->Data4[i] < Uuid2->Data4[i])
return -1;
if (Uuid1->Data4[i] > Uuid2->Data4[i])
return 1;
}
return 0;
2002-10-07 23:52:55 +02:00
}
/*************************************************************************
* UuidEqual [RPCRT4.@]
2002-10-07 23:52:55 +02:00
*
* PARAMS
* UUID *Uuid1 [I] Uuid to compare
* UUID *Uuid2 [I] Uuid to compare
* RPC_STATUS *Status [O] returns RPC_S_OK
*
2002-10-07 23:52:55 +02:00
* RETURNS
* TRUE/FALSE
2002-10-07 23:52:55 +02:00
*/
int WINAPI UuidEqual(UUID *Uuid1, UUID *Uuid2, RPC_STATUS *Status)
2002-10-07 23:52:55 +02:00
{
TRACE("(%s,%s)\n", debugstr_guid(Uuid1), debugstr_guid(Uuid2));
return !UuidCompare(Uuid1, Uuid2, Status);
}
/*************************************************************************
* UuidIsNil [RPCRT4.@]
*
* PARAMS
* UUID *Uuid [I] Uuid to compare
2008-04-11 04:17:14 +02:00
* RPC_STATUS *Status [O] returns RPC_S_OK
*
* RETURNS
* TRUE/FALSE
*/
int WINAPI UuidIsNil(UUID *Uuid, RPC_STATUS *Status)
{
TRACE("(%s)\n", debugstr_guid(Uuid));
if (!Uuid) return TRUE;
return !UuidCompare(Uuid, &uuid_nil, Status);
}
/*************************************************************************
* UuidCreateNil [RPCRT4.@]
*
* PARAMS
* UUID *Uuid [O] returns a nil UUID
*
* RETURNS
* RPC_S_OK
*/
RPC_STATUS WINAPI UuidCreateNil(UUID *Uuid)
{
*Uuid = uuid_nil;
return RPC_S_OK;
}
/* Number of 100ns ticks per clock tick. To be safe, assume that the clock
resolution is at least 1000 * 100 * (1/1000000) = 1/10 of a second */
#define TICKS_PER_CLOCK_TICK 1000
#define SECSPERDAY 86400
#define TICKSPERSEC 10000000
/* UUID system time starts at October 15, 1582 */
#define SECS_15_OCT_1582_TO_1601 ((17 + 30 + 31 + 365 * 18 + 5) * SECSPERDAY)
#define TICKS_15_OCT_1582_TO_1601 ((ULONGLONG)SECS_15_OCT_1582_TO_1601 * TICKSPERSEC)
static void RPC_UuidGetSystemTime(ULONGLONG *time)
{
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
*time = ((ULONGLONG)ft.dwHighDateTime << 32) | ft.dwLowDateTime;
*time += TICKS_15_OCT_1582_TO_1601;
}
/* Assume that a hardware address is at least 6 bytes long */
#define ADDRESS_BYTES_NEEDED 6
static RPC_STATUS RPC_UuidGetNodeAddress(BYTE *address)
{
int i;
DWORD status = RPC_S_OK;
ULONG buflen = sizeof(IP_ADAPTER_INFO);
2005-03-24 22:01:35 +01:00
PIP_ADAPTER_INFO adapter = HeapAlloc(GetProcessHeap(), 0, buflen);
if (GetAdaptersInfo(adapter, &buflen) == ERROR_BUFFER_OVERFLOW) {
HeapFree(GetProcessHeap(), 0, adapter);
2005-03-24 22:01:35 +01:00
adapter = HeapAlloc(GetProcessHeap(), 0, buflen);
}
if (GetAdaptersInfo(adapter, &buflen) == NO_ERROR) {
for (i = 0; i < ADDRESS_BYTES_NEEDED; i++) {
address[i] = adapter->Address[i];
}
}
/* We can't get a hardware address, just use random numbers.
Set the multicast bit to prevent conflicts with real cards. */
else {
for (i = 0; i < ADDRESS_BYTES_NEEDED; i++) {
address[i] = rand() & 0xff;
}
address[0] |= 0x01;
status = RPC_S_UUID_LOCAL_ONLY;
}
HeapFree(GetProcessHeap(), 0, adapter);
return status;
}
/*************************************************************************
2001-06-21 01:03:14 +02:00
* UuidCreate [RPCRT4.@]
*
* Creates a 128bit UUID.
*
* RETURNS
*
* RPC_S_OK if successful.
* RPC_S_UUID_LOCAL_ONLY if UUID is only locally unique.
*
* FIXME: No compensation for changes across reloading
* this dll or across reboots (e.g. clock going
* backwards and swapped network cards). The RFC
* suggests using NVRAM for storing persistent
* values.
*/
2000-07-25 19:45:14 +02:00
RPC_STATUS WINAPI UuidCreate(UUID *Uuid)
{
static int initialised, count;
ULONGLONG time;
static ULONGLONG timelast;
static WORD sequence;
static DWORD status;
static BYTE address[MAX_ADAPTER_ADDRESS_LENGTH];
EnterCriticalSection(&uuid_cs);
if (!initialised) {
RPC_UuidGetSystemTime(&timelast);
count = TICKS_PER_CLOCK_TICK;
sequence = ((rand() & 0xff) << 8) + (rand() & 0xff);
sequence &= 0x1fff;
status = RPC_UuidGetNodeAddress(address);
initialised = 1;
}
/* Generate time element of the UUID. Account for going faster
than our clock as well as the clock going backwards. */
while (1) {
RPC_UuidGetSystemTime(&time);
if (time > timelast) {
count = 0;
break;
}
if (time < timelast) {
sequence = (sequence + 1) & 0x1fff;
count = 0;
break;
}
if (count < TICKS_PER_CLOCK_TICK) {
count++;
break;
}
}
timelast = time;
time += count;
/* Pack the information into the UUID structure. */
Uuid->Data1 = (unsigned long)(time & 0xffffffff);
Uuid->Data2 = (unsigned short)((time >> 32) & 0xffff);
Uuid->Data3 = (unsigned short)((time >> 48) & 0x0fff);
/* This is a version 1 UUID */
Uuid->Data3 |= (1 << 12);
Uuid->Data4[0] = sequence & 0xff;
Uuid->Data4[1] = (sequence & 0x3f00) >> 8;
Uuid->Data4[1] |= 0x80;
Uuid->Data4[2] = address[0];
Uuid->Data4[3] = address[1];
Uuid->Data4[4] = address[2];
Uuid->Data4[5] = address[3];
Uuid->Data4[6] = address[4];
Uuid->Data4[7] = address[5];
LeaveCriticalSection(&uuid_cs);
TRACE("%s\n", debugstr_guid(Uuid));
return status;
}
/*************************************************************************
* UuidCreateSequential [RPCRT4.@]
*
* Creates a 128bit UUID.
*
* RETURNS
*
* RPC_S_OK if successful.
* RPC_S_UUID_LOCAL_ONLY if UUID is only locally unique.
*
*/
RPC_STATUS WINAPI UuidCreateSequential(UUID *Uuid)
{
return UuidCreate(Uuid);
}
/*************************************************************************
* UuidHash [RPCRT4.@]
*
* Generates a hash value for a given UUID
*
* Code based on FreeDCE implementation
*
*/
unsigned short WINAPI UuidHash(UUID *uuid, RPC_STATUS *Status)
{
BYTE *data = (BYTE*)uuid;
short c0 = 0, c1 = 0, x, y;
unsigned int i;
if (!uuid) data = (BYTE*)(uuid = &uuid_nil);
TRACE("(%s)\n", debugstr_guid(uuid));
for (i=0; i<sizeof(UUID); i++) {
c0 += data[i];
c1 += c0;
}
x = -c1 % 255;
if (x < 0) x += 255;
y = (c1 - c0) % 255;
if (y < 0) y += 255;
2001-09-07 17:25:51 +02:00
*Status = RPC_S_OK;
return y*256 + x;
2001-09-07 17:25:51 +02:00
}
/*************************************************************************
2001-06-19 20:20:47 +02:00
* UuidToStringA [RPCRT4.@]
*
* Converts a UUID to a string.
*
* UUID format is 8 hex digits, followed by a hyphen then three groups of
* 4 hex digits each followed by a hyphen and then 12 hex digits
*
* RETURNS
*
* S_OK if successful.
2006-09-07 20:01:50 +02:00
* S_OUT_OF_MEMORY if unsuccessful.
*/
RPC_STATUS WINAPI UuidToStringA(UUID *Uuid, RPC_CSTR* StringUuid)
{
*StringUuid = HeapAlloc( GetProcessHeap(), 0, sizeof(char) * 37);
if(!(*StringUuid))
return RPC_S_OUT_OF_MEMORY;
if (!Uuid) Uuid = &uuid_nil;
sprintf( (char*)*StringUuid, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
Uuid->Data1, Uuid->Data2, Uuid->Data3,
Uuid->Data4[0], Uuid->Data4[1], Uuid->Data4[2],
Uuid->Data4[3], Uuid->Data4[4], Uuid->Data4[5],
Uuid->Data4[6], Uuid->Data4[7] );
return RPC_S_OK;
}
2000-11-15 23:11:50 +01:00
/*************************************************************************
* UuidToStringW [RPCRT4.@]
*
* Converts a UUID to a string.
*
* S_OK if successful.
2006-09-07 20:01:50 +02:00
* S_OUT_OF_MEMORY if unsuccessful.
*/
RPC_STATUS WINAPI UuidToStringW(UUID *Uuid, RPC_WSTR* StringUuid)
{
char buf[37];
if (!Uuid) Uuid = &uuid_nil;
sprintf(buf, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
Uuid->Data1, Uuid->Data2, Uuid->Data3,
Uuid->Data4[0], Uuid->Data4[1], Uuid->Data4[2],
Uuid->Data4[3], Uuid->Data4[4], Uuid->Data4[5],
Uuid->Data4[6], Uuid->Data4[7] );
*StringUuid = RPCRT4_strdupAtoW(buf);
if(!(*StringUuid))
return RPC_S_OUT_OF_MEMORY;
return RPC_S_OK;
}
static const BYTE hex2bin[] =
{
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x00 */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x10 */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x20 */
0,1,2,3,4,5,6,7,8,9,0,0,0,0,0,0, /* 0x30 */
0,10,11,12,13,14,15,0,0,0,0,0,0,0,0,0, /* 0x40 */
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 0x50 */
0,10,11,12,13,14,15 /* 0x60 */
};
/***********************************************************************
* UuidFromStringA (RPCRT4.@)
*/
RPC_STATUS WINAPI UuidFromStringA(RPC_CSTR s, UUID *uuid)
{
int i;
if (!s) return UuidCreateNil( uuid );
2005-08-30 10:56:35 +02:00
if (strlen((char*)s) != 36) return RPC_S_INVALID_STRING_UUID;
if ((s[8]!='-') || (s[13]!='-') || (s[18]!='-') || (s[23]!='-'))
return RPC_S_INVALID_STRING_UUID;
for (i=0; i<36; i++)
{
if ((i == 8)||(i == 13)||(i == 18)||(i == 23)) continue;
if (s[i] > 'f' || (!hex2bin[s[i]] && s[i] != '0')) return RPC_S_INVALID_STRING_UUID;
}
/* in form XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX */
uuid->Data1 = (hex2bin[s[0]] << 28 | hex2bin[s[1]] << 24 | hex2bin[s[2]] << 20 | hex2bin[s[3]] << 16 |
hex2bin[s[4]] << 12 | hex2bin[s[5]] << 8 | hex2bin[s[6]] << 4 | hex2bin[s[7]]);
uuid->Data2 = hex2bin[s[9]] << 12 | hex2bin[s[10]] << 8 | hex2bin[s[11]] << 4 | hex2bin[s[12]];
uuid->Data3 = hex2bin[s[14]] << 12 | hex2bin[s[15]] << 8 | hex2bin[s[16]] << 4 | hex2bin[s[17]];
/* these are just sequential bytes */
uuid->Data4[0] = hex2bin[s[19]] << 4 | hex2bin[s[20]];
uuid->Data4[1] = hex2bin[s[21]] << 4 | hex2bin[s[22]];
uuid->Data4[2] = hex2bin[s[24]] << 4 | hex2bin[s[25]];
uuid->Data4[3] = hex2bin[s[26]] << 4 | hex2bin[s[27]];
uuid->Data4[4] = hex2bin[s[28]] << 4 | hex2bin[s[29]];
uuid->Data4[5] = hex2bin[s[30]] << 4 | hex2bin[s[31]];
uuid->Data4[6] = hex2bin[s[32]] << 4 | hex2bin[s[33]];
uuid->Data4[7] = hex2bin[s[34]] << 4 | hex2bin[s[35]];
return RPC_S_OK;
}
/***********************************************************************
* UuidFromStringW (RPCRT4.@)
*/
RPC_STATUS WINAPI UuidFromStringW(RPC_WSTR s, UUID *uuid)
{
int i;
if (!s) return UuidCreateNil( uuid );
if (strlenW(s) != 36) return RPC_S_INVALID_STRING_UUID;
if ((s[8]!='-') || (s[13]!='-') || (s[18]!='-') || (s[23]!='-'))
return RPC_S_INVALID_STRING_UUID;
for (i=0; i<36; i++)
{
if ((i == 8)||(i == 13)||(i == 18)||(i == 23)) continue;
if (s[i] > 'f' || (!hex2bin[s[i]] && s[i] != '0')) return RPC_S_INVALID_STRING_UUID;
}
/* in form XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX */
uuid->Data1 = (hex2bin[s[0]] << 28 | hex2bin[s[1]] << 24 | hex2bin[s[2]] << 20 | hex2bin[s[3]] << 16 |
hex2bin[s[4]] << 12 | hex2bin[s[5]] << 8 | hex2bin[s[6]] << 4 | hex2bin[s[7]]);
uuid->Data2 = hex2bin[s[9]] << 12 | hex2bin[s[10]] << 8 | hex2bin[s[11]] << 4 | hex2bin[s[12]];
uuid->Data3 = hex2bin[s[14]] << 12 | hex2bin[s[15]] << 8 | hex2bin[s[16]] << 4 | hex2bin[s[17]];
/* these are just sequential bytes */
uuid->Data4[0] = hex2bin[s[19]] << 4 | hex2bin[s[20]];
uuid->Data4[1] = hex2bin[s[21]] << 4 | hex2bin[s[22]];
uuid->Data4[2] = hex2bin[s[24]] << 4 | hex2bin[s[25]];
uuid->Data4[3] = hex2bin[s[26]] << 4 | hex2bin[s[27]];
uuid->Data4[4] = hex2bin[s[28]] << 4 | hex2bin[s[29]];
uuid->Data4[5] = hex2bin[s[30]] << 4 | hex2bin[s[31]];
uuid->Data4[6] = hex2bin[s[32]] << 4 | hex2bin[s[33]];
uuid->Data4[7] = hex2bin[s[34]] << 4 | hex2bin[s[35]];
return RPC_S_OK;
}
2002-05-20 00:22:52 +02:00
/***********************************************************************
* DllRegisterServer (RPCRT4.@)
*/
HRESULT WINAPI DllRegisterServer( void )
2002-05-20 00:22:52 +02:00
{
FIXME( "(): stub\n" );
return S_OK;
}
#define MAX_RPC_ERROR_TEXT 256
/******************************************************************************
* DceErrorInqTextW (rpcrt4.@)
2004-12-23 12:29:54 +01:00
*
* Notes
* 1. On passing a NULL pointer the code does bomb out.
* 2. The size of the required buffer is not defined in the documentation.
* It appears to be 256.
* 3. The function is defined to return RPC_S_INVALID_ARG but I don't know
* of any value for which it does.
* 4. The MSDN documentation currently declares that the second argument is
* unsigned char *, even for the W version. I don't believe it.
*/
RPC_STATUS RPC_ENTRY DceErrorInqTextW (RPC_STATUS e, RPC_WSTR buffer)
2004-12-23 12:29:54 +01:00
{
DWORD count;
count = FormatMessageW (FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, e, 0, buffer, MAX_RPC_ERROR_TEXT, NULL);
if (!count)
{
count = FormatMessageW (FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, RPC_S_NOT_RPC_ERROR, 0, buffer, MAX_RPC_ERROR_TEXT, NULL);
if (!count)
{
2006-10-05 11:11:03 +02:00
ERR ("Failed to translate error\n");
2004-12-23 12:29:54 +01:00
return RPC_S_INVALID_ARG;
}
}
return RPC_S_OK;
}
/******************************************************************************
* DceErrorInqTextA (rpcrt4.@)
*/
RPC_STATUS RPC_ENTRY DceErrorInqTextA (RPC_STATUS e, RPC_CSTR buffer)
2004-12-23 12:29:54 +01:00
{
RPC_STATUS status;
WCHAR bufferW [MAX_RPC_ERROR_TEXT];
if ((status = DceErrorInqTextW (e, bufferW)) == RPC_S_OK)
{
2005-08-30 10:56:35 +02:00
if (!WideCharToMultiByte(CP_ACP, 0, bufferW, -1, (LPSTR)buffer, MAX_RPC_ERROR_TEXT,
2004-12-23 12:29:54 +01:00
NULL, NULL))
{
2006-10-05 11:11:03 +02:00
ERR ("Failed to translate error\n");
2004-12-23 12:29:54 +01:00
status = RPC_S_INVALID_ARG;
}
}
return status;
}
/******************************************************************************
* I_RpcAllocate (rpcrt4.@)
*/
void * WINAPI I_RpcAllocate(unsigned int Size)
{
return HeapAlloc(GetProcessHeap(), 0, Size);
}
/******************************************************************************
* I_RpcFree (rpcrt4.@)
*/
void WINAPI I_RpcFree(void *Object)
{
HeapFree(GetProcessHeap(), 0, Object);
}
/******************************************************************************
* I_RpcMapWin32Status (rpcrt4.@)
*
* Maps Win32 RPC error codes to NT statuses.
*
* PARAMS
* status [I] Win32 RPC error code.
*
* RETURNS
* Appropriate translation into an NT status code.
*/
LONG WINAPI I_RpcMapWin32Status(RPC_STATUS status)
{
TRACE("(%ld)\n", status);
switch (status)
{
case ERROR_ACCESS_DENIED: return STATUS_ACCESS_DENIED;
case ERROR_INVALID_HANDLE: return RPC_NT_SS_CONTEXT_MISMATCH;
case ERROR_OUTOFMEMORY: return STATUS_NO_MEMORY;
case ERROR_INVALID_PARAMETER: return STATUS_INVALID_PARAMETER;
case ERROR_INSUFFICIENT_BUFFER: return STATUS_BUFFER_TOO_SMALL;
case ERROR_MAX_THRDS_REACHED: return STATUS_NO_MEMORY;
case ERROR_NOACCESS: return STATUS_ACCESS_VIOLATION;
case ERROR_NOT_ENOUGH_SERVER_MEMORY: return STATUS_INSUFF_SERVER_RESOURCES;
case ERROR_WRONG_PASSWORD: return STATUS_WRONG_PASSWORD;
case ERROR_INVALID_LOGON_HOURS: return STATUS_INVALID_LOGON_HOURS;
case ERROR_PASSWORD_EXPIRED: return STATUS_PASSWORD_EXPIRED;
case ERROR_ACCOUNT_DISABLED: return STATUS_ACCOUNT_DISABLED;
case ERROR_INVALID_SECURITY_DESCR: return STATUS_INVALID_SECURITY_DESCR;
case RPC_S_INVALID_STRING_BINDING: return RPC_NT_INVALID_STRING_BINDING;
case RPC_S_WRONG_KIND_OF_BINDING: return RPC_NT_WRONG_KIND_OF_BINDING;
case RPC_S_INVALID_BINDING: return RPC_NT_INVALID_BINDING;
case RPC_S_PROTSEQ_NOT_SUPPORTED: return RPC_NT_PROTSEQ_NOT_SUPPORTED;
case RPC_S_INVALID_RPC_PROTSEQ: return RPC_NT_INVALID_RPC_PROTSEQ;
case RPC_S_INVALID_STRING_UUID: return RPC_NT_INVALID_STRING_UUID;
case RPC_S_INVALID_ENDPOINT_FORMAT: return RPC_NT_INVALID_ENDPOINT_FORMAT;
case RPC_S_INVALID_NET_ADDR: return RPC_NT_INVALID_NET_ADDR;
case RPC_S_NO_ENDPOINT_FOUND: return RPC_NT_NO_ENDPOINT_FOUND;
case RPC_S_INVALID_TIMEOUT: return RPC_NT_INVALID_TIMEOUT;
case RPC_S_OBJECT_NOT_FOUND: return RPC_NT_OBJECT_NOT_FOUND;
case RPC_S_ALREADY_REGISTERED: return RPC_NT_ALREADY_REGISTERED;
case RPC_S_TYPE_ALREADY_REGISTERED: return RPC_NT_TYPE_ALREADY_REGISTERED;
case RPC_S_ALREADY_LISTENING: return RPC_NT_ALREADY_LISTENING;
case RPC_S_NO_PROTSEQS_REGISTERED: return RPC_NT_NO_PROTSEQS_REGISTERED;
case RPC_S_NOT_LISTENING: return RPC_NT_NOT_LISTENING;
case RPC_S_UNKNOWN_MGR_TYPE: return RPC_NT_UNKNOWN_MGR_TYPE;
case RPC_S_UNKNOWN_IF: return RPC_NT_UNKNOWN_IF;
case RPC_S_NO_BINDINGS: return RPC_NT_NO_BINDINGS;
case RPC_S_NO_PROTSEQS: return RPC_NT_NO_PROTSEQS;
case RPC_S_CANT_CREATE_ENDPOINT: return RPC_NT_CANT_CREATE_ENDPOINT;
case RPC_S_OUT_OF_RESOURCES: return RPC_NT_OUT_OF_RESOURCES;
case RPC_S_SERVER_UNAVAILABLE: return RPC_NT_SERVER_UNAVAILABLE;
case RPC_S_SERVER_TOO_BUSY: return RPC_NT_SERVER_TOO_BUSY;
case RPC_S_INVALID_NETWORK_OPTIONS: return RPC_NT_INVALID_NETWORK_OPTIONS;
case RPC_S_NO_CALL_ACTIVE: return RPC_NT_NO_CALL_ACTIVE;
case RPC_S_CALL_FAILED: return RPC_NT_CALL_FAILED;
case RPC_S_CALL_FAILED_DNE: return RPC_NT_CALL_FAILED_DNE;
case RPC_S_PROTOCOL_ERROR: return RPC_NT_PROTOCOL_ERROR;
case RPC_S_UNSUPPORTED_TRANS_SYN: return RPC_NT_UNSUPPORTED_TRANS_SYN;
case RPC_S_UNSUPPORTED_TYPE: return RPC_NT_UNSUPPORTED_TYPE;
case RPC_S_INVALID_TAG: return RPC_NT_INVALID_TAG;
case RPC_S_INVALID_BOUND: return RPC_NT_INVALID_BOUND;
case RPC_S_NO_ENTRY_NAME: return RPC_NT_NO_ENTRY_NAME;
case RPC_S_INVALID_NAME_SYNTAX: return RPC_NT_INVALID_NAME_SYNTAX;
case RPC_S_UNSUPPORTED_NAME_SYNTAX: return RPC_NT_UNSUPPORTED_NAME_SYNTAX;
case RPC_S_UUID_NO_ADDRESS: return RPC_NT_UUID_NO_ADDRESS;
case RPC_S_DUPLICATE_ENDPOINT: return RPC_NT_DUPLICATE_ENDPOINT;
case RPC_S_UNKNOWN_AUTHN_TYPE: return RPC_NT_UNKNOWN_AUTHN_TYPE;
case RPC_S_MAX_CALLS_TOO_SMALL: return RPC_NT_MAX_CALLS_TOO_SMALL;
case RPC_S_STRING_TOO_LONG: return RPC_NT_STRING_TOO_LONG;
case RPC_S_PROTSEQ_NOT_FOUND: return RPC_NT_PROTSEQ_NOT_FOUND;
case RPC_S_PROCNUM_OUT_OF_RANGE: return RPC_NT_PROCNUM_OUT_OF_RANGE;
case RPC_S_BINDING_HAS_NO_AUTH: return RPC_NT_BINDING_HAS_NO_AUTH;
case RPC_S_UNKNOWN_AUTHN_SERVICE: return RPC_NT_UNKNOWN_AUTHN_SERVICE;
case RPC_S_UNKNOWN_AUTHN_LEVEL: return RPC_NT_UNKNOWN_AUTHN_LEVEL;
case RPC_S_INVALID_AUTH_IDENTITY: return RPC_NT_INVALID_AUTH_IDENTITY;
case RPC_S_UNKNOWN_AUTHZ_SERVICE: return RPC_NT_UNKNOWN_AUTHZ_SERVICE;
case EPT_S_INVALID_ENTRY: return EPT_NT_INVALID_ENTRY;
case EPT_S_CANT_PERFORM_OP: return EPT_NT_CANT_PERFORM_OP;
case EPT_S_NOT_REGISTERED: return EPT_NT_NOT_REGISTERED;
case EPT_S_CANT_CREATE: return EPT_NT_CANT_CREATE;
case RPC_S_NOTHING_TO_EXPORT: return RPC_NT_NOTHING_TO_EXPORT;
case RPC_S_INCOMPLETE_NAME: return RPC_NT_INCOMPLETE_NAME;
case RPC_S_INVALID_VERS_OPTION: return RPC_NT_INVALID_VERS_OPTION;
case RPC_S_NO_MORE_MEMBERS: return RPC_NT_NO_MORE_MEMBERS;
case RPC_S_NOT_ALL_OBJS_UNEXPORTED: return RPC_NT_NOT_ALL_OBJS_UNEXPORTED;
case RPC_S_INTERFACE_NOT_FOUND: return RPC_NT_INTERFACE_NOT_FOUND;
case RPC_S_ENTRY_ALREADY_EXISTS: return RPC_NT_ENTRY_ALREADY_EXISTS;
case RPC_S_ENTRY_NOT_FOUND: return RPC_NT_ENTRY_NOT_FOUND;
case RPC_S_NAME_SERVICE_UNAVAILABLE: return RPC_NT_NAME_SERVICE_UNAVAILABLE;
case RPC_S_INVALID_NAF_ID: return RPC_NT_INVALID_NAF_ID;
case RPC_S_CANNOT_SUPPORT: return RPC_NT_CANNOT_SUPPORT;
case RPC_S_NO_CONTEXT_AVAILABLE: return RPC_NT_NO_CONTEXT_AVAILABLE;
case RPC_S_INTERNAL_ERROR: return RPC_NT_INTERNAL_ERROR;
case RPC_S_ZERO_DIVIDE: return RPC_NT_ZERO_DIVIDE;
case RPC_S_ADDRESS_ERROR: return RPC_NT_ADDRESS_ERROR;
case RPC_S_FP_DIV_ZERO: return RPC_NT_FP_DIV_ZERO;
case RPC_S_FP_UNDERFLOW: return RPC_NT_FP_UNDERFLOW;
case RPC_S_FP_OVERFLOW: return RPC_NT_FP_OVERFLOW;
case RPC_S_CALL_IN_PROGRESS: return RPC_NT_CALL_IN_PROGRESS;
case RPC_S_NO_MORE_BINDINGS: return RPC_NT_NO_MORE_BINDINGS;
case RPC_S_CALL_CANCELLED: return RPC_NT_CALL_CANCELLED;
case RPC_S_INVALID_OBJECT: return RPC_NT_INVALID_OBJECT;
case RPC_S_INVALID_ASYNC_HANDLE: return RPC_NT_INVALID_ASYNC_HANDLE;
case RPC_S_INVALID_ASYNC_CALL: return RPC_NT_INVALID_ASYNC_CALL;
case RPC_S_GROUP_MEMBER_NOT_FOUND: return RPC_NT_GROUP_MEMBER_NOT_FOUND;
case RPC_X_NO_MORE_ENTRIES: return RPC_NT_NO_MORE_ENTRIES;
case RPC_X_SS_CHAR_TRANS_OPEN_FAIL: return RPC_NT_SS_CHAR_TRANS_OPEN_FAIL;
case RPC_X_SS_CHAR_TRANS_SHORT_FILE: return RPC_NT_SS_CHAR_TRANS_SHORT_FILE;
case RPC_X_SS_IN_NULL_CONTEXT: return RPC_NT_SS_IN_NULL_CONTEXT;
case RPC_X_SS_CONTEXT_DAMAGED: return RPC_NT_SS_CONTEXT_DAMAGED;
case RPC_X_SS_HANDLES_MISMATCH: return RPC_NT_SS_HANDLES_MISMATCH;
case RPC_X_SS_CANNOT_GET_CALL_HANDLE: return RPC_NT_SS_CANNOT_GET_CALL_HANDLE;
case RPC_X_NULL_REF_POINTER: return RPC_NT_NULL_REF_POINTER;
case RPC_X_ENUM_VALUE_OUT_OF_RANGE: return RPC_NT_ENUM_VALUE_OUT_OF_RANGE;
case RPC_X_BYTE_COUNT_TOO_SMALL: return RPC_NT_BYTE_COUNT_TOO_SMALL;
case RPC_X_BAD_STUB_DATA: return RPC_NT_BAD_STUB_DATA;
case RPC_X_PIPE_CLOSED: return RPC_NT_PIPE_CLOSED;
case RPC_X_PIPE_DISCIPLINE_ERROR: return RPC_NT_PIPE_DISCIPLINE_ERROR;
case RPC_X_PIPE_EMPTY: return RPC_NT_PIPE_EMPTY;
case ERROR_PASSWORD_MUST_CHANGE: return STATUS_PASSWORD_MUST_CHANGE;
case ERROR_ACCOUNT_LOCKED_OUT: return STATUS_ACCOUNT_LOCKED_OUT;
default: return status;
}
}
/******************************************************************************
* I_RpcExceptionFilter (rpcrt4.@)
*/
int WINAPI I_RpcExceptionFilter(ULONG ExceptionCode)
{
TRACE("0x%x\n", ExceptionCode);
switch (ExceptionCode)
{
case STATUS_DATATYPE_MISALIGNMENT:
case STATUS_BREAKPOINT:
case STATUS_ACCESS_VIOLATION:
case STATUS_ILLEGAL_INSTRUCTION:
case STATUS_PRIVILEGED_INSTRUCTION:
case STATUS_INSTRUCTION_MISALIGNMENT:
case STATUS_STACK_OVERFLOW:
case STATUS_POSSIBLE_DEADLOCK:
return EXCEPTION_CONTINUE_SEARCH;
default:
return EXCEPTION_EXECUTE_HANDLER;
}
}
/******************************************************************************
* RpcErrorStartEnumeration (rpcrt4.@)
*/
RPC_STATUS RPC_ENTRY RpcErrorStartEnumeration(RPC_ERROR_ENUM_HANDLE* EnumHandle)
{
FIXME("(%p): stub\n", EnumHandle);
return RPC_S_ENTRY_NOT_FOUND;
}
/******************************************************************************
* RpcMgmtSetCancelTimeout (rpcrt4.@)
*/
RPC_STATUS RPC_ENTRY RpcMgmtSetCancelTimeout(LONG Timeout)
{
FIXME("(%d): stub\n", Timeout);
return RPC_S_OK;
}
static struct threaddata *get_or_create_threaddata(void)
{
struct threaddata *tdata = NtCurrentTeb()->ReservedForNtRpc;
if (!tdata)
{
tdata = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sizeof(*tdata));
if (!tdata) return NULL;
InitializeCriticalSection(&tdata->cs);
tdata->thread_id = GetCurrentThreadId();
EnterCriticalSection(&threaddata_cs);
list_add_tail(&threaddata_list, &tdata->entry);
LeaveCriticalSection(&threaddata_cs);
NtCurrentTeb()->ReservedForNtRpc = tdata;
return tdata;
}
return tdata;
}
void RPCRT4_SetThreadCurrentConnection(RpcConnection *Connection)
{
struct threaddata *tdata = get_or_create_threaddata();
if (!tdata) return;
EnterCriticalSection(&tdata->cs);
tdata->connection = Connection;
LeaveCriticalSection(&tdata->cs);
}
void RPCRT4_SetThreadCurrentCallHandle(RpcBinding *Binding)
{
struct threaddata *tdata = get_or_create_threaddata();
if (!tdata) return;
tdata->server_binding = Binding;
}
RpcBinding *RPCRT4_GetThreadCurrentCallHandle(void)
{
struct threaddata *tdata = get_or_create_threaddata();
if (!tdata) return NULL;
return tdata->server_binding;
}
void RPCRT4_PushThreadContextHandle(NDR_SCONTEXT SContext)
{
struct threaddata *tdata = get_or_create_threaddata();
struct context_handle_list *context_handle_list;
if (!tdata) return;
context_handle_list = HeapAlloc(GetProcessHeap(), 0, sizeof(*context_handle_list));
if (!context_handle_list) return;
context_handle_list->context_handle = SContext;
context_handle_list->next = tdata->context_handle_list;
tdata->context_handle_list = context_handle_list;
}
void RPCRT4_RemoveThreadContextHandle(NDR_SCONTEXT SContext)
{
struct threaddata *tdata = get_or_create_threaddata();
struct context_handle_list *current, *prev;
if (!tdata) return;
for (current = tdata->context_handle_list, prev = NULL; current; prev = current, current = current->next)
{
if (current->context_handle == SContext)
{
if (prev)
prev->next = current->next;
else
tdata->context_handle_list = current->next;
HeapFree(GetProcessHeap(), 0, current);
return;
}
}
}
NDR_SCONTEXT RPCRT4_PopThreadContextHandle(void)
{
struct threaddata *tdata = get_or_create_threaddata();
struct context_handle_list *context_handle_list;
NDR_SCONTEXT context_handle;
if (!tdata) return NULL;
context_handle_list = tdata->context_handle_list;
if (!context_handle_list) return NULL;
tdata->context_handle_list = context_handle_list->next;
context_handle = context_handle_list->context_handle;
HeapFree(GetProcessHeap(), 0, context_handle_list);
return context_handle;
}
/******************************************************************************
* RpcCancelThread (rpcrt4.@)
*/
RPC_STATUS RPC_ENTRY RpcCancelThread(void* ThreadHandle)
{
DWORD target_tid;
struct threaddata *tdata;
TRACE("(%p)\n", ThreadHandle);
target_tid = GetThreadId(ThreadHandle);
if (!target_tid)
return RPC_S_INVALID_ARG;
EnterCriticalSection(&threaddata_cs);
LIST_FOR_EACH_ENTRY(tdata, &threaddata_list, struct threaddata, entry)
if (tdata->thread_id == target_tid)
{
EnterCriticalSection(&tdata->cs);
if (tdata->connection) rpcrt4_conn_cancel_call(tdata->connection);
LeaveCriticalSection(&tdata->cs);
break;
}
LeaveCriticalSection(&threaddata_cs);
return RPC_S_OK;
}
/******************************************************************************
* RpcCancelThreadEx (rpcrt4.@)
*/
RPC_STATUS RPC_ENTRY RpcCancelThreadEx(void* ThreadHandle, LONG Timeout)
{
FIXME("(%p, %d)\n", ThreadHandle, Timeout);
return RPC_S_OK;
}