Sweden-Number/dlls/secur32/schannel_macosx.c

1049 lines
34 KiB
C
Raw Normal View History

/*
* Mac OS X Secure Transport implementation of the schannel (SSL/TLS) provider.
*
* Copyright 2005 Juan Lang
* Copyright 2008 Henri Verbeet
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "config.h"
#include "wine/port.h"
#include <stdarg.h>
#ifdef HAVE_SECURITY_SECURITY_H
#include <Security/Security.h>
#define GetCurrentThread GetCurrentThread_Mac
#define LoadResource LoadResource_Mac
#include <CoreServices/CoreServices.h>
#undef GetCurrentThread
#undef LoadResource
#undef DPRINTF
#endif
#include "windef.h"
#include "winbase.h"
#include "sspi.h"
#include "schannel.h"
#include "secur32_priv.h"
#include "wine/debug.h"
#include "wine/library.h"
#ifdef HAVE_SECURITY_SECURITY_H
WINE_DEFAULT_DEBUG_CHANNEL(secur32);
#if MAC_OS_X_VERSION_MAX_ALLOWED < 1060
/* Defined in <Security/CipherSuite.h> in the 10.6 SDK or later. */
enum {
TLS_ECDH_ECDSA_WITH_NULL_SHA = 0xC001,
TLS_ECDH_ECDSA_WITH_RC4_128_SHA = 0xC002,
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA = 0xC003,
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA = 0xC004,
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA = 0xC005,
TLS_ECDHE_ECDSA_WITH_NULL_SHA = 0xC006,
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA = 0xC007,
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA = 0xC008,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA = 0xC009,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA = 0xC00A,
TLS_ECDH_RSA_WITH_NULL_SHA = 0xC00B,
TLS_ECDH_RSA_WITH_RC4_128_SHA = 0xC00C,
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA = 0xC00D,
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA = 0xC00E,
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA = 0xC00F,
TLS_ECDHE_RSA_WITH_NULL_SHA = 0xC010,
TLS_ECDHE_RSA_WITH_RC4_128_SHA = 0xC011,
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA = 0xC012,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA = 0xC013,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA = 0xC014,
TLS_ECDH_anon_WITH_NULL_SHA = 0xC015,
TLS_ECDH_anon_WITH_RC4_128_SHA = 0xC016,
TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA = 0xC017,
TLS_ECDH_anon_WITH_AES_128_CBC_SHA = 0xC018,
TLS_ECDH_anon_WITH_AES_256_CBC_SHA = 0xC019,
};
#endif
#if MAC_OS_X_VERSION_MAX_ALLOWED < 1080
/* Defined in <Security/CipherSuite.h> in the 10.8 SDK or later. */
enum {
TLS_NULL_WITH_NULL_NULL = 0x0000,
TLS_RSA_WITH_NULL_MD5 = 0x0001,
TLS_RSA_WITH_NULL_SHA = 0x0002,
TLS_RSA_WITH_RC4_128_MD5 = 0x0004,
TLS_RSA_WITH_RC4_128_SHA = 0x0005,
TLS_RSA_WITH_3DES_EDE_CBC_SHA = 0x000A,
TLS_RSA_WITH_NULL_SHA256 = 0x003B,
TLS_RSA_WITH_AES_128_CBC_SHA256 = 0x003C,
TLS_RSA_WITH_AES_256_CBC_SHA256 = 0x003D,
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA = 0x000D,
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA = 0x0010,
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA = 0x0013,
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA = 0x0016,
TLS_DH_DSS_WITH_AES_128_CBC_SHA256 = 0x003E,
TLS_DH_RSA_WITH_AES_128_CBC_SHA256 = 0x003F,
TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 = 0x0040,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 = 0x0067,
TLS_DH_DSS_WITH_AES_256_CBC_SHA256 = 0x0068,
TLS_DH_RSA_WITH_AES_256_CBC_SHA256 = 0x0069,
TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 = 0x006A,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 = 0x006B,
TLS_DH_anon_WITH_RC4_128_MD5 = 0x0018,
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA = 0x001B,
TLS_DH_anon_WITH_AES_128_CBC_SHA256 = 0x006C,
TLS_DH_anon_WITH_AES_256_CBC_SHA256 = 0x006D,
TLS_RSA_WITH_AES_128_GCM_SHA256 = 0x009C,
TLS_RSA_WITH_AES_256_GCM_SHA384 = 0x009D,
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 = 0x009E,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 = 0x009F,
TLS_DH_RSA_WITH_AES_128_GCM_SHA256 = 0x00A0,
TLS_DH_RSA_WITH_AES_256_GCM_SHA384 = 0x00A1,
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 = 0x00A2,
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 = 0x00A3,
TLS_DH_DSS_WITH_AES_128_GCM_SHA256 = 0x00A4,
TLS_DH_DSS_WITH_AES_256_GCM_SHA384 = 0x00A5,
TLS_DH_anon_WITH_AES_128_GCM_SHA256 = 0x00A6,
TLS_DH_anon_WITH_AES_256_GCM_SHA384 = 0x00A7,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 = 0xC023,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 = 0xC024,
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 = 0xC025,
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 = 0xC026,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 = 0xC027,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 = 0xC028,
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 = 0xC029,
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 = 0xC02A,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 = 0xC02B,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 = 0xC02C,
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 = 0xC02D,
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 = 0xC02E,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 = 0xC02F,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 = 0xC030,
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 = 0xC031,
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 = 0xC032,
TLS_EMPTY_RENEGOTIATION_INFO_SCSV = 0x00FF,
};
/* Defined in <Security/SecureTransport.h> in the 10.8 SDK or later. */
enum {
kTLSProtocol11 = 7, /* TLS 1.1 */
kTLSProtocol12 = 8, /* TLS 1.2 */
};
#endif
struct mac_session {
SSLContextRef context;
struct schan_transport *transport;
};
enum {
schan_proto_SSL,
schan_proto_TLS,
};
enum {
schan_kx_DH_anon_EXPORT,
schan_kx_DH_anon,
schan_kx_DH_DSS_EXPORT,
schan_kx_DH_DSS,
schan_kx_DH_RSA_EXPORT,
schan_kx_DH_RSA,
schan_kx_DHE_DSS_EXPORT,
schan_kx_DHE_DSS,
schan_kx_DHE_RSA_EXPORT,
schan_kx_DHE_RSA,
schan_kx_ECDH_anon,
schan_kx_ECDH_ECDSA,
schan_kx_ECDH_RSA,
schan_kx_ECDHE_ECDSA,
schan_kx_ECDHE_RSA,
schan_kx_FORTEZZA_DMS,
schan_kx_NULL,
schan_kx_RSA_EXPORT,
schan_kx_RSA,
};
enum {
schan_enc_3DES_EDE_CBC,
schan_enc_AES_128_CBC,
schan_enc_AES_128_GCM,
schan_enc_AES_256_CBC,
schan_enc_AES_256_GCM,
schan_enc_DES_CBC,
schan_enc_DES40_CBC,
schan_enc_FORTEZZA_CBC,
schan_enc_IDEA_CBC,
schan_enc_NULL,
schan_enc_RC2_CBC,
schan_enc_RC2_CBC_40,
schan_enc_RC4_128,
schan_enc_RC4_40,
};
enum {
schan_mac_MD5,
schan_mac_NULL,
schan_mac_SHA,
schan_mac_SHA256,
schan_mac_SHA384,
};
struct cipher_suite {
SSLCipherSuite suite;
int protocol;
int kx_alg;
int enc_alg;
int mac_alg;
};
/* This table corresponds to the enum in <Security/CipherSuite.h>. */
static const struct cipher_suite cipher_suites[] = {
#define CIPHER_SUITE(p, kx, enc, mac) { p##_##kx##_WITH_##enc##_##mac, schan_proto_##p, \
schan_kx_##kx, schan_enc_##enc, schan_mac_##mac }
CIPHER_SUITE(SSL, RSA, NULL, MD5),
CIPHER_SUITE(SSL, RSA, NULL, MD5),
CIPHER_SUITE(SSL, RSA, NULL, SHA),
CIPHER_SUITE(SSL, RSA_EXPORT, RC4_40, MD5),
CIPHER_SUITE(SSL, RSA, RC4_128, MD5),
CIPHER_SUITE(SSL, RSA, RC4_128, SHA),
CIPHER_SUITE(SSL, RSA_EXPORT, RC2_CBC_40, MD5),
CIPHER_SUITE(SSL, RSA, IDEA_CBC, SHA),
CIPHER_SUITE(SSL, RSA_EXPORT, DES40_CBC, SHA),
CIPHER_SUITE(SSL, RSA, DES_CBC, SHA),
CIPHER_SUITE(SSL, RSA, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(SSL, DH_DSS_EXPORT, DES40_CBC, SHA),
CIPHER_SUITE(SSL, DH_DSS, DES_CBC, SHA),
CIPHER_SUITE(SSL, DH_DSS, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(SSL, DH_RSA_EXPORT, DES40_CBC, SHA),
CIPHER_SUITE(SSL, DH_RSA, DES_CBC, SHA),
CIPHER_SUITE(SSL, DH_RSA, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(SSL, DHE_DSS_EXPORT, DES40_CBC, SHA),
CIPHER_SUITE(SSL, DHE_DSS, DES_CBC, SHA),
CIPHER_SUITE(SSL, DHE_DSS, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(SSL, DHE_RSA_EXPORT, DES40_CBC, SHA),
CIPHER_SUITE(SSL, DHE_RSA, DES_CBC, SHA),
CIPHER_SUITE(SSL, DHE_RSA, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(SSL, DH_anon_EXPORT, RC4_40, MD5),
CIPHER_SUITE(SSL, DH_anon, RC4_128, MD5),
CIPHER_SUITE(SSL, DH_anon_EXPORT, DES40_CBC, SHA),
CIPHER_SUITE(SSL, DH_anon, DES_CBC, SHA),
CIPHER_SUITE(SSL, DH_anon, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(SSL, FORTEZZA_DMS, NULL, SHA),
CIPHER_SUITE(SSL, FORTEZZA_DMS, FORTEZZA_CBC, SHA),
CIPHER_SUITE(TLS, RSA, AES_128_CBC, SHA),
CIPHER_SUITE(TLS, DH_DSS, AES_128_CBC, SHA),
CIPHER_SUITE(TLS, DH_RSA, AES_128_CBC, SHA),
CIPHER_SUITE(TLS, DHE_DSS, AES_128_CBC, SHA),
CIPHER_SUITE(TLS, DHE_RSA, AES_128_CBC, SHA),
CIPHER_SUITE(TLS, DH_anon, AES_128_CBC, SHA),
CIPHER_SUITE(TLS, RSA, AES_256_CBC, SHA),
CIPHER_SUITE(TLS, DH_DSS, AES_256_CBC, SHA),
CIPHER_SUITE(TLS, DH_RSA, AES_256_CBC, SHA),
CIPHER_SUITE(TLS, DHE_DSS, AES_256_CBC, SHA),
CIPHER_SUITE(TLS, DHE_RSA, AES_256_CBC, SHA),
CIPHER_SUITE(TLS, DH_anon, AES_256_CBC, SHA),
CIPHER_SUITE(TLS, ECDH_ECDSA, NULL, SHA),
CIPHER_SUITE(TLS, ECDH_ECDSA, RC4_128, SHA),
CIPHER_SUITE(TLS, ECDH_ECDSA, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(TLS, ECDH_ECDSA, AES_128_CBC, SHA),
CIPHER_SUITE(TLS, ECDH_ECDSA, AES_256_CBC, SHA),
CIPHER_SUITE(TLS, ECDHE_ECDSA, NULL, SHA),
CIPHER_SUITE(TLS, ECDHE_ECDSA, RC4_128, SHA),
CIPHER_SUITE(TLS, ECDHE_ECDSA, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(TLS, ECDHE_ECDSA, AES_128_CBC, SHA),
CIPHER_SUITE(TLS, ECDHE_ECDSA, AES_256_CBC, SHA),
CIPHER_SUITE(TLS, ECDH_RSA, NULL, SHA),
CIPHER_SUITE(TLS, ECDH_RSA, RC4_128, SHA),
CIPHER_SUITE(TLS, ECDH_RSA, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(TLS, ECDH_RSA, AES_128_CBC, SHA),
CIPHER_SUITE(TLS, ECDH_RSA, AES_256_CBC, SHA),
CIPHER_SUITE(TLS, ECDHE_RSA, NULL, SHA),
CIPHER_SUITE(TLS, ECDHE_RSA, RC4_128, SHA),
CIPHER_SUITE(TLS, ECDHE_RSA, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(TLS, ECDHE_RSA, AES_128_CBC, SHA),
CIPHER_SUITE(TLS, ECDHE_RSA, AES_256_CBC, SHA),
CIPHER_SUITE(TLS, ECDH_anon, NULL, SHA),
CIPHER_SUITE(TLS, ECDH_anon, RC4_128, SHA),
CIPHER_SUITE(TLS, ECDH_anon, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(TLS, ECDH_anon, AES_128_CBC, SHA),
CIPHER_SUITE(TLS, ECDH_anon, AES_256_CBC, SHA),
CIPHER_SUITE(TLS, NULL, NULL, NULL),
CIPHER_SUITE(TLS, RSA, NULL, MD5),
CIPHER_SUITE(TLS, RSA, NULL, SHA),
CIPHER_SUITE(TLS, RSA, RC4_128, MD5),
CIPHER_SUITE(TLS, RSA, RC4_128, SHA),
CIPHER_SUITE(TLS, RSA, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(TLS, RSA, NULL, SHA256),
CIPHER_SUITE(TLS, RSA, AES_128_CBC, SHA256),
CIPHER_SUITE(TLS, RSA, AES_256_CBC, SHA256),
CIPHER_SUITE(TLS, DH_DSS, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(TLS, DH_RSA, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(TLS, DHE_DSS, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(TLS, DHE_RSA, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(TLS, DH_DSS, AES_128_CBC, SHA256),
CIPHER_SUITE(TLS, DH_RSA, AES_128_CBC, SHA256),
CIPHER_SUITE(TLS, DHE_DSS, AES_128_CBC, SHA256),
CIPHER_SUITE(TLS, DHE_RSA, AES_128_CBC, SHA256),
CIPHER_SUITE(TLS, DH_DSS, AES_256_CBC, SHA256),
CIPHER_SUITE(TLS, DH_RSA, AES_256_CBC, SHA256),
CIPHER_SUITE(TLS, DHE_DSS, AES_256_CBC, SHA256),
CIPHER_SUITE(TLS, DHE_RSA, AES_256_CBC, SHA256),
CIPHER_SUITE(TLS, DH_anon, RC4_128, MD5),
CIPHER_SUITE(TLS, DH_anon, 3DES_EDE_CBC, SHA),
CIPHER_SUITE(TLS, DH_anon, AES_128_CBC, SHA256),
CIPHER_SUITE(TLS, DH_anon, AES_256_CBC, SHA256),
CIPHER_SUITE(TLS, RSA, AES_128_GCM, SHA256),
CIPHER_SUITE(TLS, RSA, AES_256_GCM, SHA384),
CIPHER_SUITE(TLS, DHE_RSA, AES_128_GCM, SHA256),
CIPHER_SUITE(TLS, DHE_RSA, AES_256_GCM, SHA384),
CIPHER_SUITE(TLS, DH_RSA, AES_128_GCM, SHA256),
CIPHER_SUITE(TLS, DH_RSA, AES_256_GCM, SHA384),
CIPHER_SUITE(TLS, DHE_DSS, AES_128_GCM, SHA256),
CIPHER_SUITE(TLS, DHE_DSS, AES_256_GCM, SHA384),
CIPHER_SUITE(TLS, DH_DSS, AES_128_GCM, SHA256),
CIPHER_SUITE(TLS, DH_DSS, AES_256_GCM, SHA384),
CIPHER_SUITE(TLS, DH_anon, AES_128_GCM, SHA256),
CIPHER_SUITE(TLS, DH_anon, AES_256_GCM, SHA384),
CIPHER_SUITE(TLS, ECDHE_ECDSA, AES_128_CBC, SHA256),
CIPHER_SUITE(TLS, ECDHE_ECDSA, AES_256_CBC, SHA384),
CIPHER_SUITE(TLS, ECDH_ECDSA, AES_128_CBC, SHA256),
CIPHER_SUITE(TLS, ECDH_ECDSA, AES_256_CBC, SHA384),
CIPHER_SUITE(TLS, ECDHE_RSA, AES_128_CBC, SHA256),
CIPHER_SUITE(TLS, ECDHE_RSA, AES_256_CBC, SHA384),
CIPHER_SUITE(TLS, ECDH_RSA, AES_128_CBC, SHA256),
CIPHER_SUITE(TLS, ECDH_RSA, AES_256_CBC, SHA384),
CIPHER_SUITE(TLS, ECDHE_ECDSA, AES_128_GCM, SHA256),
CIPHER_SUITE(TLS, ECDHE_ECDSA, AES_256_GCM, SHA384),
CIPHER_SUITE(TLS, ECDH_ECDSA, AES_128_GCM, SHA256),
CIPHER_SUITE(TLS, ECDH_ECDSA, AES_256_GCM, SHA384),
CIPHER_SUITE(TLS, ECDHE_RSA, AES_128_GCM, SHA256),
CIPHER_SUITE(TLS, ECDHE_RSA, AES_256_GCM, SHA384),
CIPHER_SUITE(TLS, ECDH_RSA, AES_128_GCM, SHA256),
CIPHER_SUITE(TLS, ECDH_RSA, AES_256_GCM, SHA384),
CIPHER_SUITE(SSL, RSA, RC2_CBC, MD5),
CIPHER_SUITE(SSL, RSA, IDEA_CBC, MD5),
CIPHER_SUITE(SSL, RSA, DES_CBC, MD5),
CIPHER_SUITE(SSL, RSA, 3DES_EDE_CBC, MD5),
#undef CIPHER_SUITE
};
static const struct cipher_suite* get_cipher_suite(SSLCipherSuite cipher_suite)
{
int i;
for (i = 0; i < sizeof(cipher_suites)/sizeof(cipher_suites[0]); i++)
{
if (cipher_suites[i].suite == cipher_suite)
return &cipher_suites[i];
}
return NULL;
}
static DWORD schan_get_session_protocol(struct mac_session* s)
{
SSLProtocol protocol;
int status;
TRACE("(%p/%p)\n", s, s->context);
status = SSLGetNegotiatedProtocolVersion(s->context, &protocol);
if (status != noErr)
{
ERR("Failed to get session protocol: %d\n", status);
return 0;
}
TRACE("protocol %d\n", protocol);
switch (protocol)
{
case kSSLProtocol2: return SP_PROT_SSL2_CLIENT;
case kSSLProtocol3: return SP_PROT_SSL3_CLIENT;
case kTLSProtocol1: return SP_PROT_TLS1_CLIENT;
case kTLSProtocol11: return SP_PROT_TLS1_1_CLIENT;
case kTLSProtocol12: return SP_PROT_TLS1_2_CLIENT;
default:
FIXME("unknown protocol %d\n", protocol);
return 0;
}
}
static ALG_ID schan_get_cipher_algid(const struct cipher_suite* c)
{
TRACE("(%#x)\n", (unsigned int)c->suite);
switch (c->enc_alg)
{
case schan_enc_3DES_EDE_CBC: return CALG_3DES;
case schan_enc_AES_128_CBC: return CALG_AES_128;
case schan_enc_AES_256_CBC: return CALG_AES_256;
case schan_enc_DES_CBC: return CALG_DES;
case schan_enc_DES40_CBC: return CALG_DES;
case schan_enc_NULL: return 0;
case schan_enc_RC2_CBC_40: return CALG_RC2;
case schan_enc_RC2_CBC: return CALG_RC2;
case schan_enc_RC4_128: return CALG_RC4;
case schan_enc_RC4_40: return CALG_RC4;
case schan_enc_AES_128_GCM:
case schan_enc_AES_256_GCM:
case schan_enc_FORTEZZA_CBC:
case schan_enc_IDEA_CBC:
FIXME("Don't know CALG for encryption algorithm %d, returning 0\n", c->enc_alg);
return 0;
default:
FIXME("Unknown encryption algorithm %d for cipher suite %#x, returning 0\n", c->enc_alg, (unsigned int)c->suite);
return 0;
}
}
static unsigned int schan_get_cipher_key_size(const struct cipher_suite* c)
{
TRACE("(%#x)\n", (unsigned int)c->suite);
switch (c->enc_alg)
{
case schan_enc_3DES_EDE_CBC: return 168;
case schan_enc_AES_128_CBC: return 128;
case schan_enc_AES_128_GCM: return 128;
case schan_enc_AES_256_CBC: return 256;
case schan_enc_AES_256_GCM: return 256;
case schan_enc_DES_CBC: return 56;
case schan_enc_DES40_CBC: return 40;
case schan_enc_NULL: return 0;
case schan_enc_RC2_CBC_40: return 40;
case schan_enc_RC2_CBC: return 128;
case schan_enc_RC4_128: return 128;
case schan_enc_RC4_40: return 40;
case schan_enc_FORTEZZA_CBC:
case schan_enc_IDEA_CBC:
FIXME("Don't know key size for encryption algorithm %d, returning 0\n", c->enc_alg);
return 0;
default:
FIXME("Unknown encryption algorithm %d for cipher suite %#x, returning 0\n", c->enc_alg, (unsigned int)c->suite);
return 0;
}
}
static ALG_ID schan_get_mac_algid(const struct cipher_suite* c)
{
TRACE("(%#x)\n", (unsigned int)c->suite);
switch (c->mac_alg)
{
case schan_mac_MD5: return CALG_MD5;
case schan_mac_NULL: return 0;
case schan_mac_SHA: return CALG_SHA;
case schan_mac_SHA256: return CALG_SHA_256;
case schan_mac_SHA384: return CALG_SHA_384;
default:
FIXME("Unknown hashing algorithm %d for cipher suite %#x, returning 0\n", c->mac_alg, (unsigned)c->suite);
return 0;
}
}
static unsigned int schan_get_mac_key_size(const struct cipher_suite* c)
{
TRACE("(%#x)\n", (unsigned int)c->suite);
switch (c->mac_alg)
{
case schan_mac_MD5: return 128;
case schan_mac_NULL: return 0;
case schan_mac_SHA: return 160;
case schan_mac_SHA256: return 256;
case schan_mac_SHA384: return 384;
default:
FIXME("Unknown hashing algorithm %d for cipher suite %#x, returning 0\n", c->mac_alg, (unsigned)c->suite);
return 0;
}
}
static ALG_ID schan_get_kx_algid(const struct cipher_suite* c)
{
TRACE("(%#x)\n", (unsigned int)c->suite);
switch (c->kx_alg)
{
case schan_kx_DHE_DSS_EXPORT:
case schan_kx_DHE_DSS:
case schan_kx_DHE_RSA_EXPORT:
case schan_kx_DHE_RSA: return CALG_DH_EPHEM;
case schan_kx_ECDH_anon:
case schan_kx_ECDH_ECDSA:
case schan_kx_ECDH_RSA:
case schan_kx_ECDHE_ECDSA:
case schan_kx_ECDHE_RSA: return CALG_ECDH;
case schan_kx_NULL: return 0;
case schan_kx_RSA: return CALG_RSA_KEYX;
case schan_kx_DH_anon_EXPORT:
case schan_kx_DH_anon:
case schan_kx_DH_DSS_EXPORT:
case schan_kx_DH_DSS:
case schan_kx_DH_RSA_EXPORT:
case schan_kx_DH_RSA:
case schan_kx_FORTEZZA_DMS:
case schan_kx_RSA_EXPORT:
FIXME("Don't know CALG for key exchange algorithm %d for cipher suite %#x, returning 0\n", c->kx_alg, (unsigned)c->suite);
return 0;
default:
FIXME("Unknown key exchange algorithm %d for cipher suite %#x, returning 0\n", c->kx_alg, (unsigned)c->suite);
return 0;
}
}
/* schan_pull_adapter
* Callback registered with SSLSetIOFuncs as the read function for a
* session. Reads data from the session connection. Conforms to the
* SSLReadFunc type.
*
* transport - The session connection
* buff - The buffer into which to store the read data. Must be at least
* *buff_len bytes in length.
* *buff_len - On input, the desired length to read. On successful return,
* the number of bytes actually read.
*
* Returns:
* noErr on complete success meaning the requested length was successfully
* read.
* errSSLWouldBlock when the requested length could not be read without
* blocking. *buff_len indicates how much was actually read. The
* caller should try again if/when they want to read more.
* errSSLClosedGraceful when the connection has closed and there's no
* more data to be read.
* other error code for failure.
*/
static OSStatus schan_pull_adapter(SSLConnectionRef transport, void *buff,
SIZE_T *buff_len)
{
struct mac_session *s = (struct mac_session*)transport;
size_t requested = *buff_len;
int status;
OSStatus ret;
TRACE("(%p/%p, %p, %p/%lu)\n", s, s->transport, buff, buff_len, *buff_len);
status = schan_pull(s->transport, buff, buff_len);
if (status == 0)
{
if (*buff_len == 0)
{
TRACE("Connection closed\n");
ret = errSSLClosedGraceful;
}
else if (*buff_len < requested)
{
TRACE("Pulled %lu bytes before would block\n", *buff_len);
ret = errSSLWouldBlock;
}
else
{
TRACE("Pulled %lu bytes\n", *buff_len);
ret = noErr;
}
}
else if (status == EAGAIN)
{
TRACE("Would block before being able to pull anything\n");
ret = errSSLWouldBlock;
}
else
{
FIXME("Unknown status code from schan_pull: %d\n", status);
ret = ioErr;
}
return ret;
}
/* schan_push_adapter
* Callback registered with SSLSetIOFuncs as the write function for a
* session. Writes data to the session connection. Conforms to the
* SSLWriteFunc type.
*
* transport - The session connection
* buff - The buffer of data to write. Must be at least *buff_len bytes in length.
* *buff_len - On input, the desired length to write. On successful return,
* the number of bytes actually written.
*
* Returns:
* noErr on complete or partial success; *buff_len indicates how much data
* was actually written, which may be less than requested.
* errSSLWouldBlock when no data could be written without blocking. The
* caller should try again.
* other error code for failure.
*/
static OSStatus schan_push_adapter(SSLConnectionRef transport, const void *buff,
SIZE_T *buff_len)
{
struct mac_session *s = (struct mac_session*)transport;
int status;
OSStatus ret;
TRACE("(%p/%p, %p, %p/%lu)\n", s, s->transport, buff, buff_len, *buff_len);
status = schan_push(s->transport, buff, buff_len);
if (status == 0)
{
TRACE("Pushed %lu bytes\n", *buff_len);
ret = noErr;
}
else if (status == EAGAIN)
{
TRACE("Would block before being able to push anything\n");
ret = errSSLWouldBlock;
}
else
{
FIXME("Unknown status code from schan_push: %d\n", status);
ret = ioErr;
}
return ret;
}
static const struct {
DWORD enable_flag;
SSLProtocol mac_version;
} protocol_priority_flags[] = {
{SP_PROT_TLS1_2_CLIENT, kTLSProtocol12},
{SP_PROT_TLS1_1_CLIENT, kTLSProtocol11},
{SP_PROT_TLS1_0_CLIENT, kTLSProtocol1},
{SP_PROT_SSL3_CLIENT, kSSLProtocol3},
{SP_PROT_SSL2_CLIENT, kSSLProtocol2}
};
static DWORD supported_protocols;
DWORD schan_imp_enabled_protocols(void)
{
return supported_protocols;
}
BOOL schan_imp_create_session(schan_imp_session *session, schan_credentials *cred)
{
struct mac_session *s;
unsigned i;
int status;
TRACE("(%p)\n", session);
s = HeapAlloc(GetProcessHeap(), 0, sizeof(*s));
if (!s)
return FALSE;
status = SSLNewContext(cred->credential_use == SECPKG_CRED_INBOUND, &s->context);
if (status != noErr)
{
ERR("Failed to create session context: %d\n", status);
goto fail;
}
status = SSLSetConnection(s->context, s);
if (status != noErr)
{
ERR("Failed to set session connection: %d\n", status);
goto fail;
}
status = SSLSetEnableCertVerify(s->context, FALSE);
if (status != noErr)
{
ERR("Failed to disable certificate verification: %d\n", status);
goto fail;
}
for(i=0; i < sizeof(protocol_priority_flags)/sizeof(*protocol_priority_flags); i++) {
if(!(protocol_priority_flags[i].enable_flag & supported_protocols))
continue;
status = SSLSetProtocolVersionEnabled(s->context, protocol_priority_flags[i].mac_version,
(cred->enabled_protocols & protocol_priority_flags[i].enable_flag) != 0);
if (status != noErr)
{
ERR("Failed to set SSL version %d: %d\n", protocol_priority_flags[i].mac_version, status);
goto fail;
}
}
status = SSLSetIOFuncs(s->context, schan_pull_adapter, schan_push_adapter);
if (status != noErr)
{
ERR("Failed to set session I/O funcs: %d\n", status);
goto fail;
}
TRACE(" -> %p/%p\n", s, s->context);
*session = (schan_imp_session)s;
return TRUE;
fail:
HeapFree(GetProcessHeap(), 0, s);
return FALSE;
}
void schan_imp_dispose_session(schan_imp_session session)
{
struct mac_session *s = (struct mac_session*)session;
int status;
TRACE("(%p/%p)\n", s, s->context);
status = SSLDisposeContext(s->context);
if (status != noErr)
ERR("Failed to dispose of session context: %d\n", status);
HeapFree(GetProcessHeap(), 0, s);
}
void schan_imp_set_session_transport(schan_imp_session session,
struct schan_transport *t)
{
struct mac_session *s = (struct mac_session*)session;
TRACE("(%p/%p, %p)\n", s, s->context, t);
s->transport = t;
}
void schan_imp_set_session_target(schan_imp_session session, const char *target)
{
struct mac_session *s = (struct mac_session*)session;
TRACE("(%p/%p, %s)\n", s, s->context, debugstr_a(target));
SSLSetPeerDomainName( s->context, target, strlen(target) );
}
SECURITY_STATUS schan_imp_handshake(schan_imp_session session)
{
struct mac_session *s = (struct mac_session*)session;
int status;
TRACE("(%p/%p)\n", s, s->context);
status = SSLHandshake(s->context);
if (status == noErr)
{
TRACE("Handshake completed\n");
return SEC_E_OK;
}
else if (status == errSSLWouldBlock)
{
TRACE("Continue...\n");
return SEC_I_CONTINUE_NEEDED;
}
else if (errSecErrnoBase <= status && status <= errSecErrnoLimit)
{
ERR("Handshake failed: %s\n", strerror(status));
return SEC_E_INTERNAL_ERROR;
}
else
{
ERR("Handshake failed: %d\n", status);
cssmPerror("SSLHandshake", status);
return SEC_E_INTERNAL_ERROR;
}
/* Never reached */
return SEC_E_OK;
}
unsigned int schan_imp_get_session_cipher_block_size(schan_imp_session session)
{
struct mac_session* s = (struct mac_session*)session;
SSLCipherSuite cipherSuite;
const struct cipher_suite* c;
int status;
TRACE("(%p/%p)\n", s, s->context);
status = SSLGetNegotiatedCipher(s->context, &cipherSuite);
if (status != noErr)
{
ERR("Failed to get session cipher suite: %d\n", status);
return 0;
}
c = get_cipher_suite(cipherSuite);
if (!c)
{
ERR("Unknown session cipher suite: %#x\n", (unsigned int)cipherSuite);
return 0;
}
switch (c->enc_alg)
{
case schan_enc_3DES_EDE_CBC: return 64;
case schan_enc_AES_128_CBC: return 128;
case schan_enc_AES_128_GCM: return 128;
case schan_enc_AES_256_CBC: return 128;
case schan_enc_AES_256_GCM: return 128;
case schan_enc_DES_CBC: return 64;
case schan_enc_DES40_CBC: return 64;
case schan_enc_NULL: return 0;
case schan_enc_RC2_CBC_40: return 64;
case schan_enc_RC2_CBC: return 64;
case schan_enc_RC4_128: return 0;
case schan_enc_RC4_40: return 0;
case schan_enc_FORTEZZA_CBC:
case schan_enc_IDEA_CBC:
FIXME("Don't know block size for encryption algorithm %d, returning 0\n", c->enc_alg);
return 0;
default:
FIXME("Unknown encryption algorithm %d for cipher suite %#x, returning 0\n", c->enc_alg, (unsigned int)c->suite);
return 0;
}
}
unsigned int schan_imp_get_max_message_size(schan_imp_session session)
{
FIXME("Returning 1 << 14.\n");
return 1 << 14;
}
SECURITY_STATUS schan_imp_get_connection_info(schan_imp_session session,
SecPkgContext_ConnectionInfo *info)
{
struct mac_session* s = (struct mac_session*)session;
SSLCipherSuite cipherSuite;
const struct cipher_suite* c;
int status;
TRACE("(%p/%p, %p)\n", s, s->context, info);
status = SSLGetNegotiatedCipher(s->context, &cipherSuite);
if (status != noErr)
{
ERR("Failed to get session cipher suite: %d\n", status);
return SEC_E_INTERNAL_ERROR;
}
c = get_cipher_suite(cipherSuite);
if (!c)
{
ERR("Unknown session cipher suite: %#x\n", (unsigned int)cipherSuite);
return SEC_E_INTERNAL_ERROR;
}
info->dwProtocol = schan_get_session_protocol(s);
info->aiCipher = schan_get_cipher_algid(c);
info->dwCipherStrength = schan_get_cipher_key_size(c);
info->aiHash = schan_get_mac_algid(c);
info->dwHashStrength = schan_get_mac_key_size(c);
info->aiExch = schan_get_kx_algid(c);
/* FIXME: info->dwExchStrength? */
info->dwExchStrength = 0;
return SEC_E_OK;
}
#ifndef HAVE_SSLCOPYPEERCERTIFICATES
static void schan_imp_cf_release(const void *arg, void *ctx)
{
CFRelease(arg);
}
#endif
SECURITY_STATUS schan_imp_get_session_peer_certificate(schan_imp_session session, HCERTSTORE store,
PCCERT_CONTEXT *ret_cert)
{
struct mac_session* s = (struct mac_session*)session;
SECURITY_STATUS ret = SEC_E_OK;
PCCERT_CONTEXT cert = NULL;
SecCertificateRef mac_cert;
CFArrayRef cert_array;
int status;
CFIndex cnt, i;
CFDataRef data;
BOOL res;
TRACE("(%p/%p, %p)\n", s, s->context, cert);
#ifdef HAVE_SSLCOPYPEERCERTIFICATES
status = SSLCopyPeerCertificates(s->context, &cert_array);
#else
status = SSLGetPeerCertificates(s->context, &cert_array);
#endif
if (status != noErr || !cert_array)
{
WARN("SSLCopyPeerCertificates failed: %d\n", status);
return SEC_E_INTERNAL_ERROR;
}
cnt = CFArrayGetCount(cert_array);
for (i=0; i < cnt; i++) {
if (!(mac_cert = (SecCertificateRef)CFArrayGetValueAtIndex(cert_array, i)) ||
(SecKeychainItemExport(mac_cert, kSecFormatX509Cert, 0, NULL, &data) != noErr))
{
WARN("Couldn't extract certificate data\n");
ret = SEC_E_INTERNAL_ERROR;
break;
}
res = CertAddEncodedCertificateToStore(store, X509_ASN_ENCODING, CFDataGetBytePtr(data), CFDataGetLength(data),
CERT_STORE_ADD_REPLACE_EXISTING, i ? NULL : &cert);
CFRelease(data);
if (!res)
{
ret = GetLastError();
WARN("CertAddEncodedCertificateToStore failed: %x\n", ret);
break;
}
}
#ifndef HAVE_SSLCOPYPEERCERTIFICATES
/* This is why SSLGetPeerCertificates was deprecated */
CFArrayApplyFunction(cert_array, CFRangeMake(0, CFArrayGetCount(cert_array)),
schan_imp_cf_release, NULL);
#endif
CFRelease(cert_array);
if (ret != SEC_E_OK) {
if(cert)
CertFreeCertificateContext(cert);
return ret;
}
*ret_cert = cert;
return SEC_E_OK;
}
SECURITY_STATUS schan_imp_send(schan_imp_session session, const void *buffer,
SIZE_T *length)
{
struct mac_session* s = (struct mac_session*)session;
int status;
TRACE("(%p/%p, %p, %p/%lu)\n", s, s->context, buffer, length, *length);
status = SSLWrite(s->context, buffer, *length, length);
if (status == noErr)
TRACE("Wrote %lu bytes\n", *length);
else if (status == errSSLWouldBlock)
{
if (!*length)
{
TRACE("Would block before being able to write anything\n");
return SEC_I_CONTINUE_NEEDED;
}
else
TRACE("Wrote %lu bytes before would block\n", *length);
}
else
{
WARN("SSLWrite failed: %d\n", status);
return SEC_E_INTERNAL_ERROR;
}
return SEC_E_OK;
}
SECURITY_STATUS schan_imp_recv(schan_imp_session session, void *buffer,
SIZE_T *length)
{
struct mac_session* s = (struct mac_session*)session;
int status;
TRACE("(%p/%p, %p, %p/%lu)\n", s, s->context, buffer, length, *length);
status = SSLRead(s->context, buffer, *length, length);
if (status == noErr || status == errSSLClosedGraceful)
TRACE("Read %lu bytes\n", *length);
else if (status == errSSLWouldBlock)
{
if (!*length)
{
TRACE("Would block before being able to read anything\n");
return SEC_I_CONTINUE_NEEDED;
}
else
TRACE("Read %lu bytes before would block\n", *length);
}
else
{
WARN("SSLRead failed: %d\n", status);
return SEC_E_INTERNAL_ERROR;
}
return SEC_E_OK;
}
BOOL schan_imp_allocate_certificate_credentials(schan_credentials *c)
{
/* The certificate is never really used for anything. */
c->credentials = NULL;
return TRUE;
}
void schan_imp_free_certificate_credentials(schan_credentials *c)
{
}
BOOL schan_imp_init(void)
{
TRACE("()\n");
supported_protocols = SP_PROT_SSL2_CLIENT | SP_PROT_SSL3_CLIENT | SP_PROT_TLS1_0_CLIENT;
#if MAC_OS_X_VERSION_MAX_ALLOWED >= 1080
if(SSLGetProtocolVersionMax != NULL) {
SSLProtocol max_protocol;
SSLContextRef ctx;
OSStatus status;
status = SSLNewContext(FALSE, &ctx);
if(status == noErr) {
status = SSLGetProtocolVersionMax(ctx, &max_protocol);
if(status == noErr) {
if(max_protocol >= kTLSProtocol11)
supported_protocols |= SP_PROT_TLS1_1_CLIENT;
if(max_protocol >= kTLSProtocol12)
supported_protocols |= SP_PROT_TLS1_2_CLIENT;
}
SSLDisposeContext(ctx);
}else {
WARN("SSLNewContext failed\n");
}
}
#endif
return TRUE;
}
void schan_imp_deinit(void)
{
TRACE("()\n");
}
#endif /* HAVE_SECURITY_SECURITY_H */