Sweden-Number/libs/lcms2/src/cmsmtrx.c

177 lines
5.5 KiB
C
Raw Normal View History

//---------------------------------------------------------------------------------
//
// Little Color Management System
// Copyright (c) 1998-2020 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//
#include "lcms2_internal.h"
#define DSWAP(x, y) {cmsFloat64Number tmp = (x); (x)=(y); (y)=tmp;}
// Initiate a vector
void CMSEXPORT _cmsVEC3init(cmsVEC3* r, cmsFloat64Number x, cmsFloat64Number y, cmsFloat64Number z)
{
r -> n[VX] = x;
r -> n[VY] = y;
r -> n[VZ] = z;
}
// Vector subtraction
void CMSEXPORT _cmsVEC3minus(cmsVEC3* r, const cmsVEC3* a, const cmsVEC3* b)
{
r -> n[VX] = a -> n[VX] - b -> n[VX];
r -> n[VY] = a -> n[VY] - b -> n[VY];
r -> n[VZ] = a -> n[VZ] - b -> n[VZ];
}
// Vector cross product
void CMSEXPORT _cmsVEC3cross(cmsVEC3* r, const cmsVEC3* u, const cmsVEC3* v)
{
r ->n[VX] = u->n[VY] * v->n[VZ] - v->n[VY] * u->n[VZ];
r ->n[VY] = u->n[VZ] * v->n[VX] - v->n[VZ] * u->n[VX];
r ->n[VZ] = u->n[VX] * v->n[VY] - v->n[VX] * u->n[VY];
}
// Vector dot product
cmsFloat64Number CMSEXPORT _cmsVEC3dot(const cmsVEC3* u, const cmsVEC3* v)
{
return u->n[VX] * v->n[VX] + u->n[VY] * v->n[VY] + u->n[VZ] * v->n[VZ];
}
// Euclidean length
cmsFloat64Number CMSEXPORT _cmsVEC3length(const cmsVEC3* a)
{
return sqrt(a ->n[VX] * a ->n[VX] +
a ->n[VY] * a ->n[VY] +
a ->n[VZ] * a ->n[VZ]);
}
// Euclidean distance
cmsFloat64Number CMSEXPORT _cmsVEC3distance(const cmsVEC3* a, const cmsVEC3* b)
{
cmsFloat64Number d1 = a ->n[VX] - b ->n[VX];
cmsFloat64Number d2 = a ->n[VY] - b ->n[VY];
cmsFloat64Number d3 = a ->n[VZ] - b ->n[VZ];
return sqrt(d1*d1 + d2*d2 + d3*d3);
}
// 3x3 Identity
void CMSEXPORT _cmsMAT3identity(cmsMAT3* a)
{
_cmsVEC3init(&a-> v[0], 1.0, 0.0, 0.0);
_cmsVEC3init(&a-> v[1], 0.0, 1.0, 0.0);
_cmsVEC3init(&a-> v[2], 0.0, 0.0, 1.0);
}
static
cmsBool CloseEnough(cmsFloat64Number a, cmsFloat64Number b)
{
return fabs(b - a) < (1.0 / 65535.0);
}
cmsBool CMSEXPORT _cmsMAT3isIdentity(const cmsMAT3* a)
{
cmsMAT3 Identity;
int i, j;
_cmsMAT3identity(&Identity);
for (i=0; i < 3; i++)
for (j=0; j < 3; j++)
if (!CloseEnough(a ->v[i].n[j], Identity.v[i].n[j])) return FALSE;
return TRUE;
}
// Multiply two matrices
void CMSEXPORT _cmsMAT3per(cmsMAT3* r, const cmsMAT3* a, const cmsMAT3* b)
{
#define ROWCOL(i, j) \
a->v[i].n[0]*b->v[0].n[j] + a->v[i].n[1]*b->v[1].n[j] + a->v[i].n[2]*b->v[2].n[j]
_cmsVEC3init(&r-> v[0], ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2));
_cmsVEC3init(&r-> v[1], ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2));
_cmsVEC3init(&r-> v[2], ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2));
#undef ROWCOL //(i, j)
}
// Inverse of a matrix b = a^(-1)
cmsBool CMSEXPORT _cmsMAT3inverse(const cmsMAT3* a, cmsMAT3* b)
{
cmsFloat64Number det, c0, c1, c2;
c0 = a -> v[1].n[1]*a -> v[2].n[2] - a -> v[1].n[2]*a -> v[2].n[1];
c1 = -a -> v[1].n[0]*a -> v[2].n[2] + a -> v[1].n[2]*a -> v[2].n[0];
c2 = a -> v[1].n[0]*a -> v[2].n[1] - a -> v[1].n[1]*a -> v[2].n[0];
det = a -> v[0].n[0]*c0 + a -> v[0].n[1]*c1 + a -> v[0].n[2]*c2;
if (fabs(det) < MATRIX_DET_TOLERANCE) return FALSE; // singular matrix; can't invert
b -> v[0].n[0] = c0/det;
b -> v[0].n[1] = (a -> v[0].n[2]*a -> v[2].n[1] - a -> v[0].n[1]*a -> v[2].n[2])/det;
b -> v[0].n[2] = (a -> v[0].n[1]*a -> v[1].n[2] - a -> v[0].n[2]*a -> v[1].n[1])/det;
b -> v[1].n[0] = c1/det;
b -> v[1].n[1] = (a -> v[0].n[0]*a -> v[2].n[2] - a -> v[0].n[2]*a -> v[2].n[0])/det;
b -> v[1].n[2] = (a -> v[0].n[2]*a -> v[1].n[0] - a -> v[0].n[0]*a -> v[1].n[2])/det;
b -> v[2].n[0] = c2/det;
b -> v[2].n[1] = (a -> v[0].n[1]*a -> v[2].n[0] - a -> v[0].n[0]*a -> v[2].n[1])/det;
b -> v[2].n[2] = (a -> v[0].n[0]*a -> v[1].n[1] - a -> v[0].n[1]*a -> v[1].n[0])/det;
return TRUE;
}
// Solve a system in the form Ax = b
cmsBool CMSEXPORT _cmsMAT3solve(cmsVEC3* x, cmsMAT3* a, cmsVEC3* b)
{
cmsMAT3 m, a_1;
memmove(&m, a, sizeof(cmsMAT3));
if (!_cmsMAT3inverse(&m, &a_1)) return FALSE; // Singular matrix
_cmsMAT3eval(x, &a_1, b);
return TRUE;
}
// Evaluate a vector across a matrix
void CMSEXPORT _cmsMAT3eval(cmsVEC3* r, const cmsMAT3* a, const cmsVEC3* v)
{
r->n[VX] = a->v[0].n[VX]*v->n[VX] + a->v[0].n[VY]*v->n[VY] + a->v[0].n[VZ]*v->n[VZ];
r->n[VY] = a->v[1].n[VX]*v->n[VX] + a->v[1].n[VY]*v->n[VY] + a->v[1].n[VZ]*v->n[VZ];
r->n[VZ] = a->v[2].n[VX]*v->n[VX] + a->v[2].n[VY]*v->n[VY] + a->v[2].n[VZ]*v->n[VZ];
}