* src/tools/glnames.py: adding comment explaining the compression
being used for the Adobe Glyph List.
This commit is contained in:
parent
c11aeb647c
commit
465a53243f
|
@ -1,3 +1,8 @@
|
||||||
|
2005-03-10 David Turner <david@freetype.org>
|
||||||
|
|
||||||
|
* src/tools/glnames.py: adding comment explaining the compression
|
||||||
|
being used for the Adobe Glyph List.
|
||||||
|
|
||||||
2005-03-10 Werner Lemberg <wl@gnu.org>
|
2005-03-10 Werner Lemberg <wl@gnu.org>
|
||||||
|
|
||||||
* src/truetype/ttpload.c (tt_face_load_cvt, tt_face_load_fpgm):
|
* src/truetype/ttpload.c (tt_face_load_cvt, tt_face_load_fpgm):
|
||||||
|
|
|
@ -4758,6 +4758,77 @@ class StringTable:
|
||||||
write( line + "\n };\n\n\n" )
|
write( line + "\n };\n\n\n" )
|
||||||
|
|
||||||
|
|
||||||
|
#
|
||||||
|
# here's an explanation about the way we now store the Adobe Glyph List.
|
||||||
|
# First of all, we store the list as a tree. Consider for example that
|
||||||
|
# you want to store the following name mapping:
|
||||||
|
#
|
||||||
|
# A => 1
|
||||||
|
# Aacute => 6
|
||||||
|
# Abalon => 2
|
||||||
|
# Abstract => 4
|
||||||
|
#
|
||||||
|
# it's possible to store them in a tree, as in:
|
||||||
|
#
|
||||||
|
# A => 1
|
||||||
|
# |
|
||||||
|
# +-acute => 6
|
||||||
|
# |
|
||||||
|
# +-b
|
||||||
|
# |
|
||||||
|
# +-alone => 2
|
||||||
|
# |
|
||||||
|
# +-stract => 4
|
||||||
|
#
|
||||||
|
# we see that each node in the tree has:
|
||||||
|
#
|
||||||
|
# - one or more 'letters'
|
||||||
|
# - an optional value
|
||||||
|
# - zero or more child nodes
|
||||||
|
#
|
||||||
|
# you can build such a tree with:
|
||||||
|
#
|
||||||
|
# root = StringNode( "",0 )
|
||||||
|
# for word in map.values():
|
||||||
|
# root.add(word,map[word])
|
||||||
|
#
|
||||||
|
# this will create a large tree where each node has only one letter
|
||||||
|
# then call:
|
||||||
|
#
|
||||||
|
# root = root.optimize()
|
||||||
|
#
|
||||||
|
# which will optimize the tree by mergin the letters of successive
|
||||||
|
# nodes whenever possible
|
||||||
|
#
|
||||||
|
# now, each node of the tree is stored as follows in the table:
|
||||||
|
#
|
||||||
|
# - first the node's letters, according to the following scheme:
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# name bitsize description
|
||||||
|
# -----------------------------------------
|
||||||
|
# notlast 1 set to 1 if this is not the last letter
|
||||||
|
# in the word
|
||||||
|
# ascii 7 the letter's ASCII value
|
||||||
|
#
|
||||||
|
# - then, the children count and optional value:
|
||||||
|
#
|
||||||
|
# name bitsize description
|
||||||
|
# -----------------------------------------
|
||||||
|
# hasvalue 1 set to 1 if a 16-bit Unicode value follows
|
||||||
|
# num_children 7 number of childrens. can be 0 only if
|
||||||
|
# 'hasvalue' is set to 1
|
||||||
|
# if (hasvalue)
|
||||||
|
# value 16 optional Unicode value
|
||||||
|
#
|
||||||
|
# - followed by the list of 16-bit absolute offsets to the children.
|
||||||
|
# Children must be sorted in increasing order of their first letter.
|
||||||
|
#
|
||||||
|
# All 16-bit quantities are stored in big-endian. If you don't know why,
|
||||||
|
# you've never debugged this kind of code ;-)
|
||||||
|
#
|
||||||
|
# Finally, the root node has first letter = 0, and no value.
|
||||||
|
#
|
||||||
class StringNode:
|
class StringNode:
|
||||||
def __init__( self, letter, value ):
|
def __init__( self, letter, value ):
|
||||||
self.letter = letter
|
self.letter = letter
|
||||||
|
|
Loading…
Reference in New Issue