Al-Qurtas-Islamic-bank-The-.../docs/tutorial/index.html

776 lines
26 KiB
HTML

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="Author"
content="David Turner">
<title>FreeType 2 Tutorial</title>
</head>
<body text="#000000"
bgcolor="#FFFFFF"
link="#0000EF"
vlink="#51188E"
alink="#FF0000">
<h1 align=center>
FreeType 2.0 Tutorial
</h1>
<h3 align=center>
&copy; 2000 David Turner
(<a href="mailto:david@freetype.org">david@freetype.org</a>)<br>
&copy; 2000 The FreeType Development Team
(<a href="http://www.freetype.org">www.freetype.org</a>)
</h3>
<center>
<table width="70%">
<tr><td>
<hr>
<h2>
Introduction
</h2>
<p>This short tutorial will teach you how to use the FreeType&nbsp;2
library in your own applications.</p>
<hr>
<h3>
1. Header files
</h3>
<p>To include the main FreeType header file, simply say</p>
<font color="blue">
<pre>
#include &lt;freetype/freetype.h&gt;</pre>
</font>
<p>in your application code. Note that other files are available in the
FreeType include directory, most of them being included by
<tt>"freetype.h"</tt>. They will be described later in this
tutorial.</p>
<hr>
<h3>
2. Initialize the library
</h3>
<p>Simply create a variable of type <tt>FT_Library</tt> named, for
example, <tt>library</tt>, and call the function
<tt>FT_Init_FreeType()</tt> as in</p>
<font color="blue">
<pre>
#include &lt;freetype/freetype.h&gt;
FT_Library library;
...
{
...
error = FT_Init_FreeType( &library );
if ( error )
{
... an error occurred during library initialization ...
}
}</pre>
</font>
<p>This function is in charge of the following:</p>
<ul>
<li>
<p>Creating a new instance of the FreeType&nbsp;2 library, and set
the handle <tt>library</tt> to it.</p>
</li>
<li>
<p>Load each modules that FreeType knows about in the library.
This means that by default, your new <tt>library</tt> object is able
to handle TrueType, Type&nbsp;1, CID-keyed & OpenType/CFF fonts
gracefully.</p>
</li>
</ul>
<p>As you can see, the function returns an error code, like most others
in the FreeType API. An error code of&nbsp;0 <em>always</em> means that
the operation was successful; otherwise, the value describes the error,
and <tt>library</tt> is set to NULL.</p>
<hr>
<h3>
3. Load a font face
</h3>
<h4>
a. From a font file
</h4>
<p>Create a new <em>face</em> object by calling <tt>FT_New_Face</tt>.
A <em>face</em> describes a given typeface and style. For example,
"Times New Roman Regular" and "Times New Roman Italic" correspond to
two different faces.</p>
<font color="blue">
<pre>
FT_Library library; /* handle to library */
FT_Face face; /* handle to face object */
error = FT_Init_FreeType( &library );
if ( error ) { ... }
error = FT_New_Face( library,
"/usr/share/fonts/truetype/arial.ttf",
0,
&face );
if ( error == FT_Err_Unknown_File_Format )
{
... the font file could be opened and read, but it appears
... that its font format is unsupported
}
else if ( error )
{
... another error code means that the font file could not
... be opened or read, or simply that it is broken...
}</pre>
</font>
<p>As you can certainly imagine, <tt>FT_New_Face</tt> opens a font
file, then tries to extract one face from it. Its parameters are</p>
<table cellpadding=5>
<tr valign="top">
<td>
<tt><b>library</b></tt>
</td>
<td>
<p>handle to the FreeType library instance where the face object
is created</p>
</td>
</tr>
<tr valign="top">
<td>
<tt><b>filepathname</b></tt>
</td>
<td>
<p>the font file pathname (standard C string).</p>
</td>
</tr>
<tr valign="top">
<td>
<tt><b>face_index</b></tt>
</td>
<td>
<p>Certain font formats allow several font faces to be embedded
in a single file.</p>
<p>This index tells which face you want to load. An error will
be returned if its value is too large.</p>
<p>Index 0 always work though.</p>
</td>
</tr>
<tr valign="top">
<td>
<tt><b>face</b></tt>
</td>
<td>
<p>A <em>pointer</em> to the handle that will be set to describe
the new face object.</p>
<p>It is set to NULL in case of error.</p>
</td>
</tr>
</table>
<p>To know how many faces a given font file contains, simply load its
first face (use <tt>face_index</tt>=0), then see the value of
<tt>face->num_faces</tt> which indicates how many faces are embedded
in the font file.</p>
<h4>
b. From memory
</h4>
<p>In the case where you have already loaded the font file in memory,
you can similarly create a new face object for it by calling
<tt>FT_New_Memory_Face</tt> as in</p>
<font color="blue">
<pre>
FT_Library library; /* handle to library */
FT_Face face; /* handle to face object */
error = FT_Init_FreeType( &library );
if ( error ) { ... }
error = FT_New_Memory_Face( library,
buffer, /* first byte in memory */
size, /* size in bytes */
0, /* face_index */
&face );
if ( error ) { ... }</pre>
</font>
<p>As you can see, <tt>FT_New_Memory_Face()</tt> simply takes a
pointer to the font file buffer and its size in bytes instead of a
file pathname. Other than that, it has exactly the same semantics as
<tt>FT_New_Face()</tt>.</p>
<h4>
c. From other sources (compressed files, network, etc.)
</h4>
<p>There are cases where using a file pathname or preloading the file
in memory is simply not enough. With FreeType&nbsp;2, it is possible
to provide your own implementation of i/o routines.</p>
<p>This is done through the <tt>FT_Open_Face()</tt> function, which
can be used to open a new font face with a custom input stream, select
a specific driver for opening, or even pass extra parameters to the
font driver when creating the object. We advise you to refer to the
FreeType&nbsp;2 reference manual in order to learn how to use it.</p>
<p>Note that providing a custom stream might also be used to access a
TrueType font embedded in a Postscript Type&nbsp;42 wrapper.</p>
<hr>
<h3>
4. Accessing face content
</h3>
<p>A <em>face object</em> models all information that globally describes
the face. Usually, this data can be accessed directly by dereferencing
a handle, like</p>
<table cellpadding=5>
<tr valign="top">
<td>
<tt><b>face->num_glyphs</b></tt>
</td>
<td>
<p>Gives the number of <em>glyphs</em> available in the font face.
A glyph is simply a character image. It doesn't necessarily
correspond to a <em>character code</em> though.</p>
</td>
</tr>
<tr valign="top">
<td>
<tt><b>face->flags</b></tt>
</td>
<td>
<p>A 32-bit integer containing bit flags used to describe some
face properties. For example, the flag
<tt>FT_FACE_FLAG_SCALABLE</tt> is used to indicate that the face's
font format is scalable and that glyph images can be rendered for
all character pixel sizes. For more information on face flags,
please read the <a href="#">FreeType&nbsp;2 API Reference</a>.</p>
</td>
</tr>
<tr valign="top">
<td>
<tt><b>face->units_per_EM</b></tt>
</td>
<td>
<p>This field is only valid for scalable formats (it is set to 0
otherwise). It indicates the number of font units covered by the
EM.</p>
</td>
</tr>
<tr valign="top">
<td>
<tt><b>face->num_fixed_sizes</b></tt>
</td>
<td>
<p>This field gives the number of embedded bitmap <em>strikes</em>
in the current face. A <em>strike</em> is simply a series of
glyph images for a given character pixel size. For example, a
font face could include strikes for pixel sizes 10, 12
and&nbsp;14. Note that even scalable font formats can have
embedded bitmap strikes!</p>
</td>
</tr>
<tr valign="top">
<td>
<tt><b>face->fixed_sizes</b></tt>
</td>
<td>
<p>this is a pointer to an array of <tt>FT_Bitmap_Size</tt>
elements. Each <tt>FT_Bitmap_Size</tt> indicates the horizontal
and vertical <em>pixel sizes</em> for each of the strikes that are
present in the face.</p>
</td>
</tr>
</table>
<p>For a complete listing of all face properties and fields, please read
the <a href="#">FreeType&nbsp;2 API Reference</a>.<p>
<hr>
<h3>
5. Setting the current pixel size
</h3>
<p>A face object also holds a handle to a <em>size object</em> in its
<tt>face->size</tt> field. The <em>size</em> object is used to model
all information for the face that is relative to a given character
size.</p>
<p>When a new face object is created, its size object defaults to the
character size of 10&nbsp;pixels (both horizontall and vertically) for
scalable formats. For fixed-sizes formats, the size is more or less
undefined, which is why you must set it before trying to load a
glyph.</p>
<p>To do that, simply call <tt>FT_Set_Char_Size()</tt>. Here is an
example where the character size is set to 16pt for a 300x300&nbsp;dpi
device:</p>
<font color="blue">
<pre>
error = FT_Set_Char_Size(
face, /* handle to face object */
0, /* char_width in 1/64th of points */
16*64, /* char_height in 1/64th of points */
300, /* horizontal device resolution */
300 ); /* vertical device resolution */</pre>
</font>
<p>You will notice that:</p>
<ul>
<li>
<p>The character width and heights are specified in 1/64th of
points.<p>
</li>
<li>
<p>The horizontal and vertical device resolutions are expressed in
<em>dots-per-inch</em>, or <em>dpi</em>. You can use 72 or
96&nbsp;dpi for display devices like the screen.</p>
</li>
<li>
<p>A value of&nbsp;0 for the character width means "<em>same as
character height</em>", a value of&nbsp;0 for the character height
means "<em>same as character width</em>". Otherwise, it is possible
to specify different char widths and heights.</p>
</li>
<li>
<p>Using a value of 0 for the horizontal or vertical resolution means
72&nbsp;dpi, which is the default.</p>
</li>
</ul>
<p>This function computes the character pixel size that corresponds to
the character width and height and device resolutions. However, if you
want to specify the pixel sizes yourself, you can simply call
<tt>FT_Set_Pixel_Sizes()</tt>, as in</p>
<font color="blue">
<pre>
error = FT_Set_Pixel_Sizes(
face, /* handle to face object */
0, /* pixel_width */
16 ); /* pixel_height */</pre>
</font>
<p>This example will set the character pixel sizes to 16x16&nbsp;pixels.
As previously, a value of&nbsp;0 for one of the dimensions means
"<em>same as the other</em>".</p>
<p>Note that both functions return an error code. Usually, an error
occurs with a fixed-size font format (like FNT or PCF) when trying to
set the pixel size to a value that is not listed in the
<tt><b>face->fixed_sizes</b></tt> array.</p>
<hr>
<h3>
6. Loading a glyph image
</h3>
<h4>
a. Converting a character code into a glyph index
</h4>
<p>Usually, an application wants to load a glyph image based on its
<em>character code</em>, which is a unique value that defines the
character for a given <em>encoding</em>. For example, the character
code&nbsp;65 represents the `A' in ASCII encoding.</p>
<p>A face object contains one or more tables, called
<em>charmaps</em>, that are used to convert character codes to glyph
indices. For example, most TrueType fonts contain two charmaps. One
is used to convert Unicode character codes to glyph indices, the other
is used to convert Apple Roman encoding into glyph indices. Such
fonts can then be used either on Windows (which uses Unicode) and
Macintosh (which uses Apple Roman, bwerk). Note also that a given
charmap might not map to all the glyphs present in the font.</p>
<p>By default, when a new face object is created, it lists all the
charmaps contained in the font face and selects the one that supports
Unicode character codes if it finds one. Otherwise, it tries to find
support for Latin-1, then ASCII.</p>
<p>We will describe later how to look for specific charmaps in a face.
For now, we will assume that the face contains at least a Unicode
charmap that was selected during <tt>FT_New_Face()</tt>. To convert a
Unicode character code to a font glyph index, we use
<tt>FT_Get_Char_Index()</tt> as in</p>
<font color="blue">
<pre>
glyph_index = FT_Get_Char_Index( face, charcode );</pre>
</font>
<p>This will look the glyph index corresponding to the given
<tt>charcode</tt> in the charmap that is currently selected for the
face. If charmap is selected, the function simply returns the
charcode.</p>
<p>Note that this is one of the rare FreeType functions that do not
return an error code. However, when a given character code has no
glyph image in the face, the value&nbsp;0 is returned. By convention,
it always correspond to a special glyph image called the <b>missing
glyph</b>, which usually is represented as a box or a space.</p>
<h4>
b. Loading a glyph from the face
</h4>
<p>Once you have a glyph index, you can load the corresponding glyph
image. Note that the glyph image can be in several formats. For
example, it will be a bitmap for fixed-size formats like FNT, FON, or
PCF. It will also be a scalable vector outline for formats like
TrueType or Type&nbsp;1. The glyph image can also be stored in an
alternate way that is not known at the time of writing this
documentation.</p>
<p>The glyph image is always stored in a special object called a
<em>glyph slot</em>. As its name suggests, a glyph slot is simply a
container that is able to hold one glyph image at a time, be it a
bitmap, an outline, or something else. Each face object has a single
glyph slot object that can be accessed as
<b><tt>face->glyph</tt></b>.</p>
<p>Loading a glyph image into the slot is performed by calling
<tt>FT_Load_Glyph()</tt> as in</p>
<font color="blue">
<pre>
error = FT_Load_Glyph(
face, /* handle to face object */
glyph_index, /* glyph index */
load_flags ); /* load flags, see below */</pre>
</font>
<p>The <tt>load_flags</tt> value is a set of bit flags used to
indicate some special operations. The default value
<tt>FT_LOAD_DEFAULT</tt> is&nbsp;0. The function performs the
following:</p>
<ul>
<li>
<p>If there is a bitmap for the corresponding glyph and size, load
it in the glyph slot, unless the <tt>FT_LOAD_NO_BITMAP</tt> flag
is set. This is even <em>true</em> for scalable formats (embedded
bitmaps are favored over outlines as they usually correspond to
higher-quality images of the same glyph).</p>
</li>
<li>
<p>If there is a glyph image in another format (e.g. a vectorial
outline), load it in the glyph slot. Then, scale it to the
current size, unless the <tt>FT_LOAD_NO_SCALE</tt> flag is
set.</p>
</li>
<li>
<p>If the glyph image was loaded and scaled, try to grid-fit it
(which dramatically improves its quality) unless the flag
<tt>FT_LOAD_NO_HINTING</tt> is set.</p>
</li>
<li>
<p>If the glyph image is scalable, transform it through the
current transform (which can be set with
<tt>FT_Set_Transform()</tt>).</p>
</li>
<li>
<p>Finally, if the <tt>FT_LOAD_RENDER</tt> flag is set, convert
the glyph image into a bitmap. By default, this means a 1-bit
monochrome bitmap, unless <tt>FT_LOAD_ANTI_ALIAS</tt> is set,
in which case an 8-bit 256-gray-levels anti-aliased bitmap is
generated.</p>
</li>
</ul>
<p>There are a few others <tt>FT_LOAD_xxx</tt> flags defined. For
more details see the <a href="#">FreeType&nbsp;2 API
Reference</a>.</p>
<h4>
c. Using other charmaps
</h4>
<p>As said before, when a new face object is created, it will look for
a Unicode, Latin-1, or ASCII charmap and select it. The currently
selected charmap is accessed via <b><tt>face->charmap</tt></b>. This
field is NULL when no charmap is selected, which typically happens
when you create a new <tt>FT_Face</tt> object from a font file that
doesn't contain an ASCII, Latin-1, or Unicode charmap (rare
stuff).</p>
<p>The fields <b><tt>face->num_charmaps</tt></b> and
<b><tt>face->charmaps</tt></b> (notice the `s') can be used by client
applications to check which charmaps are available in a given
face.</p>
<p><b><tt>face->charmaps</tt></b> is an array of <em>pointers</em> to
the <tt><b>face->num_charmaps</b></tt> charmaps contained in the font
face.</p>
<p>Each charmap has a few visible fields used to describe it in more
detail. For example, <tt><b>charmap->encoding</b></tt> is an
enumeration type that describes the charmap with FreeType codes. One
can also look at <tt><b>charmap->platform_id</b></tt> and
<tt><b>charmap->encoding_id</b></tt> for more exotic needs.</p>
<p>Here's an example code that looks for a Chinese Big&nbsp;5 charmap,
then selects it via <tt>FT_Set_CharMap()</tt>:</p>
<font color="blue">
<pre>
FT_CharMap found = 0;
FT_CharMap charmap;
int n;
for ( n = 0; n &lt; face->num_charmaps; n++ )
{
charmap = face->charmaps[n];
if ( charmap->encoding == ft_encoding_big5 )
{
found = charmap;
break;
}
}
if ( !found ) { ... }
/* now, select the charmap for the face object */
error = FT_Set_CharMap( face, found );
if ( error ) { ... }</pre>
</font>
<p>One might now call <tt>FT_Get_Char_Index()</tt> with Big&nbsp;5
character codes to retrieve glyph indices.</p>
<hr>
<h3>
7. Accessing glyph image data
</h3>
<p>Glyph image data is accessible through <tt><b>face->glyph</b></tt>.
See the definition of the <tt>FT_GlyphSlot</tt> type for more details.
As stated previously, each face has a single glyph slot, where
<em>one</em> glyph image <em>at a time</em> can be loaded. Each time
you call <tt>FT_Load_Glyph()</tt>, you erase the content of the glyph
slot with a new glyph image.</p>
<p>Note however that the glyph slot object itself doesn't change, only
its content, which means that you can perfectly create a "shortcut" to
access it as in</p>
<font color="blue">
<pre>
{
/* shortcut to glyph slot */
FT_GlyphSlot glyph = face->glyph;
for ( n = 0; n &lt; face->num_glyphs; n++ )
{
... load glyph n ...
... access glyph data as glyph->xxxx
}
}</pre>
</font>
<p>The <tt>glyph</tt> variable will be valid until its parent
<tt>face</tt> is destroyed. Here are a few important fields of the
glyph slot:<p>
<table cellpadding=5>
<tr valign="top">
<td>
<tt><b>glyph->format</b></tt>
</td>
<td>
<p>Indicates the type of the loaded glyph image. Can be either
<tt>ft_glyph_format_bitmap</tt>, <tt>ft_glyph_format_outline</tt>,
or other values.</p>
</td>
</tr>
<tr valign="top">
<td>
<tt><b>glyph->metrics</b></tt>
</td>
<td>
<p>A simple structure used to hold the glyph image's metrics.
Note that <em>most distances are expressed in 1/64th of
pixels!</em> See the API reference or the user guide for a
description of the <tt>FT_Glyph_Metrics</tt> structure.</p>
</td>
</tr>
<tr valign="top">
<td>
<tt><b>glyph->bitmap</b></tt>
</td>
<td>
<p>If the glyph slot contains a bitmap, a simple
<tt>FT_Bitmap</tt> that describes it. See the API reference or
user guide for a description of the <tt>FT_Bitmap</tt>
structure.</p>
</td>
</tr>
<tr valign="top">
<td>
<tt><b>glyph->outline</b></tt>
</td>
<td>
<p>When the glyph slot contains a scalable outline, this structure
describes it. See the definition of the <tt>FT_Outline</tt>
structure.</p>
</td>
</tr>
</table>
<h3>
8. Rendering glyph outlines into bitmaps
</h3>
<p>You can easily test the format of the glyph image by inspecting the
<tt>face->glyph->format</tt> variable. If its value is
<tt>ft_glyph_format_bitmap</tt>, the glyph image that was loaded is a
bitmap that can be directly blit to your own surfaces through your
favorite graphics library (FreeType&nbsp;2 doesn't provide bitmap
blitting routines, as you may imagine&nbsp;:-)</p>
<p>If the format is <tt>ft_glyph_format_outline</tt> or something else,
the library provides a means to convert such glyph images to bitmaps
through what are called <b>rasters</b>.</p>
<p>On the other hand, if the image is a scalable outline or something
else, FreeType provides a function to convert the glyph image into a
pre-existing bitmap that you will handle to it, named
<tt>FT_Get_Glyph_Bitmap</tt>. Here's a <em>simple</em> example code
that renders an outline into a <b>monochrome</b> bitmap:</p>
<font color="blue">
<pre>
{
FT_GlyphSlot glyph;
... load glyph ...
glyph = face-&gt;glyph; /* shortcut to glyph data */
if ( glyph->format == ft_glyph_format_outline )
{
FT_Bitmap bit;
/* set-up a bitmap descriptor for our target bitmap */
bit.rows = bitmap_height;
bit.width = bitmap_width;
bit.pitch = bitmap_row_bytes;
/* render into a mono bitmap */
bit.pixel_mode = ft_pixel_mode_mono;
bit.buffer = bitmap_buffer;
/* render the outline directly into the bitmap */
error = FT_Get_Glyph_Bitmap( face, &bit );
if ( error ) { ... }
}
}</pre>
</font>
<p>You should note that <b><em><tt>FT_Get_Glyph_Bitmap()</tt> doesn't
create the bitmap</em></b>. It only needs a descriptor, of type
<tt>FT_Bitmap</tt>, and writes directly into it.</p>
<p>Note that the FreeType scan-converter for outlines can also generate
anti-aliased glyph bitmaps with 128 level of grays. For now, it is
restricted to rendering to 8-bit gray-level bitmaps, though this may
change in the future. Here is some code to do just that:</p>
<font color="blue">
<pre>
{
FT_GlyphSlot glyph;
... load glyph ...
glyph = face->glyph; /* shortcut to glyph data */
if ( glyph->format == ft_glyph_format_outline )
{
FT_Bitmap bit;
/* set-up a bitmap descriptor for our target bitmap */
bit.rows = bitmap_height;
bit.width = bitmap_width;
bit.pitch = bitmap_row_bytes;
/* 8-bit gray-level bitmap */
bit.pixel_mode = ft_pixel_mode_gray;
/* MUST be 128 for now */
bit.grays = 128;
bit.buffer = bitmap_buffer;
/* clean the bitmap - IMPORTANT */
memset( bit.buffer, 0, bit.rows*bit.pitch );
/* render the outline directly into the bitmap */
error = FT_Get_Glyph_Bitmap( face, &bit );
if ( error ) { ... }
}
}</pre>
</font>
<p>You will notice that</p>
<ul>
<li>
<p>As previously, <tt>FT_Get_Glyph_Bitmap()</tt> doesn't generate
the bitmap, it simply renders to it.</p>
</li>
<li>
<p>The target bitmap must be cleaned before calling the function.
This is a limitation of our current anti-aliasing algorithm and is
EXTREMELY important.</p>
</li>
<li>
<p>The anti-aliaser uses 128&nbsp;levels of grays exclusively for
now (this will probably change in a near future). This means that
you <b>must</b> set <tt>bit.grays</tt> to&nbsp;128. The generated
image uses values from 0 (back color) to 127 (foreground color).</p>
</li>
<li>
<p>It is <b>not</b> possible to render directly an anti-aliased
outline into a pre-existing gray-level bitmap, or even any
colored-format one (like RGB16 or paletted 8-bits). We will not
discuss this issue in great details here, but the reason is that we
do not want to deal with graphics composition (or alpha-blending)
within FreeType.<p/>
</li>
</ul>
</td></tr>
</table>
</center>
</body>
</html>