Sweden-Number/dlls/quartz/acmwrap.c

696 lines
16 KiB
C
Raw Normal View History

/*
* Implements ACM Wrapper(CLSID_ACMWrapper).
*
* FIXME - stub
* FIXME - no encoding
*
* Copyright (C) 2002 Hidenori TAKESHIMA <hidenori@a2.ctktv.ne.jp>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include "windef.h"
#include "winbase.h"
#include "wingdi.h"
#include "winuser.h"
#include "winerror.h"
#include "msacm.h"
#include "strmif.h"
#include "control.h"
#include "amvideo.h"
#include "vfwmsgs.h"
#include "uuids.h"
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(quartz);
#include "quartz_private.h"
#include "xform.h"
#include "mtype.h"
static const WCHAR ACMWrapper_FilterName[] =
{'A','C','M',' ','W','r','a','p','p','e','r',0};
typedef struct CACMWrapperImpl
{
HACMSTREAM has;
WAVEFORMATEX* pwfxIn;
AM_MEDIA_TYPE* pmtOuts;
DWORD cOuts;
BYTE* pConvBuf;
DWORD cbConvBlockSize;
DWORD cbConvCached;
DWORD cbConvAllocated;
} CACMWrapperImpl;
static
void ACMWrapper_CleanupMTypes( CACMWrapperImpl* This )
{
DWORD n;
if ( This->pmtOuts == NULL ) return;
for ( n = 0; n < This->cOuts; n++ )
{
QUARTZ_MediaType_Free( &This->pmtOuts[n] );
}
QUARTZ_FreeMem( This->pmtOuts );
This->pmtOuts = NULL;
This->cOuts = 0;
}
static
void ACMWrapper_CleanupConvBuf( CACMWrapperImpl* This )
{
if ( This->pConvBuf != NULL )
{
QUARTZ_FreeMem( This->pConvBuf );
This->pConvBuf = NULL;
}
This->cbConvBlockSize = 0;
This->cbConvCached = 0;
This->cbConvAllocated = 0;
}
static
const WAVEFORMATEX* ACMWrapper_GetAudioFmt( const AM_MEDIA_TYPE* pmt )
{
const WAVEFORMATEX* pwfx;
if ( !IsEqualGUID( &pmt->majortype, &MEDIATYPE_Audio ) )
return NULL;
if ( !IsEqualGUID( &pmt->subtype, &MEDIASUBTYPE_NULL ) &&
!QUARTZ_MediaSubType_IsFourCC( &pmt->subtype ) )
return NULL;
if ( !IsEqualGUID( &pmt->formattype, &FORMAT_WaveFormatEx ) )
return NULL;
if ( pmt->pbFormat == NULL ||
pmt->cbFormat < (sizeof(WAVEFORMATEX)-sizeof(WORD)) )
return NULL;
pwfx = (const WAVEFORMATEX*)pmt->pbFormat;
if ( pwfx->wFormatTag != 1 && pmt->cbFormat < sizeof(WAVEFORMATEX) )
return NULL;
return pwfx;
}
static
HRESULT ACMWrapper_SetupAudioFmt(
AM_MEDIA_TYPE* pmt,
DWORD cbFormat, WORD wFormatTag, DWORD dwBlockAlign )
{
ZeroMemory( pmt, sizeof(AM_MEDIA_TYPE) );
memcpy( &pmt->majortype, &MEDIATYPE_Audio, sizeof(GUID) );
QUARTZ_MediaSubType_FromFourCC( &pmt->subtype, (DWORD)wFormatTag );
pmt->bFixedSizeSamples = 1;
pmt->bTemporalCompression = 1;
pmt->lSampleSize = dwBlockAlign;
memcpy( &pmt->formattype, &FORMAT_WaveFormatEx, sizeof(GUID) );
pmt->pUnk = NULL;
pmt->cbFormat = cbFormat;
pmt->pbFormat = (BYTE*)CoTaskMemAlloc( cbFormat );
if ( pmt->pbFormat == NULL )
return E_OUTOFMEMORY;
return S_OK;
}
static
void ACMWrapper_FillFmtPCM(
WAVEFORMATEX* pwfxOut,
const WAVEFORMATEX* pwfxIn,
WORD wBitsPerSampOut )
{
pwfxOut->wFormatTag = 1;
pwfxOut->nChannels = pwfxIn->nChannels;
pwfxOut->nSamplesPerSec = pwfxIn->nSamplesPerSec;
pwfxOut->nAvgBytesPerSec = ((DWORD)pwfxIn->nSamplesPerSec * (DWORD)pwfxIn->nChannels * (DWORD)wBitsPerSampOut) >> 3;
pwfxOut->nBlockAlign = (pwfxIn->nChannels * wBitsPerSampOut) >> 3;
pwfxOut->wBitsPerSample = wBitsPerSampOut;
pwfxOut->cbSize = 0;
}
static
BOOL ACMWrapper_IsSupported(
WAVEFORMATEX* pwfxOut,
WAVEFORMATEX* pwfxIn )
{
MMRESULT mr;
mr = acmStreamOpen(
NULL,(HACMDRIVER)NULL,
pwfxIn,pwfxOut,NULL,
0,0,ACM_STREAMOPENF_QUERY);
if ( mr == ACMERR_NOTPOSSIBLE )
mr = acmStreamOpen(
NULL,(HACMDRIVER)NULL,
pwfxIn,pwfxOut,NULL,
0,0,ACM_STREAMOPENF_NONREALTIME|ACM_STREAMOPENF_QUERY);
return !!(mr == MMSYSERR_NOERROR);
}
static
HRESULT ACMWrapper_StreamOpen(
HACMSTREAM* phas,
WAVEFORMATEX* pwfxOut,
WAVEFORMATEX* pwfxIn )
{
HACMSTREAM has = (HACMSTREAM)NULL;
MMRESULT mr;
mr = acmStreamOpen(
&has,(HACMDRIVER)NULL,
pwfxIn,pwfxOut,NULL,
0,0,0);
if ( mr == ACMERR_NOTPOSSIBLE )
mr = acmStreamOpen(
&has,(HACMDRIVER)NULL,
pwfxIn,pwfxOut,NULL,
0,0,ACM_STREAMOPENF_NONREALTIME);
if ( mr != MMSYSERR_NOERROR )
{
if ( mr == MMSYSERR_NOMEM )
return E_OUTOFMEMORY;
return E_FAIL;
}
*phas = has;
return S_OK;
}
/***************************************************************************
*
* CACMWrapperImpl methods
*
*/
static void ACMWrapper_Close( CACMWrapperImpl* This )
{
if ( This->has != (HACMSTREAM)NULL )
{
acmStreamReset( This->has, 0 );
acmStreamClose( This->has, 0 );
This->has = (HACMSTREAM)NULL;
}
}
static HRESULT ACMWrapper_Init( CTransformBaseImpl* pImpl )
{
CACMWrapperImpl* This = pImpl->m_pUserData;
TRACE("(%p)\n",This);
if ( This != NULL )
return NOERROR;
This = (CACMWrapperImpl*)QUARTZ_AllocMem( sizeof(CACMWrapperImpl) );
if ( This == NULL )
return E_OUTOFMEMORY;
ZeroMemory( This, sizeof(CACMWrapperImpl) );
pImpl->m_pUserData = This;
/* construct */
This->has = (HACMSTREAM)NULL;
This->pwfxIn = NULL;
This->pmtOuts = NULL;
This->cOuts = 0;
This->pConvBuf = NULL;
return S_OK;
}
static HRESULT ACMWrapper_Cleanup( CTransformBaseImpl* pImpl )
{
CACMWrapperImpl* This = pImpl->m_pUserData;
TRACE("(%p)\n",This);
if ( This == NULL )
return NOERROR;
/* destruct */
ACMWrapper_Close( This );
QUARTZ_FreeMem( This->pwfxIn );
ACMWrapper_CleanupMTypes( This );
ACMWrapper_CleanupConvBuf( This );
QUARTZ_FreeMem( This );
pImpl->m_pUserData = NULL;
return S_OK;
}
static HRESULT ACMWrapper_CheckMediaType( CTransformBaseImpl* pImpl, const AM_MEDIA_TYPE* pmtIn, const AM_MEDIA_TYPE* pmtOut )
{
CACMWrapperImpl* This = pImpl->m_pUserData;
const WAVEFORMATEX* pwfxIn;
const WAVEFORMATEX* pwfxOut;
WAVEFORMATEX wfx;
FIXME("(%p)\n",This);
if ( This == NULL )
return E_UNEXPECTED;
pwfxIn = ACMWrapper_GetAudioFmt(pmtIn);
if ( pwfxIn == NULL ||
pwfxIn->wFormatTag == 0 ||
pwfxIn->wFormatTag == 1 )
{
TRACE("pwfxIn is not a compressed audio\n");
return E_FAIL;
}
if ( pmtOut != NULL )
{
pwfxOut = ACMWrapper_GetAudioFmt(pmtOut);
if ( pwfxOut == NULL || pwfxOut->wFormatTag != 1 )
{
TRACE("pwfxOut is not a linear PCM\n");
return E_FAIL;
}
if ( pwfxIn->nChannels != pwfxOut->nChannels ||
pwfxIn->nSamplesPerSec != pwfxOut->nSamplesPerSec )
{
TRACE("nChannels or nSamplesPerSec is not matched\n");
return E_FAIL;
}
if ( !ACMWrapper_IsSupported((WAVEFORMATEX*)pwfxOut,(WAVEFORMATEX*)pwfxIn) )
{
TRACE("specified formats are not supported by ACM\n");
return E_FAIL;
}
}
else
{
ACMWrapper_FillFmtPCM(&wfx,pwfxIn,8);
if ( ACMWrapper_IsSupported(&wfx,(WAVEFORMATEX*)pwfxIn) )
{
TRACE("compressed audio - can be decoded to 8bit\n");
return S_OK;
}
ACMWrapper_FillFmtPCM(&wfx,pwfxIn,16);
if ( ACMWrapper_IsSupported(&wfx,(WAVEFORMATEX*)pwfxIn) )
{
TRACE("compressed audio - can be decoded to 16bit\n");
return S_OK;
}
TRACE("unhandled audio %04x\n",(unsigned)pwfxIn->wFormatTag);
return E_FAIL;
}
return S_OK;
}
static HRESULT ACMWrapper_GetOutputTypes( CTransformBaseImpl* pImpl, const AM_MEDIA_TYPE* pmtIn, const AM_MEDIA_TYPE** ppmtAcceptTypes, ULONG* pcAcceptTypes )
{
CACMWrapperImpl* This = pImpl->m_pUserData;
HRESULT hr;
const WAVEFORMATEX* pwfxIn;
AM_MEDIA_TYPE* pmtTry;
WAVEFORMATEX* pwfxTry;
FIXME("(%p)\n",This);
hr = ACMWrapper_CheckMediaType( pImpl, pmtIn, NULL );
if ( FAILED(hr) )
return hr;
pwfxIn = (const WAVEFORMATEX*)pmtIn->pbFormat;
ACMWrapper_CleanupMTypes( This );
This->pmtOuts = QUARTZ_AllocMem( sizeof(AM_MEDIA_TYPE) * 2 );
if ( This->pmtOuts == NULL )
return E_OUTOFMEMORY;
This->cOuts = 0;
pmtTry = &This->pmtOuts[This->cOuts];
hr = ACMWrapper_SetupAudioFmt(
pmtTry,
sizeof(WAVEFORMATEX), 1,
(pwfxIn->nChannels * 8) >> 3 );
if ( FAILED(hr) ) goto err;
pwfxTry = (WAVEFORMATEX*)pmtTry->pbFormat;
ACMWrapper_FillFmtPCM( pwfxTry, pwfxIn, 8 );
if ( ACMWrapper_IsSupported( pwfxTry, (WAVEFORMATEX*)pwfxIn ) )
This->cOuts ++;
pmtTry = &This->pmtOuts[This->cOuts];
hr = ACMWrapper_SetupAudioFmt(
pmtTry,
sizeof(WAVEFORMATEX), 1,
(pwfxIn->nChannels * 16) >> 3 );
if ( FAILED(hr) ) goto err;
pwfxTry = (WAVEFORMATEX*)pmtTry->pbFormat;
ACMWrapper_FillFmtPCM( pwfxTry, pwfxIn, 16 );
if ( ACMWrapper_IsSupported( pwfxTry, (WAVEFORMATEX*)pwfxIn ) )
This->cOuts ++;
*ppmtAcceptTypes = This->pmtOuts;
*pcAcceptTypes = This->cOuts;
return S_OK;
err:
ACMWrapper_CleanupMTypes( This );
return hr;
}
static HRESULT
ACMWrapper_GetConvBufSize(
CTransformBaseImpl* pImpl,
CACMWrapperImpl* This,
DWORD* pcbInput, DWORD* pcbOutput,
const AM_MEDIA_TYPE* pmtOut, const AM_MEDIA_TYPE* pmtIn )
{
HRESULT hr;
const WAVEFORMATEX* pwfxIn;
const WAVEFORMATEX* pwfxOut;
HACMSTREAM has;
MMRESULT mr;
DWORD cbInput;
DWORD cbOutput;
if ( This == NULL )
return E_UNEXPECTED;
hr = ACMWrapper_CheckMediaType( pImpl, pmtIn, pmtOut );
if ( FAILED(hr) )
return hr;
pwfxIn = (const WAVEFORMATEX*)pmtIn->pbFormat;
pwfxOut = (const WAVEFORMATEX*)pmtOut->pbFormat;
hr = ACMWrapper_StreamOpen(
&has, (WAVEFORMATEX*)pwfxOut, (WAVEFORMATEX*)pwfxIn );
if ( FAILED(hr) )
return hr;
cbInput = (pwfxIn->nAvgBytesPerSec + pwfxIn->nBlockAlign - 1) / pwfxIn->nBlockAlign * pwfxIn->nBlockAlign;
cbOutput = 0;
mr = acmStreamSize( has, cbInput, &cbOutput, ACM_STREAMSIZEF_SOURCE );
acmStreamClose( has, 0 );
if ( mr != MMSYSERR_NOERROR || cbOutput == 0 )
return E_FAIL;
TRACE("size %lu -> %lu\n", cbInput, cbOutput);
if ( pcbInput != NULL ) *pcbInput = cbInput;
if ( pcbOutput != NULL ) *pcbOutput = cbOutput;
return S_OK;
}
static HRESULT ACMWrapper_GetAllocProp( CTransformBaseImpl* pImpl, const AM_MEDIA_TYPE* pmtIn, const AM_MEDIA_TYPE* pmtOut, ALLOCATOR_PROPERTIES* pProp, BOOL* pbTransInPlace, BOOL* pbTryToReuseSample )
{
CACMWrapperImpl* This = pImpl->m_pUserData;
HRESULT hr;
DWORD cbOutput;
TRACE("(%p)\n",This);
if ( This == NULL )
return E_UNEXPECTED;
hr = ACMWrapper_GetConvBufSize(
pImpl, This, NULL, &cbOutput, pmtOut, pmtIn );
if ( FAILED(hr) )
return hr;
pProp->cBuffers = 1;
pProp->cbBuffer = cbOutput;
*pbTransInPlace = FALSE;
*pbTryToReuseSample = FALSE;
return S_OK;
}
static HRESULT ACMWrapper_BeginTransform( CTransformBaseImpl* pImpl, const AM_MEDIA_TYPE* pmtIn, const AM_MEDIA_TYPE* pmtOut, BOOL bReuseSample )
{
CACMWrapperImpl* This = pImpl->m_pUserData;
HRESULT hr;
const WAVEFORMATEX* pwfxIn;
const WAVEFORMATEX* pwfxOut;
DWORD cbInput;
FIXME("(%p,%p,%p,%d)\n",This,pmtIn,pmtOut,bReuseSample);
if ( This == NULL )
return E_UNEXPECTED;
ACMWrapper_Close( This );
ACMWrapper_CleanupMTypes( This );
ACMWrapper_CleanupConvBuf( This );
hr = ACMWrapper_GetConvBufSize(
pImpl, This, &cbInput, NULL, pmtOut, pmtIn );
if ( FAILED(hr) )
return hr;
pwfxIn = (const WAVEFORMATEX*)pmtIn->pbFormat;
pwfxOut = (const WAVEFORMATEX*)pmtOut->pbFormat;
This->pConvBuf = (BYTE*)QUARTZ_AllocMem( cbInput );
if ( This->pConvBuf == NULL )
return E_OUTOFMEMORY;
This->cbConvBlockSize = pwfxIn->nBlockAlign;
This->cbConvCached = 0;
This->cbConvAllocated = cbInput;
hr = ACMWrapper_StreamOpen(
&This->has,
(WAVEFORMATEX*)pmtOut, (WAVEFORMATEX*)pmtIn );
if ( FAILED(hr) )
return E_FAIL;
return S_OK;
}
static HRESULT ACMWrapper_Convert(
CTransformBaseImpl* pImpl,
CACMWrapperImpl* This,
BYTE* pbSrc, DWORD cbSrcLen,
DWORD dwConvertFlags )
{
ACMSTREAMHEADER ash;
MMRESULT mr;
HRESULT hr = E_FAIL;
DWORD dwConvCallFlags;
DWORD cb;
IMediaSample* pSampOut = NULL;
BYTE* pOutBuf;
LONG lOutBufLen;
TRACE("()\n");
if ( This->pConvBuf == NULL )
return E_UNEXPECTED;
dwConvCallFlags = ACM_STREAMCONVERTF_BLOCKALIGN;
if ( dwConvertFlags & ACM_STREAMCONVERTF_START )
{
dwConvCallFlags |= ACM_STREAMCONVERTF_START;
This->cbConvCached = 0;
}
while ( 1 )
{
cb = cbSrcLen + This->cbConvCached;
if ( cb > This->cbConvAllocated )
cb = This->cbConvAllocated;
cb -= This->cbConvCached;
if ( cb > 0 )
{
memcpy( This->pConvBuf+This->cbConvCached,
pbSrc, cb );
pbSrc += cb;
cbSrcLen -= cb;
This->cbConvCached += cb;
}
cb = This->cbConvCached / This->cbConvBlockSize * This->cbConvBlockSize;
if ( cb == 0 )
{
if ( dwConvertFlags & ACM_STREAMCONVERTF_END )
{
dwConvCallFlags &= ~ACM_STREAMCONVERTF_BLOCKALIGN;
dwConvCallFlags |= ACM_STREAMCONVERTF_END;
cb = This->cbConvCached;
}
if ( cb == 0 )
{
hr = S_OK;
break;
}
}
ZeroMemory( &ash, sizeof(ash) );
ash.cbStruct = sizeof(ash);
ash.pbSrc = This->pConvBuf;
ash.cbSrcLength = cb;
hr = IMemAllocator_GetBuffer(
pImpl->m_pOutPinAllocator,
&pSampOut, NULL, NULL, 0 );
if ( FAILED(hr) )
break;
hr = IMediaSample_SetSyncPoint( pSampOut, TRUE );
if ( FAILED(hr) )
break;
if ( dwConvCallFlags & ACM_STREAMCONVERTF_START )
{
hr = IMediaSample_SetDiscontinuity( pSampOut, TRUE );
if ( FAILED(hr) )
break;
}
hr = IMediaSample_GetPointer( pSampOut, &pOutBuf );
if ( FAILED(hr) )
break;
lOutBufLen = IMediaSample_GetSize( pSampOut );
if ( lOutBufLen <= 0 )
{
hr = E_FAIL;
break;
}
ash.pbDst = pOutBuf;
ash.cbDstLength = lOutBufLen;
mr = acmStreamPrepareHeader(
This->has, &ash, 0 );
if ( mr == MMSYSERR_NOERROR )
mr = acmStreamConvert(
This->has, &ash, dwConvCallFlags );
if ( mr == MMSYSERR_NOERROR )
mr = acmStreamUnprepareHeader(
This->has, &ash, 0 );
if ( mr != MMSYSERR_NOERROR || ash.cbSrcLengthUsed == 0 )
{
hr = E_FAIL;
break;
}
if ( ash.cbDstLengthUsed > 0 )
{
hr = IMediaSample_SetActualDataLength( pSampOut, ash.cbDstLengthUsed );
if ( FAILED(hr) )
break;
hr = CPinBaseImpl_SendSample(
&pImpl->pOutPin->pin,
pSampOut );
if ( FAILED(hr) )
break;
}
if ( This->cbConvCached == ash.cbSrcLengthUsed )
{
This->cbConvCached = 0;
}
else
{
This->cbConvCached -= ash.cbSrcLengthUsed;
memmove( This->pConvBuf,
This->pConvBuf + ash.cbSrcLengthUsed,
This->cbConvCached );
}
IMediaSample_Release( pSampOut ); pSampOut = NULL;
dwConvCallFlags &= ~ACM_STREAMCONVERTF_START;
}
if ( pSampOut != NULL )
IMediaSample_Release( pSampOut );
return hr;
}
static HRESULT ACMWrapper_ProcessReceive( CTransformBaseImpl* pImpl, IMediaSample* pSampIn )
{
CACMWrapperImpl* This = pImpl->m_pUserData;
BYTE* pDataIn = NULL;
LONG lDataInLen;
HRESULT hr;
DWORD dwConvFlags = 0;
FIXME("(%p)\n",This);
if ( This == NULL || This->has == (HACMSTREAM)NULL )
return E_UNEXPECTED;
hr = IMediaSample_GetPointer( pSampIn, &pDataIn );
if ( FAILED(hr) )
return hr;
lDataInLen = IMediaSample_GetActualDataLength( pSampIn );
if ( lDataInLen < 0 )
return E_FAIL;
if ( IMediaSample_IsDiscontinuity( pSampIn ) != S_OK )
dwConvFlags |= ACM_STREAMCONVERTF_START;
return ACMWrapper_Convert(
pImpl, This, pDataIn, (DWORD)lDataInLen,
dwConvFlags );
}
static HRESULT ACMWrapper_EndTransform( CTransformBaseImpl* pImpl )
{
CACMWrapperImpl* This = pImpl->m_pUserData;
HRESULT hr;
DWORD dwConvFlags = ACM_STREAMCONVERTF_END;
TRACE("(%p)\n",This);
if ( This == NULL )
return E_UNEXPECTED;
hr = ACMWrapper_Convert(
pImpl, This, NULL, 0,
dwConvFlags );
ACMWrapper_Close( This );
ACMWrapper_CleanupMTypes( This );
ACMWrapper_CleanupConvBuf( This );
return hr;
}
static const TransformBaseHandlers transhandlers =
{
ACMWrapper_Init,
ACMWrapper_Cleanup,
ACMWrapper_CheckMediaType,
ACMWrapper_GetOutputTypes,
ACMWrapper_GetAllocProp,
ACMWrapper_BeginTransform,
ACMWrapper_ProcessReceive,
NULL,
ACMWrapper_EndTransform,
};
HRESULT QUARTZ_CreateACMWrapper(IUnknown* punkOuter,void** ppobj)
{
return QUARTZ_CreateTransformBase(
punkOuter,ppobj,
&CLSID_ACMWrapper,
ACMWrapper_FilterName,
NULL, NULL,
&transhandlers );
}